RNA antisense and silencing strategies using synthetic drugs for rare muscular and neuromuscular diseases

Daniel Scherman

Rare Disease and Orphan Drugs Journal ›› 2023, Vol. 2 ›› Issue (3) : 12

PDF
Rare Disease and Orphan Drugs Journal ›› 2023, Vol. 2 ›› Issue (3) :12 DOI: 10.20517/rdodj.2023.01
Review

RNA antisense and silencing strategies using synthetic drugs for rare muscular and neuromuscular diseases

Author information +
History +
PDF

Abstract

Rare diseases occur in their large majority from a genetic cause, which makes them good candidates for genetic RNA drugs. The basic concepts, principles, mechanisms of action and chemical optimizations of synthetic antisense oligonucleotides (ASO) and small interfering RNA (siRNA) are illustrated. These drugs act either by leading to RNA degradation, or as steric blockers of RNA translation, microRNA antagonists, splicing modulators or inducers of exon skipping. Chemical modifications and delivery techniques differ and are adapted to their distinct functions. The successes, potential, and challenges of synthetic RNA drugs are illustrated for several muscular and neuromuscular diseases: Duchenne muscular dystrophy, spinal muscular atrophy, transthyretin amyloidosis, Type 1 myotonic dystrophy, centronuclear myopathy, oculopharyngeal muscular dystrophy.

Keywords

Antisense oligonucleotide / neuromuscular disorders / rare disease / RNA drug / RNA interference / small interfering siRNA

Cite this article

Download citation ▾
Daniel Scherman. RNA antisense and silencing strategies using synthetic drugs for rare muscular and neuromuscular diseases. Rare Disease and Orphan Drugs Journal, 2023, 2(3): 12 DOI:10.20517/rdodj.2023.01

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaufmann SH.Paul Ehrlich: founder of chemotherapy.Nat Rev Drug Discov2008;7:373

[2]

Drews J.Paul ehrlich: magister mundi.Nat Rev Drug Discov2004;3:797-801

[3]

Synofzik M,Marckmann G.Preparing n-of-1 antisense oligonucleotide treatments for rare neurological diseases in europe: genetic, regulatory, and ethical perspectives.Nucleic Acid Ther2022;32:83-94 PMCID:PMC9058873

[4]

Gillmore JD,Taubel J.CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis.N Engl J Med2021;385:493-502

[5]

Bennett CF,Cleveland DW.Antisense oligonucleotide therapies for neurodegenerative diseases.Annu Rev Neurosci2019;42:385-406 PMCID:PMC7427431

[6]

Hu B,Xia XH,Huang Y.Clinical advances of siRNA therapeutics.J Gene Med2019;21:e3097

[7]

Holm A,Klitgaard H.Clinical advances of RNA therapeutics for treatment of neurological and neuromuscular diseases.RNA Biol2022;19:594-608 PMCID:PMC9067473

[8]

Brunet de Courssou JB,Adams D,Mariani LL.Antisense therapies in neurological diseases.Brain2022;145:816-31

[9]

Zamecnik PC.Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide.Proc Natl Acad Sci USA1978;75:280-4 PMCID:PMC411230

[10]

Stephenson ML.Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide.Proc Natl Acad Sci USA1978;75:285-8 PMCID:PMC411231

[11]

Sun P,Jickling GC,Yin KJ.MicroRNA-based therapeutics in central nervous system injuries.J Cereb Blood Flow Metab2018;38:1125-48 PMCID:PMC6434449

[12]

Gan W,Liu J.R-loop-mediated genomic instability is caused by impairment of replication fork progression.Genes Dev2011;25:2041-56 PMCID:PMC3197203

[13]

Pang J,Lu Z.The catalytic mechanism, metal dependence, substrate specificity, and biodiversity of ribonuclease H.Front Microbiol2022;13:1034811 PMCID:PMC9719913

[14]

Nowotny M,Crouch RJ.Crystal structures of RNase H bound to an RNA/DNA hybrid: substrate specificity and metal-dependent catalysis.Cell2005;121:1005-16

[15]

Fire A,Montgomery MK,Driver SE.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature1998;391:806-11

[16]

Montgomery MK,Fire A.RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans.Proc Natl Acad Sci U S A1998;95:15502-7 PMCID:PMC28072

[17]

Elbashir SM,Lendeckel W,Weber K.Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494-498.

