Community-Level resilience analysis using earthquake-tsunami fragility surfaces

lMojtaba Harati , John W. van de Lindt

Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (2) : 101 -115.

PDF (6339KB)
Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (2) : 101 -115. DOI: 10.1016/j.rcns.2024.07.006
Research article
research-article

Community-Level resilience analysis using earthquake-tsunami fragility surfaces

Author information +
History +
PDF (6339KB)

Abstract

This study introduces an advanced community-level resilience analysis methodology integrating 3D fragility surfaces for combined successive earthquake-tsunami hazard and analysis. The methodology facilitates comprehensive evaluations of spatial damage, economic loss, and risk under multi-hazard conditions. This study compares earthquake-only analysis results to the successive earthquake-tsunami analysis at the community level to reveal - and quantify - significant disparities in damage and loss estimations between the analyses, emphasizing the need to consider both hazards in community planning even at lower seismic intensities. Critical assessment of the FEMA combinational rule demonstrates its limitations in accurately predicting losses and damage patterns at higher hazard intensities, highlighting the necessity for refined models that accurately account for hazard interactions. This research advances multi-hazard community-level resilience analysis by offering a robust framework for earthquake and tsunami assessment, underscoring the need for integration of detailed multi-hazard analyses into resilience planning. Finally, it suggests future directions for enhancing framework applicability across diverse community settings and structural types, aiming to improve community resilience.

Keywords

Community resilience analysis / 3D fragility surfaces / Multi-hazard scenarios / FEMA combinational rule / Disaster preparedness

Cite this article

Download citation ▾
lMojtaba Harati, John W. van de Lindt. Community-Level resilience analysis using earthquake-tsunami fragility surfaces. Resilient Cities and Structures, 2024, 3(2): 101-115 DOI:10.1016/j.rcns.2024.07.006

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fraser S, Raby A, Pomonis A, Goda K, Chian SC, Macabuag J, et al. Tsunami damage to coastal defences and buildings in the March 11th 2011 M w 9.0 Great East Japan earthquake and tsunami. Bull Earthquake Eng 2013;11:205-39. doi: 10.1007/s10518-012-9348-9.

[2]

Rossetto T, Peiris N, Pomonis A, Wilkinson SM, Del Re D, Koo R, et al. The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand. Nat Hazards 2007;42:105-24. doi: 10.1007/s11069-006-9064-3.

[3]

Presidential policy directive - critical infrastructure security and resilience 2014.

[4]

Echeverria MJ, Mohammadgholibeyki N, Liel AB, Koliou M. Achieving functional recovery through seismic retrofit of existing buildings: barriers and opportunities. J Perform Constr Facil 2023;37:04023027. doi: 10.1061/JPCFEV.CFENG-4395.

[5]

Wang W Lisa, van de Lindt JW. Quantitative modeling of residential building disaster recovery and effects of pre- and post-event policies. Int J Dis Risk Reduct 2021;59:102259. doi: 10.1016/j.ijdrr.2021.102259.

[6]

Burns PO, Barbosa AR, Olsen MJ, Wang H. Multihazard damage and loss assessment of bridges in a highway network subjected to earthquake and tsunami hazards. Nat Hazards Rev 2021;22:05021002. doi: 10.1061/(ASCE)NH.1527-6996.0000429.

[7]

Capozzo M, Rizzi A, Cimellaro GP, Domaneschi M, Barbosa A, Cox D. Multi-Hazard resilience assessment of a coastal community due to offshore earthquakes. J Earthquake Tsunami 2019;13:1950008. doi: 10.1142/S1793431119500088.

[8]

Goda K. Multi-Hazard portfolio loss estimation for time-dependent shaking and tsunami hazards. Front Earth Sci 2020;8:592444. doi: 10.3389/feart.2020.592444.

[9]

Goda K, De Risi R, De Luca F, Muhammad A, Yasuda T, Mori N. Multi-hazard earthquake-tsunami loss estimation of Kuroshio Town, Kochi Prefecture, Japan considering the Nankai-Tonankai megathrust rupture scenarios. Int J Dis Risk Reduct 2021;54:102050. doi: 10.1016/j.ijdrr.2021.102050.

[10]

Ishibashi H, Akiyama M, Frangopol DM, Koshimura S, Kojima T, Nanami K. Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards. Struct Infrastruct Eng 2021;17:494-514. doi: 10.1080/15732479.2020.1843503.

[11]

Harati M, Van De Lindt JW. Methodology to generate earthquake-tsunami fragility surfaces for community resilience modeling. Eng Struct 2024;305:117700. doi: 10.1016/j.engstruct.2024.117700.

[12]

Jiang W, Wang F, Zheng X, Zheng X, Qiao X, Li X, et al. Toward interoperable multihazard modeling: a disaster management system for disaster model service chain. Int J Disaster Risk Sci 2022;13:862-77. doi: 10.1007/s13753-022-00450-1.

[13]

Jojok Widodo S, Entin H, Faizatus S. A literature review: model of disaster risk reduction for decision support system. In: E3S Web Conf, 331; 2021. p. 04011. doi: 10.1051/e3sconf/202133104011.

[14]

Alam MS, Barbosa AR, Scott MH, Cox DT, van de Lindt JW. Multi-Hazard earthquaketsunami structural fragility assessment framework. In:Proceedings of the 13th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP13), 1. