The recovery process of housing in Mexico City 7+ years after the 2017 Puebla-Morelos earthquake

Tena-Colunga Arturo

Resilient Cities and Structures ›› 2025, Vol. 4 ›› Issue (3) : 67 -98.

PDF (22502KB)
Resilient Cities and Structures ›› 2025, Vol. 4 ›› Issue (3) : 67 -98. DOI: 10.1016/j.rcns.2025.08.002
Research article
research-article

The recovery process of housing in Mexico City 7+ years after the 2017 Puebla-Morelos earthquake

Author information +
History +
PDF (22502KB)

Abstract

During the Mw = 7.1 September 19, 2017 earthquake with epicenter nearby the boundary of Puebla and Morelos states, an important amount of structural damage occurred in Mexico City, 120 km away from the epicenter. Among the most severely affected sectors was the housing sector. At least 16 houses collapsed or partially collapsed during the earthquake, more than 5100 were demolished with public funds and more than 5800 were sternly damaged and required to be rehabilitated. Close to 1300 apartment buildings were severely damaged, where 33 of them collapsed or partially collapsed. Then, the recovery of the housing sector, which is instrumental for both the social and economy recovery of the city, have posed a monumental task and challenge to the citizens and authorities of Mexico City. In this paper, the author summarizes how these efforts to recover the affected housing sector have been in Mexico City close to eight years after the 9/19/2017 earthquake, based upon detailed statistics and information compiled by the author from different sources. It can be concluded that after 7+ years, the recovery process of single-family houses has been a success, as close to 100 % of the affected homes have been fully recovered with much better projects than the originally damaged. However, the recovery process of apartment buildings, although important, still has a long way to go. As of May 2025, only 59.6 % of the affected buildings have been fully recovered (31.3 % using public funds), other 11.3 % are under construction or rehabilitation process and, in 29.1 % of the affected buildings, no action has been taken to speed their recovery.

Keywords

2017 Puebla-Morelos earthquake / Seismic recovery / Housing / Apartment buildings / Houses / Reconstruction

Cite this article

Download citation ▾
Tena-Colunga Arturo. The recovery process of housing in Mexico City 7+ years after the 2017 Puebla-Morelos earthquake. Resilient Cities and Structures, 2025, 4(3): 67-98 DOI:10.1016/j.rcns.2025.08.002

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Arturo Tena-Colunga: Writing - original draft, Visualization, Validation, Supervision, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization.

Declaration of competing interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author wants to express his gratitude to all professionals involved in providing trustful information for the city authorities’ platforms Plataforma CDMX and Reconstrucción CDMX and for the private Fundación Slim. Héctor Hernández Ramírez, Eber Alberto Godínez Domínguez, Alejandro Grande Vega, Luis Angel Urbina Californias and Omar Villegas Jiménez are thanked for their previous collaboration on this research effort. Supplementary financial support of Universidad Autónoma Metropolitana Azcapotzalco through an internal Basic Science project with no number is gratefully acknowledged.

References

[1]

Rosenblueth E, Ordaz M, Sánchez-Sesma FJ, Singh SK. The Mexico earthquake of September 19, 1985 - design spectra for Mexico´s Federal District. Earthq Spectra 1989 ;5(1):273-91. doi: 10.1193/2F1.1585523.

[2]

Borja-Navarrete G, Díaz-Canales M, Vázquez-Vera A, Del Valle-Calderón E. Damage statistics of the September 19, 1985 Earthquake in Mexico City. In: The Mexico earthquakes-1985: factors involved and lessons learned. ASCE Special Publication; 1987. p.70-7.

[3]

Bayona JA, Suárez G, Ordaz M. A probabilistic seismic hazard assessment of the Trans-Mexican Volcanic Belt, Mexico based on historical and instrumentally recorded seismicity. Geofís Int 2017; 56(1):87-101.

[4]

Berrón R, Pacheco MA, Valencia N, Aguilar P. Análisis de las edificaciones afectadas en la Ciudad de México por el sismo del 19 de septiembre de 2017 dictaminadas por el Instituto para la Seguridad de las Construcciones. In: Proceedings, XXI congreso nacional de ingeniería estructural, Campeche, México; 2018. Paper No. 12-55 (in Spanish).

