Non-viral gene therapy for neuromuscular diseases including Duchenne muscular dystrophy using nanovesicles derived from human cells

Seung Wook Oh , Jinah Han , Sung-Soo Park

Rare Disease and Orphan Drugs Journal ›› 2024, Vol. 3 ›› Issue (4) : 26

PDF
Rare Disease and Orphan Drugs Journal ›› 2024, Vol. 3 ›› Issue (4) :26 DOI: 10.20517/rdodj.2024.16
Review

Non-viral gene therapy for neuromuscular diseases including Duchenne muscular dystrophy using nanovesicles derived from human cells

Author information +
History +
PDF

Abstract

One of the biggest challenges in adeno-associated virus gene delivery for Duchenne muscular dystrophy (DMD) is that some patients cannot be treated due to pre-existing neutralizing antibodies. As an alternative, nanovesicles derived from diverse human cells have emerged as highly efficient delivery vehicles for genetic materials. This is due to their superior biocompatibility and capability to cross diverse tissue barriers. Notably, the lack of strong host immune response was witnessed in multiple preclinical studies, as well as clinical trials recently completed using human allogeneic nanovesicles. Engineering nanovesicles with tissue-specific ligands on the surface can also enhance tissue selectivity, thus reducing off-target effects. Taken together, these findings raise the possibility that this novel non-viral approach can serve as an attractive alternative to risk-prone viral-mediated gene therapy. This review discusses the recent advances in a non-viral gene therapy approach using cell-derived nanovesicles, and highlights their therapeutic potential in treating neuromuscular diseases, such as DMD, along with current challenges that need to be further addressed.

Keywords

Nanovesicles / non-viral gene delivery / extracellular vesicles / cell-derived vesicles / biocompatibility / repeat dosing / neuromuscular diseases / Duchenne muscular dystrophy

Cite this article

Download citation ▾
Seung Wook Oh, Jinah Han, Sung-Soo Park. Non-viral gene therapy for neuromuscular diseases including Duchenne muscular dystrophy using nanovesicles derived from human cells. Rare Disease and Orphan Drugs Journal, 2024, 3(4): 26 DOI:10.20517/rdodj.2024.16

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kempf L,Temple R.Challenges of developing and conducting clinical trials in rare disorders.Am J Med Genet A2018;176:773-83

[2]

Tambuyzer E,Austin CP.Therapies for rare diseases: therapeutic modalities, progress and challenges ahead.Nat Rev Drug Discov2020;19:93-111

[3]

Condò I.Rare monogenic diseases: molecular pathophysiology and novel therapies.Int J Mol Sci2022;23:6525 PMCID:PMC9223693

[4]

Ledford H.Gene therapy’s comeback: how scientists are trying to make it safer.Nature2022;606:443-4

[5]

Verdera HC,Mingozzi F.AAV vector immunogenicity in humans: a long journey to successful gene transfer.Mol Ther2020;28:723-46 PMCID:PMC7054726

[6]

Wong CH,Wang N,Lo AW.The estimated annual financial impact of gene therapy in the United States.Gene Ther2023;30:761-73 PMCID:PMC10678302

[7]

Yates N.The economics of moonshots: value in rare disease drug development.Clin Transl Sci2022;15:809-12 PMCID:PMC9010265

[8]

Du S,Xie A.Extracellular vesicles: a rising star for therapeutics and drug delivery.J Nanobiotechnol2023;21:231 PMCID:PMC10360328

[9]

Chen C,Sun M,Wang HMD.Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery.Biomed Pharmacother2022;145:112416

[10]

Elliott RO.Unlocking the power of exosomes for crossing biological barriers in drug delivery.Pharmaceutics2021;13:122 PMCID:PMC7835896

[11]

Cecchin R,Witwer K.Extracellular vesicles: the next generation in gene therapy delivery.Mol Ther2023;31:1225-30 PMCID:PMC10188631

[12]

Kuzmin DA,Johnston NR.The clinical landscape for AAV gene therapies.Nat Rev Drug Discov2021;20:173-4

[13]

Weber T.Anti-AAV antibodies in AAV gene therapy: current challenges and possible solutions.Front Immunol2021;12:658399 PMCID:PMC8010240

[14]

Philippidis A.Novartis confirms deaths of two patients treated with gene therapy Zolgensma.Hum Gene Ther2022;33:842-4

[15]