[18]

Bumcrot D,Koteliansky V.RNAi therapeutics: a potential new class of pharmaceutical drugs.Nat Chem Biol2006;2:711-9 PMCID:PMC7097247

[19]

Lisa J.Scherer LJ, Rossi JJ. Principles of RNAi trigger expression for gene therapy. Advanced Textbook on Gene Transfer, Gene Therapy and Genetic Pharmacology. 2014; pp53-72; Editor Scherman Daniel. Imperial College Press. ISBN: 9781786346872.

[20]

Snead NM.Biogenesis and function of endogenous and exogenous siRNAs.Wiley Interdiscip Rev RNA2010;1:117-31

[21]

Scherer L.RNAi applications in mammalian cells.Biotechniques2004;36:557-61

[22]

Foster DJ,Shaikh S.Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates.Mol Ther2018;26:708-17 PMCID:PMC5910670

[23]

Gosselin NH,Barriere O.Translational population-pharmacodynamic modeling of a novel long-acting siRNA therapy, inclisiran, for the treatment of hypercholesterolemia.Clin Pharmacol Ther2023;113:328-38

[24]

Langlois MA,Wang G.Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells.J Biol Chem2005;280:16949-54

[25]

Sobczak K,Wang W.RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy.Mol Ther2013;21:380-7 PMCID:PMC3594017

[26]

Bisset DR,Zavaljevski M.Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.Hum Mol Genet2015;24:4971-83 PMCID:PMC4527493

[27]

Gantier MP.The response of mammalian cells to double-stranded RNA.Cytokine Growth Factor Rev2007;18:363-71 PMCID:PMC2084215

[28]

Gantier MP,Williams BR.Fine-tuning of the innate immune response by microRNAs.Immunol Cell Biol2007;85:458-62

[29]

Kleinman ME,Takeda A.Sequence- and target-independent angiogenesis suppression by siRNA via TLR3.Nature2008;452:591-7 PMCID:PMC2642938

[30]

Cho WG,Kleinman ME.Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth.Proc Natl Acad Sci U S A2009;106:7137-42 PMCID:PMC2678451

[31]

Bramsen JB,Hansen TB.A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects.Nucleic Acids Res2010;38:5761-73 PMCID:PMC2943616

[32]

Khvorova A.The chemical evolution of oligonucleotide therapies of clinical utility.Nat Biotechnol2017;35:238-48 PMCID:PMC5517098

[33]

Crooke ST,Baker BF.Antisense technology: a review.J Biol Chem2021;296:100416 PMCID:PMC8005817

[34]

Koller E,Chappell A,Manoharan M.Mechanisms of single-stranded phosphorothioate modified antisense oligonucleotide accumulation in hepatocytes.Nucleic Acids Res2011;39:4795-807 PMCID:PMC3113586

[35]

Eckstein F.Phosphorothioates, essential components of therapeutic oligonucleotides.Nucleic Acid Ther2014;24:374-87

[36]

Geary RS,Yu R.Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides.Adv Drug Deliv Rev2015;87:46-51

[37]

Crooke ST.Vitravene-another piece in the mosaic.Antisense Nucleic Acid Drug Dev1998;8:vii-viii

[38]

Furdon PJ,Kole R.RNase H cleavage of RNA hybridized to oligonucleotides containing methylphosphonate, phosphorothioate and phosphodiester bonds.Nucleic Acids Res1989;17:9193-204 PMCID:PMC335124

[39]

Zhang L,De Hoyos CL.The combination of mesyl-phosphoramidate inter-nucleotide linkages and 2'-O-methyl in selected positions in the antisense oligonucleotide enhances the performance of RNaseH1 active PS-ASOs.Nucleic Acid Ther2022;32:401-11 PMCID:PMC9595634

[40]

Summerton J.Morpholino antisense oligomers: design, preparation, and properties.Antisense Nucleic Acid Drug Dev1997;7:187-95

[41]

Moulton JD.Using morpholinos to control gene expression.Curr Protoc Nucleic Acid Chem2017;68:4.30.1-4.30.29 PMCID:PMC7162182

[42]

Amantana A.Pharmacokinetics and biodistribution of phosphorodiamidate morpholino antisense oligomers.Curr Opin Pharmacol2005;5:550-5

[43]

Renneberg D,Reber U,Leumann CJ.Antisense properties of tricyclo-DNA.Nucleic Acids Res2002;30:2751-7 PMCID:PMC117067

[44]

Goyenvalle A,Garcia L.Therapeutic potential of tricyclo-DNA antisense oligonucleotides.J Neuromuscul Dis2016;3:157-67 PMCID:PMC5271482

[45]

Nielsen PE,Berg RH.Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide.Science1991;254:1497-500

[46]

McMahon BM,Lipsky J,Fauq A.Pharmacokinetics and tissue distribution of a peptide nucleic acid after intravenous administration.Antisense Nucleic Acid Drug Dev2002;12:65-70

[47]

Lennox KA.A direct comparison of anti-microRNA oligonucleotide potency.Pharm Res2010;27:1788-99

[48]

Jearawiriyapaisarn N,Buckley B.Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice.Mol Ther2008;16:1624-9 PMCID:PMC2671676

[49]

Hammond SM,Shabanpoor F.Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy.Proc Natl Acad Sci U S A2016;113:10962-7 PMCID:PMC5047168

[50]

Tajik-Ahmadabad B,Separovic F.Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts.Int J Pharm2017;532:21-8

[51]

Hangeland JJ,Deamond SF,Ts'O PO.Tissue distribution and metabolism of the [32P]-labeled oligodeoxynucleoside methylphosphonate-neoglycopeptide conjugate, [YEE(ah-GalNAc)3]-SMCC-AET-pUmpT7, in the mouse.Antisense Nucleic Acid Drug Dev1997;7:141-9

[52]

Maier MA,Mohamed N.Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting.Bioconjug Chem2003;14:18-29

[53]

Debacker AJ,Catley M,Habib N.Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic Drug.Mol Ther2020;28:1759-71 PMCID:PMC7403466

[54]

Schlegel MK,Jiang Y.From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization.Nucleic Acids Res2022;50:6656-70 PMCID:PMC9262600

[55]

Gennemark P,Clemmensen N.An oral antisense oligonucleotide for PCSK9 inhibition.Sci Transl Med2021;13:eabe9117

[56]

Angeli E,Janin A.How to make anticancer drugs cross the blood-brain barrier to treat brain metastases.Int J Mol Sci2019;21:22 PMCID:PMC6981899

[57]

Kawasaki AM,Freier SM.Uniformly modified 2'-deoxy-2'-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets.J Med Chem1993;36:831-41

[58]

Seth PP,Allerson CR.Short antisense oligonucleotides with novel 2'-4' conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals.J Med Chem2009;52:10-3

[59]

Shen W,Sun H.Acute hepatotoxicity of 2' fluoro-modified 5-10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins.Nucleic Acids Res2018;46:2204-17 PMCID:PMC5861398

[60]

Burel SA,Cauntay P.Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.Nucleic Acids Res2016;44:2093-109 PMCID:PMC4797265

[61]

Kasuya T,Watanabe A.Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.Sci Rep2016;6:30377 PMCID:PMC4961955

[62]

Alterman JF,Hassler MR.A divalent siRNA chemical scaffold for potent and sustained modulation of gene expression throughout the central nervous system.Nat Biotechnol2019;37:884-94 PMCID:PMC6879195

[63]

Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat; 2019. 1-240.

[64]

Hu B,Weng Y.Therapeutic siRNA: state of the art.Signal Transduct Target Ther2020;5:101 PMCID:PMC7305320

[65]

Elkayam E,Brown CR.siRNA carrying an (E)-vinylphosphonate moiety at the 5΄ end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2.Nucleic Acids Res2017;45:3528-36 PMCID:PMC5389677

[66]

Brown CR,Qin J.Investigating the pharmacodynamic durability of GalNAc-siRNA conjugates.Nucleic Acids Res2020;48:11827-44 PMCID:PMC7708070

[67]

Kel'in AV,Harp J.Structural basis of duplex thermodynamic stability and enhanced nuclease resistance of 5'-C-Methyl Pyrimidine-Modified Oligonucleotides.J Org Chem2016;81:2261-79

[68]

Schlegel MK,Jiang Y.From bench to bedside: improving the clinical safety of GalNAc-siRNA conjugates using seed-pairing destabilization.Nucleic Acids Res2022;50:6656-70 PMCID:PMC9262600

[69]

Quan D,Berk JL.Impact of baseline polyneuropathy severity on patisiran treatment outcomes in the APOLLO trial.Amyloid2023;30:49-58

[70]

Ranasinghe P,Dear JW.Small interfering RNA: discovery, pharmacology and clinical development-an introductory review.Br J Pharmacol2022;

[71]

Wei Y,Lin J.Oral Delivery of siRNA Using fluorinated, small-sized nanocapsules toward anti-inflammation treatment.Adv Mater2023;35:e2206821

[72]

Busignies V,Charrueau C.Compression of Vectors for Small Interfering RNAs Delivery: Toward Oral Administration of siRNA Lipoplexes in Tablet Forms.Mol Pharm2020;17:1159-69

[73]

Fattal E.Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA.Adv Drug Deliv Rev2006;58:1203-23

[74]

Scherman D,Bigey P.Genetic pharmacology: progresses in siRNA delivery and therapeutic applications.Gene Ther2017;24:151-6

[75]

Khoury M,Courties G.Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes.Arthritis Rheum2008;58:2356-67

[76]

Courties G,Presumey J.Cytosolic phospholipase A2α gene silencing in the myeloid lineage alters development of Th1 responses and reduces disease severity in collagen-induced arthritis.Arthritis Rheum2011;63:681-90

[77]

Available from: Orphanet: https://www.orpha.net/consor/cgi-bin/Disease.php?lng=EN [Last accessed on 29 May 2023]

[78]

Angelini G,Messina G.Therapeutic approaches to preserve the musculature in duchenne muscular dystrophy: the importance of the secondary therapies.Exp Cell Res2022;410:112968

[79]

Koenig M,Kunkel LM.The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein.Cell1988;53:219-28

[80]

Tennyson CN,Worton RG.The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced.Nat Genet1995;9:184-90

[81]

Monaco AP,Liechti-Gallati S,Kunkel LM.An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus.Genomics1988;2:90-5

[82]

Aartsma-Rus A,Fokkema IF,Den Dunnen JT.Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule.Muscle Nerve2006;34:135-44

[83]

Aartsma-Rus A,Verschuuren J.Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations.Hum Mutat2009;30:293-9

[84]

Neri M,Trabanelli C.The genetic landscape of dystrophin mutations in Italy: a nationwide study.Front Genet2020;11:131 PMCID:PMC7063120

[85]

Goyenvalle A,Fougerousse F.Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.Science2004;306:1796-9

[86]

Denti MA,D'Antona G.Chimeric adeno-associated virus/antisense U1 small nuclear RNA effectively rescues dystrophin synthesis and muscle function by local treatment of mdx mice.Hum Gene Ther2006;17:565-74

[87]

Stein CA.Eteplirsen Approved for duchenne muscular dystrophy: the FDA faces a difficult choice.Mol Ther2016;24:1884-5 PMCID:PMC5154484

[88]

Flanigan KM,Rosales XQ.Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: results of a double-blind randomized clinical trial.Neuromuscul Disord2014;24:16-24 PMCID:PMC4145871

[89]

Deng J,Shi K.Drug development progress in duchenne muscular dystrophy.Front Pharmacol2022;13:950651 PMCID:PMC9353054

[90]

Melki J,Burglen L.De novo and inherited deletions of the 5q13 region in spinal muscular atrophies.Science1994;264:1474-7

[91]

Lefebvre S,Reboullet S.Identification and characterization of a spinal muscular atrophy-determining gene.Cell1995;80:155-65

[92]

Finkel RS,Kaufmann P.Observational study of spinal muscular atrophy type I and implications for clinical trials.Neurology2014;83:810-7 PMCID:PMC4155049

[93]

Kaufmann P,Darras BT.Muscle Study Group (MSG)Pediatric Neuromuscular Clinical Research Network for Spinal Muscular Atrophy (PNCR)Prospective cohort study of spinal muscular atrophy types 2 and 3.Neurology2012;79:1889-97 PMCID:PMC3525313

[94]

Rochette CF,Simard LR.SMN gene duplication and the emergence of the SMN2 gene occurred in distinct hominids: SMN2 is unique to Homo sapiens.Hum Genet2001;108:255-66

[95]

Burlet P,Clermont O.Large scale deletions of the 5q13 region are specific to Werdnig-Hoffmann disease.J Med Genet1996;33:281-3 PMCID:PMC1050575

[96]

Wirth B,Schrank B.Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number.Hum Genet2006;119:422-8

[97]

Singh NK,Androphy EJ.Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron.Mol Cell Biol2006;26:1333-46 PMCID:PMC1367187

[98]

Hua Y,Okunola HL,Krainer AR.Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice.Am J Hum Genet2008;82:834-48 PMCID:PMC2427210

[99]

Hua Y,Sahashi K,Bennett CF.Motor neuron cell-nonautonomous rescue of spinal muscular atrophy phenotypes in mild and severe transgenic mouse models.Genes Dev2015;29:288-97 PMCID:PMC4318145

[100]

Touznik A,Hosoki K,Yokota T.LNA/DNA mixmer-based antisense oligonucleotides correct alternative splicing of the SMN2 gene and restore SMN protein expression in type 1 SMA fibroblasts.Sci Rep2017;7:3672 PMCID:PMC5473822

[101]

Benkhelifa-Ziyyat S,Roda M.Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice.Mol Ther2013;21:282-90 PMCID:PMC3594018

[102]

Mendell JR,Rodino-Klapac LR.Current clinical applications of in vivo gene therapy with AAVs.Mol Ther2021;29:464-88 PMCID:PMC7854298

[103]

ANDRADE C.A peculiar form of peripheral neuropathy: familiar atypical generalized amyloidosis with special involvement of the peripheral nerves.Brain1952;75:408-27

[104]

Jacobson DR,Yaghoubian R.Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans.N Engl J Med1997;336:466-73

[105]

Dyck PJB,Waddington Cruz M.Neuropathy symptom and change: Inotersen treatment of hereditary transthyretin amyloidosis.Muscle Nerve2020;62:509-15 PMCID:PMC7540369

[106]

Westermark P,Johansson B.Fibril in senile systemic amyloidosis is derived from normal transthyretin.Proc Natl Acad Sci U S A1990;87:2843-5 PMCID:PMC53787

[107]

Benson MD,Berk JL.Inotersen treatment for patients with hereditary transthyretin amyloidosis.N Engl J Med2018;379:22-31

[108]

Sewing S,Winter M.Assessing single-stranded oligonucleotide drug-induced effects in vitro reveals key risk factors for thrombocytopenia.PLoS One2017;12:e0187574 PMCID:PMC5673186

[109]

Flierl U,Lim B.Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators.J Exp Med2015;212:129-37 PMCID:PMC4322051

[110]

Severi D,Spina E.A case of severe increase of liver enzymes in a ATTRv patient after one year of inotersen treatment.Neurol Sci2023;44:1419-22 PMCID:PMC9795110

[111]

Alnylam pharmaceuticals highlights of US prescribing information. Available from:https://www.alnylam.com/ [Last accessed on 29 May 2023]

[112]

Marimani MD,Buff MC.Inhibition of replication of hepatitis B virus in transgenic mice following administration of hepatotropic lipoplexes containing guanidinopropyl-modified siRNAs.J Control Release2015;209:198-206

[113]

Kulkarni JA,Chen S,van der Meel R.Lipid nanoparticle technology for clinical translation of sirna therapeutics.Acc Chem Res2019;52:2435-44

[114]

van der Meel R,Zaifman J.Modular lipid nanoparticle platform technology for siRNA and lipophilic prodrug delivery.Small2021;17:e2103025

[115]

Böttger R,Chao PH.Lipid-based nanoparticle technologies for liver targeting.Adv Drug Deliv Rev2020;154-155:79-101

[116]