[5]

Tena-Colunga A, Hernández-Ramírez H, Godínez-Domínguez EA, Pérez-Rocha LE, Grande-Vega A, Urbina-Californias LA. Performance of the built environment in Mexico City during the September 19, 2017 earthquake. Int J Disast Risk Reduct 2020 ;51(101787). doi: 10.1016/j.ijdrr.2020.101787.

[6]

Tena-Colunga A, Hernández-Ramírez H, Godínez-Domínguez EA, Pérez-Rocha LE, Grande-Vega A, Urbina-Californias LA.Seismic behavior of buildings in Mexico City during the 2017 Puebla -Morelos Earthquake. Asian J Civil Eng 2021;22:649-75. doi: 10.1007/s42107-020-00338-9.

[7]

Tena-Colunga A, Hernández-Ramírez H, Godínez-Domínguez EA, Pérez-Rocha LE. Mexico City during and after the September 19, 2017 earthquake: Assessment of seismic resilience and ongoing recovery process. J Civ Struct Health Monit 2021;11:1275-99. doi: 10.1007/s13349-021-00511-x.

[8]

Ovando-Shelley E, Ossa A, Romo MP. The sinking of Mexico City: Its effects on soil properties and seismic response. Soil Dyn Earthq Eng 2007;27:333-43. doi: 10.1016/j.soildyn.2006.08.005.

[9]

Avilés J, Pérez-Rocha LE. Regional subsidence of Mexico City and its effects on seismic response. Soil Dyn Earthq Eng 2010;30:981-9. doi: 10.1016/j.soildyn.2010.04.009.

[10]

Cigna F, Tapete D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014-2020 Sentinel-1 IW InSAR. Remote Sens Environ 2020. doi: 10.1016/j.rse.2020.112161.

[11]

Solano-Rojas D, Cabral-Cano E, Fernández-Torres E, Havazli E, Wdowinski S, Salazar-Tlaczani L. Remotely triggered subsidence acceleration in Mexico City induced by the September 2017 Mw 7.1 Puebla and the Mw 8.2 Tehuantepec September 2017 earthquakes. In: Proceedings, tenth international symposium on land subsidence, 382; 2020. p. 683-7. doi: 10.5194/piahs-382-683-2020.

[12]

Sánchez-Sesma F, Chávez-Pérez S, Suárez M, Bravo MA, Pérez-Rocha LE.The Mexico earthquake of September 19, 1985. On the seismic response of the Valley of Mexico. Earthq Spectra 1988; 4(3):569-89. doi: 10.1193/2F1.1585491.

[13]

Bard P-Y, Campillo M, Chávez-García FJ, Sánchez-Sesma F.The Mexico earthquake of September 19, 1985. A theoretical investigation of large- and small- scale amplification effects in the Mexico City Valley. Earthq Spectra 1988; 4(3):609-33. doi: 10.1193/2F1.1585493.

[14]

Mayoral JM, Asimaki D, Tepalcapa S, Wood C, Roman-de la Sancha A, Hutchinson T, Franke K, Montalva G. Site effects in Mexico City basin: Past and present. Soil Dyn Earthq Eng 2019;121:369-82. doi: 10.1016/j.soildyn.2019.02.028.

[15]

Asimaki D, Mohammadi K, Ayoubi P, Mayoral JM, Montalva G. Investigating the spatial variability of ground motions during the 2017 Mw 7.1 Puebla-Mexico City earthquake via idealized simulations of basin effects. Soil Dyn Earthq Eng 2020; 132(106073). doi: 10.1016/j.soildyn.2020.106073.

[16]

Plataforma CDMX (2018), https://plataforma.cdmx.gob.mx/. Information open up to November 2018. Currently unavailable.

[17]

Fuerza México (2020), Public information uploaded by this non-governmental organization at the URL site https://www.transparenciapresupuestaria.gob.mx/es/PTP/fuerzamexico_datosabiertos.

[18]

Reconstrucción CDMX (2019-2025), https://reconstruccion.cdmx.gob.mx/.

[19]

Alcocer SM, Murià-Vila D, Fernández-Sola LR, Ordaz y J C Arce M. Observed damage in public school buildings during the 2017 Mexico earthquakes. Earthq Spectra 2020; 36(S2):110-29. doi: 10.1177/8755293020926183.

[20]

Tena-Colunga A. Seismic performance and recovery of medical infrastructure in Mexico City related to the September 19, 1985 and 2017 Earthquakes. Int J Disast Risk Reduct 2024; 113(104886):1-32. doi: 10.1016/j.ijdrr.2024.104886.

[21]

Ayala AG, Escamilla MA. Seismic vulnerability and resilience of the water systems of Mexico City based on the evaluation of the effects of the 2017 Puebla-Morelos Earthquake. In: Proceedings, 17th world conference on earthquake engineering, 17WCEE, Sendai, Japan; 2020. Paper 2e-0003, September.

[22]

Lemnitzer A, Arduino P, Dafni J, Franke KW, Martinez A, Mayoral J, El Mohtar C, Pehlivan M, Yashinsky M. The September 19, 2017 MW 7.1 CENTRAL-Mexico earthquake: Immediate observations on selected infrastructure systems. Soil Dynam Earthq Eng 2021; 141(106430). doi: 10.1016/j.soildyn.2020.106430.

[23]

Fundación Slim (2018-2025), “Fundación Carlos Slim. México Unido Sismos 2017 ”, https://fundacioncarlosslim.org/sismos/.

[24]

Reconstruyendo México (2021-2025), https://reconstruyendoesperanza.gob.mx/#

[25]

Política de Vivienda CDMX (2021-2025), https://gobierno.cdmx.gob.mx/noticias/presentamos-la-politica-de-vivienda-para-la-ciudad-de-mexico/

[26]

CORE (2019), “1era Asamblea Plenaria. Consejo Consultivo para la Reconstrucción de la Ciudad de México ”, Comisión para la Reconstrucción, Ciudad de México, August 29, 2019 (in Spanish).

[27]

NTCM-04. Normas Técnicas Complementarias para Diseño y Construcción de Estructuras de Mampostería. Gaceta Oficial del Distrito Federal 2004 6 de octubre de 2004 (in Spanish).

[28]

Auvinet G, Juárez M, Méndez E, Martínez SA, Hernández F, Delgado ME. Investigación sobre el agrietamiento del suelo en las Alcaldías de Iztapalapa, Tláhuac, Xochimilco y Milpa Alta y acompañamiento técnico en la definición e implementación de soluciones para las edificaciones afectadas de dichas demarcaciones (segunda etapa). In: Informe Final No. de Convenio: ISCDF/CEC-04/2020-20. II-UNAM; 2020. p. 1-316. Coordinación de GeotecniaDecember (in Spanish).

[29]

Tena-Colunga A. Conditions of structural irregularity. Relationships with observed earthquake damage in Mexico City in 2017. Soil Dyn Earthq Eng 2021; 143(106630):1-29. doi: 10.1016/j.soildyn.2021.106630.

[30]

Tena-Colunga A, Sánchez-Ballinas D. The collapse of Álvaro Obregón 286 building in Mexico City during the September 19, 2017 Earthquake. A case study. J Build Eng 2022; 49(104060):1-24. doi: 10.1016/j.jobe.2022.104060.

[31]

NTCS-87 Normas técnicas complementarias para diseño por sismo; 1987. Gaceta Oficial del Departamento del Distrito Federal, 5 de noviembre de 1987 (in Spanish).

[32]

NTCS-95 Normas técnicas complementarias para diseño por sismo; 1995. Gaceta Oficial del Departamento del Distrito Federal, 27 de febrero de 1995 (in Spanish).

[33]

NTCS-04 Normas técnicas complementarias para diseño por sismo; 2004. Gaceta Oficial del Distrito Federal, 6 de octubre de 2004 (in Spanish).

[34]

Diagnóstico. Programa Nacional de Reconstrucción. In: Secretaría de Desarrollo Agrario, Territorial y Urbano (SEDATU). Gobierno de México; 2019. p. 1-39. (in Spanish).

[35]

Godínez-Domínguez EA, Tena-Colunga A, Pérez-Rocha LE, Archundia-Aranda HI, Gómez-Bernal A, Ruiz-Torres RP, Escamilla-Cruz JL. The September 7, 2017 Tehuantepec, Mexico, earthquake: damage assessment in masonry structures for housing. Int J Disast Risk Reduct 2021 ;56(102123):1-31. doi: 10.1016/j.ijdrr.2021.102123.