Nguyen GN,Kafle S.A long-term study of AAV gene therapy in dogs with hemophilia a identifies clonal expansions of transduced liver cells.Nat Biotechnol2021;39:47-55 PMCID:PMC7855056

[16]

George LA,Rasko JEJ.Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B.Mol Ther2020;28:2073-82 PMCID:PMC7474338

[17]

Srivastava A,Berns KI.Nucleotide sequence and organization of the adeno-associated virus 2 genome.J Virol1983;45:555-64 PMCID:PMC256449

[18]

Crudele JM.AAV-based gene therapies for the muscular dystrophies.Hum Mol Genet2019;28:R102-7 PMCID:PMC6796995

[19]

Ghauri MS.AAV engineering for improving tropism to the central nervous system.Biology2023;12:186 PMCID:PMC9953251

[20]

Rode L,Groß S.AAV capsid engineering identified two novel variants with improved in vivo tropism for cardiomyocytes.Mol Ther2022;30:3601-18 PMCID:PMC9734024

[21]

Weinmann J,Sippel J.Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants.Nat Commun2020;11:5432 PMCID:PMC7595228

[22]

Tabebordbar M,Stanton A.Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species.Cell2021;184:4919-38.e22 PMCID:PMC9344975

[23]

Hoffmann MD,LeBeau AM.Unlocking precision gene therapy: harnessing AAV tropism with nanobody swapping at capsid hotspots.NAR Mol Med2024;1:ugae008 PMCID:PMC11250487

[24]

Song R,Khan TA,Paşca SP.Selection of rAAV vectors that cross the human blood-brain barrier and target the central nervous system using a transwell model.Mol Ther Methods Clin Dev2022;27:73-88 PMCID:PMC9494039

[25]

Arjomandnejad M,Flotte TR.Immunogenicity of recombinant adeno-associated virus (AAV) vectors for gene transfer.BioDrugs2023;37:311-29 PMCID:PMC9979149

[26]

Earley J,Ronzitti G.Evading and overcoming AAV neutralization in gene therapy.Trends Biotechnol2023;41:836-45

[27]

Domenger C.Next-generation AAV vectors-do not judge a virus (only) by its cover.Hum Mol Genet2019;28:R3-14

[28]

Rind DM.The FDA and gene therapy for duchenne muscular dystrophy.JAMA2024;331:1705-6

[29]

Darrow JJ.Luxturna: FDA documents reveal the value of a costly gene therapy.Drug Discov Today2019;24:949-54

[30]

Nuijten M.Pricing Zolgensma - the world’s most expensive drug.J Mark Access Health Policy2022;10:2022353 PMCID:PMC8725676

[31]

Naddaf M.Researchers welcome $3.5-million haemophilia gene therapy - but questions remain.Nature2022;612:388-9

[32]

Roy S. US FDA approves Pfizer’s gene therapy for rare bleeding disorder. 2024. Available from: https://www.reuters.com/business/healthcare-pharmaceuticals/us-fda-approves-pfizers-gene-therapy-rare-bleeding-disorder-2024-04-26/ [Last accessed on 28 Aug 2024]

[33]

Kansteiner F,Liu A,Dunleavy K. Most expensive drugs in the US in 2023. Available from: https://www.fiercepharma.com/special-reports/priciest-drugs-2023 [Last accessed on 28 Aug 2024]

[34]

Liu A. BioMarin’s hemophilia gene therapy Roctavian lands FDA nod with ‘glimmers’ of enthusiasm among doctors. Available from: https://www.fiercepharma.com/pharma/biomarins-hemophilia-gene-therapy-roctavian-lands-fda-nod-glimmers-enthusiasm-among-doctors [Last accessed on 28 Aug 2024]

[35]

Saleh AF,Forsgard MAM.Extracellular vesicles induce minimal hepatotoxicity and immunogenicity.Nanoscale2019;11:6990-7001

[36]

Zhu X,Pomeroy S.Comprehensive toxicity and immunogenicity studies reveal minimal effects in mice following sustained dosing of extracellular vesicles derived from HEK293T cells.J Extracell Vesicles2017;6:1324730 PMCID:PMC5505007

[37]

Mendt M,Sugimoto H.Generation and testing of clinical-grade exosomes for pancreatic cancer.JCI Insight2018;3:99263 PMCID:PMC5931131

[38]

Sanz-Ros J,Romero-García N,Dromant M.Extracellular vesicles as therapeutic resources in the clinical environment.Int J Mol Sci2023;24:2344 PMCID:PMC9917082

[39]

Estes S,Young JD.Manufactured extracellular vesicles as human therapeutics: challenges, advances, and opportunities.Curr Opin Biotechnol2022;77:102776

[40]

Ran N,Dong X.Effects of exosome-mediated delivery of myostatin propeptide on functional recovery of mdx mice.Biomaterials2020;236:119826

[41]

Zhang J,Zhang H.Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy.Sci Adv2022;8:eabj8207 PMCID:PMC8754405

[42]

Reis LA,Simões MJ,Sinigaglia-Coimbra R.Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats.PLoS One2012;7:e44092 PMCID:PMC3435420

[43]

Fusco C,Spatocco I.Extracellular vesicles as human therapeutics: a scoping review of the literature.J Extracell Vesicles2024;13:e12433 PMCID:PMC11089593

[44]

Lightner AL,Qian S.Bone marrow mesenchymal stem cell-derived extracellular vesicle infusion for the treatment of respiratory failure from COVID-19: a randomized, placebo-controlled dosing clinical trial.Chest2023;164:1444-53 PMCID:PMC10289818

[45]

Dreschnack PA.Treatment of idiopathic facial paralysis (Bell’s palsy) and secondary facial paralysis with extracellular vesicles: a pilot safety study.BMC Neurol2023;23:342 PMCID:PMC10536754

[46]

Bellio MA,Arango A.Proof-of-concept trial of an amniotic fluid-derived extracellular vesicle biologic for treating high risk patients with mild-to-moderate acute COVID-19 infection.Biomater Biosyst2021;4:100031 PMCID:PMC8611818

[47]

Mitrani MI,Sagel A.Case report: administration of amniotic fluid-derived nanoparticles in three severely Ill COVID-19 patients.Front Med2021;8:583842 PMCID:PMC8010176

[48]

Nassar W,Sabry D.Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases.Biomater Res2016;20:21 PMCID:PMC4974791

[49]

Roberts TC,Davies KE.Therapeutic approaches for Duchenne muscular dystrophy.Nat Rev Drug Discov2023;22:917-34

[50]

Didiot MC,Coles AH.Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing.Mol Ther2016;24:1836-47 PMCID:PMC5112038

[51]

Didiot MC,Aronin N.Loading of extracellular vesicles with hydrophobically modified siRNAs. In: Patel T, editor. Extracellular RNA. New York: Springer; 2018. pp. 199-214.

[52]

Gong C,Wang Z.Functional exosome-mediated co-delivery of doxorubicin and hydrophobically modified microRNA 159 for triple-negative breast cancer therapy.J Nanobiotechnol2019;17:93 PMCID:PMC6721253

[53]

Zhang H,Wu J.Exosome-mediated targeted delivery of miR-210 for angiogenic therapy after cerebral ischemia in mice.J Nanobiotechnol2019;17:29 PMCID:PMC6379944

[54]

Kamerkar S,Burenkova O.Exosome-mediated genetic reprogramming of tumor-associated macrophages by exoASO-STAT6 leads to potent monotherapy antitumor activity.Sci Adv2022;8:eabj7002 PMCID:PMC8856615

[55]

Hung ME.A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery.J Extracell Vesicles2016;5:31027 PMCID:PMC4870355

[56]

Kojima R,Rizzi G.Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment.Nat Commun2018;9:1305 PMCID:PMC5880805

[57]

Zickler AM,Gupta D.Novel endogenous engineering platform for robust loading and delivery of functional mRNA by extracellular vesicles. bioRxiv 2023.

[58]

Tsai SJ,Sedgwick A.Exosome-mediated mRNA delivery for SARS-CoV-2 vaccination. bioRxiv 2020.

[59]

Zhang Q,Han C.Intraduodenal delivery of exosome-loaded SARS-CoV-2 RBD mRNA induces a neutralizing antibody response in mice.Vaccines2023;11:673 PMCID:PMC10058540

[60]

Pomatto MAC,Negro F.Plant-derived extracellular vesicles as a delivery platform for RNA-based vaccine: feasibility study of an oral and intranasal SARS-CoV-2 vaccine.Pharmaceutics2023;15:974 PMCID:PMC10058531

[61]

Johnsen KB,Skov MN.Evaluation of electroporation-induced adverse effects on adipose-derived stem cell exosomes.Cytotechnology2016;68:2125-38 PMCID:PMC5023584

[62]

Tang TT,Wu M.Extracellular vesicle-encapsulated IL-10 as novel nanotherapeutics against ischemic AKI.Sci Adv2020;6:eaaz0748