Zhang MM,Rasmussen TP,Zhong XB.The growth of siRNA-based therapeutics: updated clinical studies.Biochem Pharmacol2021;189:114432 PMCID:PMC8187268

[117]

Weng YH,Zhang JC,Huang YY.RNAi therapeutic and its innovative biotechnological evolution..Biotechnol Adv2019;37:801-25

[118]

Springer AD.GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics.Nucleic Acid Ther2018;28:109-18 PMCID:PMC5994659

[119]

Chaumet-Riffaud P,Marty AL.Synthesis and application of lactosylated, 99mTc chelating albumin for measurement of liver function.Bioconjug Chem2010;21:589-96

[120]

Salmon H,Houzé P.Europium labeled lactosylated albumin as a model workflow for the development of biotherapeutics.Nanomedicine2019;18:21-30

[121]

Habtemariam BA,Attarwala H.Single-dose pharmacokinetics and pharmacodynamics of transthyretin targeting N-acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects.Clin Pharmacol Ther2021;109:372-82

[122]

Adams D,Taylor MS.HELIOS-A CollaboratorsEfficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial.Amyloid2023;30:1-9

[123]

Ando Y,Benson MD.Guidelines and new directions in the therapy and monitoring of ATTRv amyloidosis.Amyloid2022;29:143-55

[124]

Echaniz-Laguna A,Labeyrie C.Treating hereditary transthyretin amyloidosis: Present & future challenges.Rev Neurol2023;179:30-4

[125]

Aimo A,Rapezzi C.RNA-targeting and gene editing therapies for transthyretin amyloidosis.Nat Rev Cardiol2022;19:655-67

[126]

Tanowitz M,Revenko A,Prakash TP.Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes.Nucleic Acids Res2017;45:12388-400 PMCID:PMC5716100

[127]

Kim Y,Schmidt J.Enhanced potency of GalNAc-conjugated antisense oligonucleotides in hepatocellular cancer models.Mol Ther2019;27:1547-57 PMCID:PMC6731179

[128]

Brook JD,Harley HG.Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3' end of a transcript encoding a protein kinase family member.Cell1992;69:385

[129]

Konieczny P,Sobczak K.MBNL proteins and their target RNAs, interaction and splicing regulation.Nucleic Acids Res2014;42:10873-87 PMCID:PMC4176163

[130]

Goodwin M,Batra R.MBNL Sequestration by toxic RNAs and RNA misprocessing in the myotonic dystrophy brain.Cell Rep2015;12:1159-68 PMCID:PMC4545389

[131]

Overby SJ,Llamusi B.RNA-mediated therapies in myotonic dystrophy.Drug Discov Today2018;23:2013-22

[132]

Lee JE,Cooper TA.RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1.Proc Natl Acad Sci USA2012;109:4221-6 PMCID:PMC3306674

[133]

A safety and tolerability study of multiple doses of ISIS-DMPKRx in adults with myotonic dystrophy Type 1. Available from: https://clinicaltrials.gov/ct2/show/NCT02312011 [Last accessed on 29 May 2023]

[134]

Sugo T,Oikawa T.Development of antibody-siRNA conjugate targeted to cardiac and skeletal muscles.J Control Release2016;237:1-13

[135]

Safety, tolerability, pharmacodynamic, efficacy, and pharmacokinetic study of dyne-101 in participants with myotonic dystrophy Type 1 (ACHIEVE). Available from: https://www.clinicaltrials.gov/ct2/show/NCT05481879 [Last accessed on 29 May 2023]

[136]

Nguyen Q.Degradation of Toxic RNA in myotonic dystrophy using gapmer antisense oligonucleotides. In: Yokota T, Maruyama R, editors. Gapmers. New York: Springer US; 2020. pp. 99-109.

[137]

Cerro-Herreros E,Moreno-Cervera N.Therapeutic potential of antagomiR-23b for treating myotonic dystrophy.Mol Ther Nucleic Acids2020;21:837-49 PMCID:PMC7452101

[138]

Wheeler TM,Swanson MS,Thornton CA.Correction of ClC-1 splicing eliminates chloride channelopathy and myotonia in mouse models of myotonic dystrophy.J Clin Invest2007;117:3952-7 PMCID:PMC2075481

[139]

Negishi Y,Ishiura S.Exon skipping by ultrasound-enhanced delivery of morpholino with bubble liposomes for myotonic dystrophy model mice. In: Yokota T, Maruyama R, editors. Exon Skipping and Inclusion Therapies. New York: Springer; 2018. pp. 481-7.

