Lysosomal storage disorders with neurological manifestations

Vikas Munjal , Maria T. Clarke , Joshua Vignolles-Jeong , Jasmine A. Valencia , Meika Travis , Lluis Samaranch

Rare Disease and Orphan Drugs Journal ›› 2022, Vol. 1 ›› Issue (2) : 6

PDF
Rare Disease and Orphan Drugs Journal ›› 2022, Vol. 1 ›› Issue (2) :6 DOI: 10.20517/rdodj.2021.05
Review

Lysosomal storage disorders with neurological manifestations

Author information +
History +
PDF

Abstract

Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, progressive, inherited disorders of metabolism. The aberrant metabolic processes often lead to the cellular accumulation of incompletely metabolized macromolecules or their metabolic byproducts. Most of the patients affected by LSD can experience a variety of neurological presentations including, but not limited to, psychiatric complications, seizures, and/or developmental delays. The onset of symptoms can range from birth to adulthood, and disease severity can vary. Since there is significant overlap in the symptomatology of LSDs, diagnosis is typically confirmed through biochemical and molecular assays. There are currently no approved cures for any LSDs; however, in most cases, treatment of symptoms can lead to better outcomes and improvements in quality of life. The use of hematopoietic stem cell transplantation, enzyme replacement or substrate reduction therapy, and viral vector gene transfer is the subject of many ongoing and completed clinical trials. In this mini review, we provide an overview of LSDs with neurological manifestations, describe the current endeavors in alleviating peripheral symptoms and discuss effective therapeutics strategies.

Keywords

Lysosomal storage disorders / hematopoietic stem cell transplantation / enzyme replacement therapy / gene therapy / AAV viral vectors

Cite this article

Download citation ▾
Vikas Munjal, Maria T. Clarke, Joshua Vignolles-Jeong, Jasmine A. Valencia, Meika Travis, Lluis Samaranch. Lysosomal storage disorders with neurological manifestations. Rare Disease and Orphan Drugs Journal, 2022, 1(2): 6 DOI:10.20517/rdodj.2021.05

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marques ARA.Lysosomal storage disorders - challenges, concepts and avenues for therapy: beyond rare diseases.J Cell Sci2019;132:jcs221739

[2]

Platt FM,Davidson BL,Tifft CJ.Lysosomal storage diseases.Nat Rev Dis Primers2018;4:27

[3]

Bosch ME.Neuroinflammatory paradigms in lysosomal storage diseases.Front Neurosci2015;9:417 PMCID:PMC4627351

[4]

Donida B,Mescka CP.Oxidative damage and redox in lysosomal storage disorders: biochemical markers.Clin Chim Acta2017;466:46-53

[5]

Meikle PJ,Clague AE.Prevalence of lysosomal storage disorders.JAMA1999;281:249-54

[6]

Vallance H.Carrier testing for autosomal-recessive disorders.Crit Rev Clin Lab Sci2003;40:473-97

[7]

Santavuori P.Neuronal ceroid-lipofuscinoses in childhood.Brain and Development1988;10:80-3

[8]

Arvio M,Louhiala P.Early clinical symptoms and incidence of aspartylglucosaminuria in Finland.Acta Paediatr1993;82:587-9

[9]

Giugliani R,Michelin-Tirelli K,Burin M.Relative frequency and estimated minimal frequency of lysosomal storage diseases in brazil: report from a reference laboratory.Genet Mol Biol2017;40:31-9 PMCID:PMC5409780

[10]

Brady RO.Enzyme replacement for lysosomal diseases.Annu Rev Med2006;57:283-96

[11]

Beck M.Treatment strategies for lysosomal storage disorders.Dev Med Child Neurol2018;60:13-8

[12]

Thomas R.Enzyme enhancement therapeutics for lysosomal storage diseases: Current status and perspective.Mol Genet Metab2019;126:83-97

[13]