[63]

Skokos D,Demeure C.Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo.J Immunol2003;170:3037-45

[64]

Wahlgren J,Brisslert M.Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes.Nucleic Acids Res2012;40:e130 PMCID:PMC3458529

[65]

da C. Gonçalves F,Korevaar SS.Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes.Sci Rep2017;7:12100 PMCID:PMC5608915

[66]

Choo YW,Kim HY.M1 macrophage-derived nanovesicles potentiate the anticancer efficacy of immune checkpoint inhibitors.ACS Nano2018;12:8977-93

[67]

Zhang C,Wang M.“Triple-Punch” strategy exosome-mimetic nanovesicles for triple negative breast cancer therapy.ACS Nano2024;18:5470-82

[68]

Zhang J,Dong Y.Surface engineering of HEK293 cell-derived extracellular vesicles for improved pharmacokinetic profile and targeted delivery of IL-12 for the treatment of hepatocellular carcinoma.Int J Nanomedicine2023;18:209-23 PMCID:PMC9844138

[69]

Bellavia D,Calabrese G.Interleukin 3- receptor targeted exosomes inhibit in vitro and in vivo chronic myelogenous leukemia cell growth.Theranostics2017;7:1333-45 PMCID:PMC5399597

[70]

Gu Y,Jiang L.αvβ3 integrin-specific exosomes engineered with cyclopeptide for targeted delivery of triptolide against malignant melanoma.J Nanobiotechnol2022;20:384 PMCID:PMC9400227

[71]

Wang L,Zou W.Exosomes containing miRNAs targeting HER2 synthesis and engineered to adhere to HER2 on tumor cells surface exhibit enhanced antitumor activity.J Nanobiotechnol2020;18:153 PMCID:PMC7592554

[72]

Huang X,Jing D.Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy.J Control Release2022;343:107-17

[73]

Han Q,Li F.Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer.Theranostics2021;11:6526-41 PMCID:PMC8120217

[74]

Yang Z,Xie J.Large-scale generation of functional mRNA-encapsulating exosomes via cellular nanoporation.Nat Biomed Eng2020;4:69-83

[75]

Alvarez-Erviti L,Yin H,Lakhal S.Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nat Biotechnol2011;29:341-5

[76]

Wu T,Cao Y.Engineering macrophage exosome disguised biodegradable nanoplatform for enhanced sonodynamic therapy of glioblastoma.Adv Mater2022;34:e2110364

[77]

Liang Y,Li X.Chondrocyte-targeted MicroRNA delivery by engineered exosomes toward a cell-free osteoarthritis therapy.ACS Appl Mater Interfaces2020;12:36938-47

[78]

Mentkowski KI.Exosomes engineered to express a cardiomyocyte binding peptide demonstrate improved cardiac retention in vivo.Sci Rep2019;9:10041 PMCID:PMC6624248

[79]

Nakamura Y,Ishitobi H.Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration.FEBS Lett2015;589:1257-65

[80]

Choi JS,Lee KS.Exosomes from differentiating human skeletal muscle cells trigger myogenesis of stem cells and provide biochemical cues for skeletal muscle regeneration.J Control Release2016;222:107-15

[81]

Figliolini F,Grange C.Extracellular vesicles from adipose stem cells prevent muscle damage and inflammation in a mouse model of hind limb ischemia: role of neuregulin-1.Arterioscler Thromb Vasc Biol2020;40:239-54

[82]

Bier A,Kronfeld N.Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy.Biomaterials2018;174:67-78

[83]

Byun SE,Chung Y.Skeletal muscle regeneration by the exosomes of adipose tissue-derived mesenchymal stem cells.Curr Issues Mol Biol2021;43:1473-88 PMCID:PMC8929094

[84]

Chen R,Zheng Y.Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy.J Nanobiotechnol2022;20:304 PMCID:PMC9235146

[85]

Gao X,Dong X.Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy.Sci Transl Med2018;10:eaat0195

[86]

Wang B,Wang H.miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease.Theranostics2019;9:1864-77 PMCID:PMC6485283

[87]

Han G,Zhong L.Generalizable anchor aptamer strategy for loading nucleic acid therapeutics on exosomes.EMBO Mol Med2024;16:1027-45 PMCID:PMC11018858

[88]

Icli B,Feinberg MW.An emerging role for the miR-26 family in cardiovascular disease.Trends Cardiovasc Med2014;24:241-8 PMCID:PMC4150842

[89]

Sugo T,Oikawa T.Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.J Control Release2016;237:1-13

[90]

Malecova B,Cochran M.Targeted tissue delivery of RNA therapeutics using antibody-oligonucleotide conjugates (AOCs).Nucleic Acids Res2023;51:5901-10 PMCID:PMC10325888

[91]

Chen J,Zhou M.Combinatorial design of ionizable lipid nanoparticles for muscle-selective mRNA delivery with minimized off-target effects.Proc Natl Acad Sci USA2023;120:e2309472120 PMCID:PMC10723144

[92]

Kim J,Ryals RC,Sahay G.Strategies for non-viral vectors targeting organs beyond the liver.Nat Nanotechnol2024;19:428-47

[93]

Colapicchioni V,Parolini O.Nanomedicine, a valuable tool for skeletal muscle disorders: challenges, promises, and limitations.Wiley Interdiscip Rev Nanomed Nanobiotechnol2022;14:e1777 PMCID:PMC9285803

[94]

Liang Y,Lu J.Engineering exosomes for targeted drug delivery.Theranostics2021;11:3183-95 PMCID:PMC7847680

[95]

Piffoux M,Silva AKA.Thinking quantitatively of RNA-based information transfer via extracellular vesicles: lessons to learn for the design of RNA-loaded EVs.Pharmaceutics2021;13:1931 PMCID:PMC8617734

[96]

Sehgal I,Hudson I.A comparison of currently approved small interfering RNA (siRNA) medications to alternative treatments by costs, indications, and medicaid coverage.Pharmacy2024;12:58 PMCID:PMC11054365

[97]

Chahal PS,Tran R,Kamen AA.Production of adeno-associated virus (AAV) serotypes by transient transfection of HEK293 cell suspension cultures for gene delivery.J Virol Methods2014;196:163-73 PMCID:PMC7113661

[98]

Ahn SH,Choi H,Park J.Manufacturing therapeutic exosomes: from bench to industry.Mol Cells2022;45:284-90 PMCID:PMC9095511

[99]

Herrmann IK,Fuhrmann G.Extracellular vesicles as a next-generation drug delivery platform.Nat Nanotechnol2021;16:748-59

[100]

Rezaie J,Etemadi T.A review on exosomes application in clinical trials: perspective, questions, and challenges.Cell Commun Signal2022;20:145 PMCID:PMC9483361

[101]

Li YJ,Liu J.Artificial exosomes for translational nanomedicine.J Nanobiotechnol2021;19:242 PMCID:PMC8359033

[102]

Jang SC,Yoon CM.Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors.ACS Nano2013;7:7698-710

[103]

Hong J,Jung M.T-cell-derived nanovesicles for cancer immunotherapy.Adv Mater2021;33:e2101110

[104]

Jung M,Kim BS.Nanovesicle-mediated targeted delivery of immune checkpoint blockades to potentiate therapeutic efficacy and prevent side effects.Adv Mater2022;34:e2106516

[105]

Fan J,Kim S,Aghaloo T.Generation of small RNA-modulated exosome mimetics for bone regeneration.ACS Nano2020;14:11973-84 PMCID:PMC7530137

[106]

Lau HC,Park J.GMP-compliant manufacturing of biologically active cell-derived vesicles produced by extrusion technology.J Extracell Biol2022;1:e70 PMCID:PMC11080851

[107]

Vernikos G.Bexsero® chronicle.Pathog Glob Health2014;108:305-16 PMCID:PMC4241781

[108]

Gupta D,Pavlova S.Quantification of extracellular vesicles in vitro and in vivo using sensitive bioluminescence imaging.J Extracell Vesicles2020;9:1800222 PMCID:PMC7481830

[109]

Lázaro-Ibáñez E,Saleh AF.Selection of fluorescent, bioluminescent, and radioactive tracers to accurately reflect extracellular vesicle biodistribution in vivo.ACS Nano2021;15:3212-27 PMCID:PMC7905875

[110]

Kang M,Blenkiron C.Biodistribution of extracellular vesicles following administration into animals: a systematic review.J Extracell Vesicles2021;10:e12085 PMCID:PMC8224174

[111]

Driedonks T,Carlson B.Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina.J Extracell Biol2022;1:e59

[112]

Gupta D,Wood MJA.Biodistribution of therapeutic extracellular vesicles.Extracell Vesicles Circ Nucleic Acids2023;4:170-90

[113]