[140]

Xia X,Huang Y.Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo.Neurobiol Dis2006;23:578-86

[141]

Lombardi MS,Spronkmans C.A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference.Exp Neurol2009;217:312-9

[142]

Hauser S,Kraft M,Hübener-Schmid J.Allele-specific targeting of mutant ataxin-3 by antisense oligonucleotides in SCA3-iPSC-derived neurons.Mol Ther Nucleic Acids2022;27:99-108 PMCID:PMC8649108

[143]

Pfister EL,Straubhaar J.Five siRNAs targeting three SNPs may provide therapy for three-quarters of Huntington's disease patients.Curr Biol2009;19:774-8 PMCID:PMC2746439

[144]

Kay C,Caron NS.A comprehensive haplotype-targeting strategy for allele-specific HTT suppression in huntington disease.Am J Hum Genet2019;105:1112-25 PMCID:PMC6904807

[145]

Conroy F,Alterman JF.Chemical engineering of therapeutic siRNAs for allele-specific gene silencing in Huntington's disease models.Nat Commun2022;13:5802 PMCID:PMC9530163

[146]

Trochet D,Mekzine L.Benefits of therapy by dynamin-2-mutant-specific silencing are maintained with time in a mouse model of dominant centronuclear myopathy.Mol Ther Nucleic Acids2022;27:1179-90 PMCID:PMC8889367

[147]

Dudhal S,Prudhon B.Development of versatile allele-specific siRNAs able to silence all the dominant dynamin 2 mutations.Mol Ther Nucleic Acids2022;29:733-48 PMCID:PMC9439966

[148]

Züchner S,Kennerson M.Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate charcot-marie-tooth disease.Nat Genet2005;37:289-94

[149]

Sambuughin N,Sivtseva TM.Adult-onset autosomal dominant spastic paraplegia linked to a GTPase-effector domain mutation of dynamin 2.BMC Neurol2015;15:223 PMCID:PMC4628244

[150]

Fujise K,Takeda T.Centronuclear myopathy caused by defective membrane remodelling of dynamin 2 and BIN1 variants.Int J Mol Sci2022;23:6274 PMCID:PMC9181712

[151]

Wang L,Byers C,Jameson DM.Dynamin 2 mutants linked to centronuclear myopathies form abnormally stable polymers.J Biol Chem2010;285:22753-7 PMCID:PMC2906265

[152]

Cowling BS,Prokic I.Reducing dynamin 2 expression rescues X-linked centronuclear myopathy.J Clin Invest2014;124:1350-63 PMCID:PMC3938268

[153]

Koutsopoulos OS,Weller CM.Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome.Eur J Hum Genet2013;21:637-42 PMCID:PMC3658203

[154]

Study of TD101, a Small interfering RNA (siRNA) designed for treatment of pachyonychia congenita. Available from: https://clinicaltrials.gov/ct2/show/NCT00716014 [Last accessed on 29 May 2023]

[155]

Leachman SA,Schwartz ME.First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder.Mol Ther2010;18:442-6 PMCID:PMC2839285

[156]

Trochet D,Vassilopoulos S.Therapy for dominant inherited diseases by allele-specific RNA interference: successes and pitfalls.Curr Gene Ther2015;15:503-10

[157]

Roth F,Boulinguiez A.Assessment of PABPN1 nuclear inclusions on a large cohort of patients and in a human xenograft model of oculopharyngeal muscular dystrophy.Acta Neuropathol2022;144:1157-70 PMCID:PMC9637588

[158]

Banerjee A,Pavlath GK.PABPN1: molecular function and muscle disease.FEBS J2013;280:4230-50 PMCID:PMC3786098

[159]

Malerba A,Bachtarzi H.PABPN1 gene therapy for oculopharyngeal muscular dystrophy.Nat Commun2017;8:14848 PMCID:PMC5380963

[160]