Coutinho MF,Alves S.Less is more: substrate reduction therapy for lysosomal storage disorders.Int J Mol Sci2016;17:1065 PMCID:PMC4964441

[14]

Bellettato CM.Possible strategies to cross the blood-brain barrier.Ital J Pediatr2018;44:131 PMCID:PMC6238258

[15]

Kantor B,Wimberly K,Gray SJ.Methods for gene transfer to the central nervous system.Adv Genet2014;87:125-97 PMCID:PMC4519829

[16]

Sevin C.Clinical trials for gene therapy in lysosomal diseases with cns involvement.Front Mol Biosci2021;8:624988 PMCID:PMC8481654

[17]

Salegio EA,Kells AP.Axonal transport of adeno-associated viral vectors is serotype-dependent.Gene Ther2013;20:348-52 PMCID:PMC3381869

[18]

Castle MJ,Holzbaur EL.Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and is trafficked in a highly motile Rab7-positive compartment.Mol Ther2014;22:554-66 PMCID:PMC3944332

[19]

Green F,Zhang HS.Axonal transport of AAV9 in nonhuman primate brain.Gene Ther2016;23:520-6 PMCID:PMC4893316

[20]

Ziegler RJ,Dodge JC.Distribution of acid sphingomyelinase in rodent and non-human primate brain after intracerebroventricular infusion.Exp Neurol2011;231:261-71

[21]

Pastores GM.Clinical neurogenetics: neuropathic lysosomal storage disorders.Neurol Clin2013;31:1051-71 PMCID:PMC3988112

[22]

Wraith JE,Beck M.Enzyme replacement therapy for mucopolysaccharidosis I: a randomized, double-blinded, placebo-controlled, multinational study of recombinant human alpha-L-iduronidase (laronidase).J Pediatr2004;144:581-8

[23]

Bellettato CM.Pathophysiology of neuropathic lysosomal storage disorders.J Inherit Metab Dis2010;33:347-62

[24]

Vellodi A.Lysosomal storage disorders.Br J Haematol2005;128:413-31

[25]

Aflaki E,Maniwang E.Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs.Sci Transl Med2014;6:240ra73 PMCID:PMC4161206

[26]

Henry B,Becker KA,Gulbins E.Acid sphingomyelinase.Handb Exp Pharmacol2013:77-88

[27]

McGovern MM,Brodie SE,Wasserstein MP.Natural history of Type A Niemann-Pick disease: possible endpoints for therapeutic trials.Neurology2006;66:228-32

[28]

McGovern MM,Bagiella E.Morbidity and mortality in type B Niemann-Pick disease.Genet Med2013;15:618-23

[29]

Pick L. Niemann-Pick’s Disease and Other Forms of so-Called Xanthomatosis. Am J Med Sci 1933;185:615-16. Available from: https://onlinebooks.library.upenn.edu/webbin/serial?id=amjmedsci[Last accessed on 1 Apr 2022]

[30]

Desnick RJ,Eng CM.The metabolic and molecular bases of inherited disease CD-ROM.Mol Pathol1997;50:279. Available from: Last accessed on 1 Apr 2022] PMCID:PMC379650

[31]

Takahashi T,Takada G.Identification of a missense mutation (S436R) in the acid sphingomyelinase gene from a Japanese patient with type B Niemann-Pick disease.Hum Mutat1992;1:70-1

[32]

Diaz GA,Scarpa M.One-year results of a clinical trial of olipudase alfa enzyme replacement therapy in pediatric patients with acid sphingomyelinase deficiency.Genet Med2021;23:1543-50 PMCID:PMC8354848

[33]

Wasserstein MP,Lachmann RH.Olipudase alfa for treatment of acid sphingomyelinase deficiency (ASMD): safety and efficacy in adults treated for 30 months.J Inherit Metab Dis2018;41:829-38 PMCID:PMC6133173

[34]

Samaranch L,Soto-Huelin B.Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A.Sci Transl Med2019;11:eaat3738 PMCID:PMC7285630

[35]

Ioannou YA,Gordon RE.Fabry disease: preclinical studies demonstrate the effectiveness of alpha-galactosidase A replacement in enzyme-deficient mice.Am J Hum Genet2001;68:14-25 PMCID:PMC1234907

[36]

Martins AM,Kyosen SO.Guidelines to diagnosis and monitoring of Fabry disease and review of treatment experiences.J Pediatr2009;155:S19-31

[37]

Sun A.Lysosomal storage disease overview.Ann Transl Med2018;6:476 PMCID:PMC6331358

[38]

Staretz-Chacham O,Wakabayashi K,Sidransky E.Psychiatric and behavioral manifestations of lysosomal storage disorders.Am J Med Genet B Neuropsychiatr Genet2010;153B:1253-65

[39]

Hurowitz GI,Brin MF,Johnson WG.Neuropsychiatric aspects of adult-onset Tay-Sachs disease: two case reports with several new findings.J Neuropsychiatry Clin Neurosci1993;5:30-6

[40]

Gieselmann V,Hess B.Metachromatic leukodystrophy: Molecular genetics and an animal model.J Inherit Metab Dis1998;21:564-74

[41]

Wraith JE,Bembi B.NP-C Guidelines Working GroupRecommendations on the diagnosis and management of Niemann-Pick disease type C.Mol Genet Metab2009;98:152-65

[42]

Sévin M,Baumann N.The adult form of Niemann-Pick disease type C.Brain2007;130:120-33

[43]

Wang RY,Watson MS.ACMG Work Group on Diagnostic Confirmation of Lysosomal Storage DiseasesLysosomal storage diseases: diagnostic confirmation and management of presymptomatic individuals.Genet Med2011;13:457-84

[44]

Mokhtariye A,Varasteh AR.Diagnostic methods for lysosomal storage disease.Rep Biochem Mol Biol2019;7:119-28[Last accessed on 1 Apr 2022] PMCID:PMC6374068

[45]

Hawkins AK.Genetic counseling and the ethical issues around direct to consumer genetic testing.J Genet Couns2012;21:367-73

[46]

Filocamo M.Lysosomal storage disorders: molecular basis and laboratory testing.Hum Genomics2011;5:156-69 PMCID:PMC3500170

[47]

Sista RS,Wu N.Multiplex newborn screening for pompe, Fabry, hunter, Gaucher, and hurler diseases using a digital microfluidic platform.Clin Chim Acta2013;424:12-8 PMCID:PMC3926752

[48]

Hwu WL,Lee NC.Newborn screening for fabry disease in taiwan reveals a high incidence of the later - onset GLA mutation c. 936+ 919G> A (IVS4 + 919G > A).Hum mutat2009;30:1397-1405. Available from: accessed on 1 Apr 2022] PMCID:PMC2769558

[49]

Kasper DC,De Jesus VR,Metz TF.The application of multiplexed, multi-dimensional ultra-high-performance liquid chromatography/tandem mass spectrometry to the high-throughput screening of lysosomal storage disorders in newborn dried bloodspots.Rapid Commun Mass Spectrom2010;24:986-94

[50]

Zhang XK,Chuang WL.Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry.Clin Chem2008;54:1725-8

[51]

Winchester B,Bodamer OA.Pompe Disease Diagnostic Working GroupMethods for a prompt and reliable laboratory diagnosis of pompe disease: report from an international consensus meeting.Mol Genet Metab2008;93:275-81

[52]

Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA. The Online Metabolic and Molecular Bases of Inherited Disease. Available from: https://ommbid.mhmedical.com/book.aspx?bookID=2709 [Last accessed on 1 Apr 2022]

[53]

Giugliani R,Pasqualim G.Current molecular genetics strategies for the diagnosis of lysosomal storage disorders.Expert Rev Mol Diagn2016;16:113-23

[54]

Metzker ML.Sequencing technologies - the next generation.Nat Rev Genet2010;11:31-46

[55]

Hadzsiev K,Czako M.Kleefstra syndrome in Hungarian patients: additional symptoms besides the classic phenotype.Mol Cytogenet2016;9:22 PMCID:PMC4766673

[56]

Hoffman JD,Strovel ET.Next-generation DNA sequencing of HEXA: a step in the right direction for carrier screening.Mol Genet Genomic Med2013;1:260-8 PMCID:PMC3865593

[57]

Yoshida S,Matsumoto S.Prenatal diagnosis of Gaucher disease using next-generation sequencing.Pediatr Int2016;58:946-9

[58]

Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases.Cells2020;9:1902 PMCID:PMC7465195

[59]

O’rourke E,Morgan C,Sullivan J.Genetic counseling for lysosomal storage diseases. Lysosomal Storage Disorders. Boston: Springer US; 2007. p. 179-95.

[60]

Kaback M,Dabholkar D.Tay-sachs disease - carrier screening, prenatal diagnosis, and the molecular era. an international perspective, 1970 to 1993. the international TSD data collection network.JAMA1993;270:2307-15

[61]

Gross SJ,Monaghan KG.Professional Practice and Guidelines CommitteeCarrier screening in individuals of Ashkenazi Jewish descent.Genet Med2008;10:54-6 PMCID:PMC3110977

[62]

Baskovich B,Upadhyay K.Expanded genetic screening panel for the Ashkenazi Jewish population.Genet Med2016;18:522-8 PMCID:PMC4814352

[63]

Case LE.Physical therapy management of Pompe disease.Genet Med2006;8:318-27

[64]

Lund TC.Hematopoietic stem cell transplant for lysosomal storage diseases.Pediatr Endocrinol Rev2013;11 Suppl 1:91-8

[65]

Aldenhoven M,Orchard PJ.Long-term outcome of Hurler syndrome patients after hematopoietic cell transplantation: an international multicenter study.Blood2015;125:2164-72

[66]

Prasad VK.Cord blood and bone marrow transplantation in inherited metabolic diseases: scientific basis, current status and future directions.Br J Haematol2010;148:356-72

[67]

Parenti G,Vajro P.New strategies for the treatment of lysosomal storage diseases (review).Int J Mol Med2013;31:11-20

[68]

Muenzer J,Clarke LA.International Consensus Panel on Management and Treatment of Mucopolysaccharidosis IMucopolysaccharidosis I: management and treatment guidelines.Pediatrics2009;123:19-29

[69]

Lum SH,Ghosh A.Long term survival and cardiopulmonary outcome in children with Hurler syndrome after haematopoietic stem cell transplantation.J Inherit Metab Dis2017;40:455-60

[70]

Prasad VK.Transplant outcomes in mucopolysaccharidoses.Semin Hematol2010;47:59-69

[71]

Mhanni AA,Boutin M.Therapeutic challenges in two adolescent male patients with Fabry disease and high antibody titres.Mol Genet Metab Rep2020;24:100618 PMCID:PMC7322173

[72]

Desai AK,Kishnani PS.The potential impact of timing of IVIG administration on the efficacy of rituximab for immune tolerance induction for patients with Pompe disease.Clin Immunol2020;219:108541

[73]

Kishnani PS,Muldowney L.Immune response to enzyme replacement therapies in lysosomal storage diseases and the role of immune tolerance induction.Mol Genet Metab2016;117:66-83

[74]

Messinger YH,Rhead W.Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease.Genet Med2012;14:135-42 PMCID:PMC3711224

[75]

Lachmann RH.Enzyme replacement therapy for lysosomal storage diseases.Curr Opin Pediatr2011;23:588-93

[76]

Platt FM,Andersson U,Dwek RA.Substrate reduction therapy in mouse models of the glycosphingolipidoses.Philos Trans R Soc Lond B Biol Sci2003;358:947-54 PMCID:PMC1693185

[77]

Wenger DA,Liu SL.Insights into the diagnosis and treatment of lysosomal storage diseases.Arch Neurol2003;60:322-8

[78]

Cox TM,Andria G.The role of the iminosugar.N26:513-26

[79]

Fecarotta S,Della Casa R.Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C.Orphanet J Rare Dis2015;10:22 PMCID:PMC4359492

[80]

Peterschmitt MJ,Ibrahim J.A pooled analysis of adverse events in 393 adults with Gaucher disease type 1 from four clinical trials of oral eliglustat: Evaluation of frequency, timing, and duration.Blood Cells Mol Dis2018;68:185-91

[81]

Larsen SD,Abe A.Property-based design of a glucosylceramide synthase inhibitor that reduces glucosylceramide in the brain.J Lipid Res2012;53:282-91 PMCID:PMC3269155

[82]

Marshall J,Bangari D.Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease.PLoS One2010;5:e15033 PMCID:PMC2991350

[83]

Gabig-Cimińska M,Malinowska M.Combined Therapies for Lysosomal Storage Diseases.Curr Mol Med2015;15:746-71

[84]

Hinderer C,Gurda BL.Intrathecal gene therapy corrects CNS pathology in a feline model of mucopolysaccharidosis I.Mol Ther2014;22:2018-27 PMCID:PMC4429692

[85]

Gilkes JA,Heldermon CD.Preferred transduction with AAV8 and AAV9 via thalamic administration in the MPS IIIB model: A comparison of four rAAV serotypes.Mol Genet Metab Rep2016;6:48-54 PMCID:PMC4789330

[86]

Liu G,He X.Adeno-associated virus type 5 reduces learning deficits and restores glutamate receptor subunit levels in MPS VII mice CNS.Mol Ther2007;15:242-7

[87]

Lin DS,Lee AY.Mitigation of cerebellar neuropathy in globoid cell leukodystrophy mice by AAV-mediated gene therapy.Gene2015;571:81-90

[88]

Miyake N,Asakawa N,Shimada T.Long-term correction of biochemical and neurological abnormalities in MLD mice model by neonatal systemic injection of an AAV serotype 9 vector.Gene Ther2014;21:427-33

[89]

Cain JT,White KA.Gene therapy corrects brain and behavioral pathologies in CLN6-batten disease.Mol Ther2019;27:1836-47 PMCID:PMC6822284

[90]

Weismann CM,Keeler AM.Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan.Hum Mol Genet2015;24:4353-64 PMCID:PMC4492398

[91]

Snyder BR,Quach ET.Comparison of adeno-associated viral vector serotypes for spinal cord and motor neuron gene delivery.Hum Gene Ther2011;22:1129-35

[92]

Ohno K,Hadaczek P.Kinetics and MR-based monitoring of AAV9 vector delivery into cerebrospinal fluid of nonhuman primates.Mol Ther Methods Clin Dev2019;13:47-54 PMCID:PMC6330508

[93]

Foust KD,Montgomery CL.Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes.Nat Biotechnol2009;27:59-65 PMCID:PMC2895694

[94]

Samaranch L,San Sebastian W.Adeno-associated virus serotype 9 transduction in the central nervous system of nonhuman primates.Hum Gene Ther2012;23:382-9 PMCID:PMC3327605

[95]

Van Alstyne M,Delestrée N.Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit.Nat Neurosci2021;24:930-40 PMCID:PMC8254787

[96]

Hinderer C,Buza EL.Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN.Hum Gene Ther2018;29:285-98 PMCID:PMC5865262

[97]

Samaranch L,San Sebastian W.Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates.Hum Gene Ther2013;24:526-32 PMCID:PMC3655626

[98]

Hordeaux J,Dyer C.Adeno-associated virus-induced dorsal root ganglion pathology.Human Gene Therapy2020;31:808-18