Kamerkar S,Sugimoto H.Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.Nature2017;546:498-503 PMCID:PMC5538883

[114]

Belhadj Z,Deng H.A combined “eat me/don’t eat me” strategy based on extracellular vesicles for anticancer nanomedicine.J Extracell Vesicles2020;9:1806444 PMCID:PMC7480498

[115]

Cheng L,Tang J,Liu J.Gene-engineered exosomes-thermosensitive liposomes hybrid nanovesicles by the blockade of CD47 signal for combined photothermal therapy and cancer immunotherapy.Biomaterials2021;275:120964

[116]

Sleep D,Evans LR.Albumin as a versatile platform for drug half-life extension.Biochim Biophys Acta2013;1830:5526-34

[117]

Mitchell MJ,Haley RM,Peppas NA.Engineering precision nanoparticles for drug delivery.Nat Rev Drug Discov2021;20:101-24 PMCID:PMC7717100

[118]

Patras L,Munteanu C.Trojan horse treatment based on PEG-coated extracellular vesicles to deliver doxorubicin to melanoma in vitro and in vivo.Cancer Biol Ther2022;23:1-16 PMCID:PMC8812761

[119]

Liang X,Galli V.Extracellular vesicles engineered to bind albumin demonstrate extended circulation time and lymph node accumulation in mouse models.J Extracell Vesicles2022;11:e12248 PMCID:PMC9314316

[120]

Saunders NRM,Fenton OS.A nanoprimer to improve the systemic delivery of siRNA and mRNA.Nano Lett2020;20:4264-9

[121]

Wautier JL.Vascular permeability in diseases.Int J Mol Sci2022;23:3645 PMCID:PMC8998843

[122]

Gupta D,El Andaloussi S.Dosing extracellular vesicles.Adv Drug Deliv Rev2021;178:113961

[123]

Tan F,Wang Z,Shahzad K.Clinical applications of stem cell-derived exosomes.Signal Transduct Target Ther2024;9:17 PMCID:PMC10784577

[124]

Patel GK,Zubair H.Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications.Sci Rep2019;9:5335 PMCID:PMC6441044

[125]

Chen J,Zhang T.Review on strategies and technologies for exosome isolation and purification.Front Bioeng Biotechnol2021;9:811971 PMCID:PMC8766409

[126]

Dooley K,Xu K.A versatile platform for generating engineered extracellular vesicles with defined therapeutic properties.Mol Ther2021;29:1729-43 PMCID:PMC8116569

[127]

Choi H,Kim DH.Quantitative biodistribution and pharmacokinetics study of GMP-grade exosomes labeled with (89)Zr radioisotope in mice and rats.Pharmaceutics2022;14:1118 PMCID:PMC9229812

[128]

Roberts TC,Wood MJA.Advances in oligonucleotide drug delivery.Nat Rev Drug Discov2020;19:673-94 PMCID:PMC7419031

[129]

Murphy DE,Evers MJW,Schiffelers RM.Natural or synthetic RNA delivery: a stoichiometric comparison of extracellular vesicles and synthetic nanoparticles.Nano Lett2021;21:1888-95 PMCID:PMC8023702

[130]

You Y,Yang Z.Intradermally delivered mRNA-encapsulating extracellular vesicles for collagen-replacement therapy.Nat Biomed Eng2023;7:887-900

[131]

Nawaz M,Tangruksa B.Lipid nanoparticles deliver the therapeutic VEGFA mRNA in vitro and in vivo and transform extracellular vesicles for their functional extensions.Adv Sci2023;10:e2206187 PMCID:PMC10131815

[132]

Maguire CA,Sivaraman S.Microvesicle-associated AAV vector as a novel gene delivery system.Mol Ther2012;20:960-71 PMCID:PMC3345986

[133]

György B,Crommentuijn MHW,Maguire CA.Naturally enveloped AAV vectors for shielding neutralizing antibodies and robust gene delivery in vivo.Biomaterials2014;35:7598-609 PMCID:PMC4104587

[134]

Wassmer SJ,György B,Maguire CA.Exosome-associated AAV2 vector mediates robust gene delivery into the murine retina upon intravitreal injection.Sci Rep2017;7:45329 PMCID:PMC5374486

[135]

György B,Indzhykulian AA.Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV.Mol Ther2017;25:379-91 PMCID:PMC5368844

[136]

Meliani A,Fitzpatrick Z.Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors.Blood Adv2017;1:2019-31 PMCID:PMC5728288

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/