[36]

Freyermuth L, Tapia M, Moreno RP, López JA, Ruiz A, Ruiz N, Ramírez A, Pérez G, Barrera D, Barrera DE. Fascículo 03: La reconstrucción (al detalle) para volver a casa. In: Manual para la Reconstrucción con Dignidad CDMX. Ruta Cívica; 2019. p. 1-43. November (in Spanish).

[37]

Tena-Colunga A, Sabanero-García R. Impact of diaphragm flexibility on dynamic properties and seismic design parameters of irregular buildings in plan. J Build Eng 2023; 80(108007):1-26. doi: 10.1016/j.jobe.2023.108007.

[38]

Fundación Carlos Slim Informe de la aplicación de los recursos recaudados; 2023. Sismos 2017 ”, February https://fundacioncarlosslim.org/informe-final-de-la-aplicacion-de-recursos-recaudados/.

[39]

Alcocer SM, Pineda JA, Ruiz J, Zepeda JA. Retrofitting of confined masonry walls with welded wire mesh. In: Proceedings, 11th world conference on earthquake engineering, Acapulco, México; 1996. June, Paper No. 1471.

[40]

Tena-Colunga A, Hernández-Ramírez H, Godínez-Dominguez EA. Review of retrofit and strengthening strategies used in buildings in Mexico City after strong earthquakes. In: Proceedings COMPDYN 2023, 9th ECCOMAS thematic conference on computational methods in structural dynamics and earthquake engineering, I; 2023. p. 316-91. October, ISBN 978-618-85072-9-6. doi: 10.7712/120123.10408.20066.

[41]

Tena-Colunga A, Godínez-Domínguez EA, Hernández-Ramírez H. Seismic retrofit and strengthening of buildings, observations from the 2017 Puebla-Morelos earthquake in Mexico City. J Build Eng 2022; 47(103916):1-30. doi: 10.1016/j.jobe.2021.103916.

[42]

Del Valle E. Some lessons from the March 14, 1979 Earthquake in Mexico City. In: Proceedings, 7th world conference on earthquake engineering, 4; 1980. p. 545-52.

[43]

Del Valle E, Foutch DA, Hjelmstad KD, Figueroa-Gutiérrez E, Tena-Colunga A. Seismic retrofit of a RC building:a case study. In: Proceedings, 9th world conference on earthquake engineering, VII; 1988. p. 451-6.

[44]

Foutch DA, Hjelmstad KD, Del Valle E, Figueroa E, Downs RE. The Mexico earthquake of September 19, 1985, Case studies of seismic strengthening for two buildings in Mexico City. Earthq Spectra 1989; 5(1):153-74.

[45]

Aguilar J, Breña SF, Del Valle E, Iglesias J, Picado M, Jara M, Jirsa JO. Rehabilitation of existing reinforced concrete buildings in Mexico City: case studies. Ferguson Structural Engineering Laboratory, The University of Texas at Austin; 1996. Report PMFSEL 96-3 August.

[46]

Canales MD, Briseño R. Retrofitting techniques used in telephone buildings in Mexico. In: Proceedings, tenth world conference on earthquake engineering; 1992. p. 5143-7.

[47]

Martínez-Romero E. Experiences on the use of supplementary energy dissipators on building structures. Earthq Spectra 1993; 9(3):581-626.

[48]

Tena-Colunga A. State of the Art and State of the Practice for energy dissipation and seismic isolation of structures in Mexico. In: Proceedings, 10th world conference on seismic isolation, energy dissipation and active vibration control of structures; 2007. p. 1-29.

[49]

Cueto F, Guerrero H, Viramontes C. Desarrollo, caracterización e implementación de un dispositivo de protección sísmica mexicano. In: Proceedings, XXIII congreso nacional de ingeniería estructural, I; 2022. p. 1737-53. (in Spanish).

[50]

Gutiérrez J, Ayala G. Resilience seismic analysis of buildings. Rev Ingen Sísm 2022;107:40-3. doi: 10.18867/ris.107.603.

[51]

González C, Niño M, Ayala G. Functionality loss and recovery time models for structural elements, non-structural components, and delay times to estimate the seismic resilience of Mexican school buildings. Buildings 2023; 13(1498). doi: 10.3390/buildings13061498.

AI Summary AI Mindmap
PDF (22502KB)

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/