[99]

Ciesielska A,Hadaczek P.Anterograde axonal transport of AAV2-GDNF in rat basal ganglia.Mol Ther2011;19:922-7 PMCID:PMC3098627

[100]

Bobo RH,Akbasak A.Convection-enhanced delivery of macromolecules in the brain.Proc Natl Acad Sci U S A1994;91:2076-80 PMCID:PMC43312

[101]

Morrison PF,Chadwick RS,Oldfield EH.Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics.Am J Physiol1999;277:R1218-29

[102]

Gonzalez EA.Gene therapy for lysosomal storage disorders: recent advances and limitations.J. inborn errors metab2017;5:232640981668978

[103]

Baldo G,Matte U.Gene delivery strategies for the treatment of mucopolysaccharidoses.Expert Opin Drug Deliv2014;11:449-59

[104]

Sevin C,Van Dam D.Intracerebral adeno-associated virus-mediated gene transfer in rapidly progressive forms of metachromatic leukodystrophy.Hum Mol Genet2006;15:53-64

[105]

Liu G,Wemmie JA,Davidson BL.Functional correction of CNS phenotypes in a lysosomal storage disease model using adeno-associated virus type 4 vectors.J Neurosci2005;25:9321-7 PMCID:PMC6725689

[106]

Cressant A,Verot L.Improved behavior and neuropathology in the mouse model of Sanfilippo type IIIB disease after adeno-associated virus-mediated gene transfer in the striatum.J Neurosci2004;24:10229-39 PMCID:PMC6730192

[107]

Skorupa AF,Wilson JM,Wolfe JH.Sustained production of beta-glucuronidase from localized sites after AAV vector gene transfer results in widespread distribution of enzyme and reversal of lysosomal storage lesions in a large volume of brain in mucopolysaccharidosis VII mice.Exp Neurol1999;160:17-27

[108]

Brooks AI,Hughes SM.Functional correction of established central nervous system deficits in an animal model of lysosomal storage disease with feline immunodeficiency virus-based vectors.Proc Natl Acad Sci U S A2002;99:6216-21 PMCID:PMC122929

[109]

Ciron C,Colle MA.Gene therapy of the brain in the dog model of Hurler’s syndrome.Ann Neurol2006;60:204-13

[110]

Katz ML,Chen Y.AAV gene transfer delays disease onset in a TPP1-deficient canine model of the late infantile form of Batten disease.Sci Transl Med2015;7:313ra180 PMCID:PMC4968409

[111]

Pastores GM,Zeng BJ.Animal models for lysosomal storage disorders.Biochemistry (Mosc)2013;78:721-5

[112]

Deverman BE,Simpson BP.Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain.Nat Biotechnol2016;34:204-9 PMCID:PMC5088052

[113]

Chan KY,Yoo BB.Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems.Nat Neurosci2017;20:1172-9 PMCID:PMC5529245

[114]

Davidsson M,Aldrin-Kirk P.A systematic capsid evolution approach performed in vivo for the design of AAV vectors with tailored properties and tropism.Proc Natl Acad Sci U S A2019:27053-62 PMCID:PMC6936499

[115]

Liu Q,Ghiara JB.Design of polydactyl zinc-finger proteins for unique addressing within complex genomes.Proc Natl Acad Sci U S A1997;94:5525-30 PMCID:PMC20811

[116]

Anguela XM,Doyon Y.Robust ZFN-mediated genome editing in adult hemophilic mice.Blood2013;122:3283-7 PMCID:PMC3821724

[117]

Li H,Doyon Y.In vivo genome editing restores haemostasis in a mouse model of haemophilia.Nature2011;475:217-21 PMCID:PMC3152293

[118]

Sharma R,Doyon Y.In vivo genome editing of the albumin locus as a platform for protein replacement therapy.Blood2015;126:1777-84 PMCID:PMC4600017