Malerba A,Lu-Nguyen N.Established PABPN1 intranuclear inclusions in OPMD muscle can be efficiently reversed by AAV-mediated knockdown and replacement of mutant expanded PABPN1.Hum Mol Genet2019;28:3301-8 PMCID:PMC7343048

[161]

Strings-Ufombah V,Kao SC.BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy.Mol Ther Nucleic Acids2021;24:67-78 PMCID:PMC7940701

[162]

Cao W,Pei X.Antibody–siRNA conjugates (ARC): emerging siRNA drug formulation.Medicine in Drug Discovery2022;15:100128

[163]

Zlatev I,Brown CR.Reversal of siRNA-mediated gene silencing in vivo.Nat Biotechnol2018;36:509-11

[164]

Burel SA,Cauntay P.Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.Nucleic Acids Res2016;44:2093-109 PMCID:PMC4797265

[165]

Kasuya T,Watanabe A.Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides.Sci Rep2016;6:30377 PMCID:PMC4961955

[166]

Yasuhara H,Sasaki K,Inoue T.Reduction of off-target effects of gapmer antisense oligonucleotides by oligonucleotide extension.Mol Diagn Ther2022;26:117-27 PMCID:PMC8766371

[167]

Kobayashi Y,Ui-Tei K.The siRNA off-target effect is determined by base-pairing stabilities of two different regions with opposite effects.Genes2022;13:319 PMCID:PMC8872465

[168]

Kanasty RL,Vegas AJ.Action and reaction: the biological response to siRNA and its delivery vehicles.Mol Ther2012;20:513-24 PMCID:PMC3293611

[169]

Alagia A.siRNA and RNAi optimization.Wiley Interdiscip Rev RNA2016;7:316-29

[170]

Grimm D,Lee JS.Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver.J Clin Invest2010;120:3106-19 PMCID:PMC2929739

[171]

Cardinali B,Izzo M.Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene.Mol Ther Nucleic Acids2022;27:184-99 PMCID:PMC8693309

[172]

Wallace LM,Tupler R.RNA interference improves myopathic phenotypes in mice over-expressing FSHD region gene 1 (FRG1).Mol Ther2011;19:2048-54 PMCID:PMC3222519

[173]

Gautier B,Soares S.AAV2/9-mediated silencing of PMP22 prevents the development of pathological features in a rat model of Charcot-Marie-Tooth disease 1 A.Nat Commun2021;12:2356 PMCID:PMC8060274

[174]

Morelli KH,Pyne NK.Allele-specific RNA interference prevents neuropathy in charcot-marie-tooth disease type 2D mouse models.J Clin Invest2019;129:5568-83 PMCID:PMC6877339

[175]

Muraine L,Dhiab J.Transduction efficiency of adeno-associated virus serotypes after local injection in mouse and human skeletal muscle.Hum Gene Ther2020;31:233-40 PMCID:PMC7047108

[176]

Boivin M.Trinucleotide CGG repeat diseases: an expanding field of polyglycine proteins?.Front Genet2022;13:843014 PMCID:PMC8918734

[177]

Glineburg MR,Charlet-Berguerand N.Repeat-associated non-AUG (RAN) translation and other molecular mechanisms in fragile X tremor ataxia syndrome.Brain Res2018;1693:43-54 PMCID:PMC6010627

[178]

German CA.Small interfering RNA therapeutic inclisiran: a new approach to targeting PCSK9.BioDrugs2020;34:1-9

[179]

Lemaitre MM.Individualized antisense oligonucleotide therapies: how to approach the challenge of manufacturing these oligos from a chemistry, manufacturing, and control-regulatory standpoint.Nucleic Acid Ther2022;32:101-10

[180]

Crooke ST.Meeting the needs of patients with ultrarare diseases.Trends Mol Med2022;28:87-96

[181]

Kim J,Moufawad El Achkar C.Patient-customized oligonucleotide therapy for a rare genetic disease.N Engl J Med2019;381:1644-52 PMCID:PMC6961983

[182]

Treatment of a single patient with CRD-TMH-001. Available from: https://clinicaltrials.gov/ct2/show/NCT05514249 [Last accessed on 29 May 2023]

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/