[119]

Laoharawee K,Podetz-Pedersen KM.Dose-dependent prevention of metabolic and neurologic disease in murine MPS II by ZFN-mediated in vivo genome editing.Mol Ther2018;26:1127-36 PMCID:PMC6080131

[120]

Ou L,Rohde M.ZFN-mediated in vivo genome editing corrects murine hurler syndrome.Mol Ther2019;27:178-87 PMCID:PMC6319315

[121]

Jinek M,Fonfara I.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.Science2012;337:816-21 PMCID:PMC6286148

[122]

Broeders M,Ernst MPT,Pijnappel WWMP.Sharpening the molecular scissors: advances in gene-editing technology.iScience2020;23:100789 PMCID:PMC6941877

[123]

Ou L,Ahlat O.A Highly efficacious ps gene editing system corrects metabolic and neurological complications of mucopolysaccharidosis type I.Mol Ther2020;28:1442-54 PMCID:PMC7264433

[124]

Ou L,Tăbăran AF.A novel gene editing system to treat both Tay-Sachs and Sandhoff diseases.Gene Ther2020;27:226-36 PMCID:PMC7260097

[125]

Levy JM,Pendse N.Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses.Nat Biomed Eng2020;4:97-110 PMCID:PMC6980783

[126]

Böckenhoff A,Wölte P.Comparison of five peptide vectors for improved brain delivery of the lysosomal enzyme arylsulfatase A.J Neurosci2014;34:3122-9 PMCID:PMC6795304

[127]

Zhou QH,Lu JZ,Pardridge WM.Brain-penetrating IgG-iduronate 2-sulfatase fusion protein for the mouse.Drug Metab Dispos2012;40:329-35

[128]

Salvalaio M,Belletti D.Targeted polymeric nanoparticles for brain delivery of high molecular weight molecules in lysosomal storage disorders.PLoS One2016;11:e0156452 PMCID:PMC4881964

[129]

Tancini B,Bortot B.Use of polylactide-co-glycolide-nanoparticles for lysosomal delivery of a therapeutic enzyme in glycogenosis type II fibroblasts.J Nanosci Nanotechnol2015;15:2657-66

[130]

Nguyen QH,Wang B.Tolerance induction and microglial engraftment after fetal therapy without conditioning in mice with Mucopolysaccharidosis type VII.Sci Transl Med2020;12:eaay8980

[131]

Nijagal A,MacKenzie TC.In utero hematopoietic cell transplantation for the treatment of congenital anomalies.Clin Perinatol2012;39:301-10

[132]

Derderian SC,Walters MC,MacKenzie TC.In utero hematopoietic cell transplantation for hemoglobinopathies.Front Pharmacol2014;5:278 PMCID:PMC4290536

[133]

Ito H,Yoshida C.In utero gene therapy rescues microcephaly caused by Pqbp1-hypofunction in neural stem progenitor cells.Mol Psychiatry2015;20:459-71 PMCID:PMC4378255

[134]

Massaro G,Wong AMS.Fetal gene therapy for neurodegenerative disease of infants.Nat Med2018;24:1317-23 PMCID:PMC6130799

[135]

Rashnonejad A,Gündüz C.Fetal gene therapy using a single injection of recombinant AAV9 rescued SMA phenotype in mice.Mol Ther2019;27:2123-33 PMCID:PMC6904805

[136]

Shangaris P,Subramaniam S.In utero gene therapy (IUGT) using GLOBE lentiviral vector phenotypically corrects the heterozygous humanised mouse model and its progress can be monitored using MRI techniques.Sci Rep2019;9:11592 PMCID:PMC6690943

[137]

Bose SK,Kashyap MV.In utero adenine base editing corrects multi-organ pathology in a lethal lysosomal storage disease.Nat Commun2021;12:4291 PMCID:PMC8277817

AI Summary AI Mindmap
PDF

82

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/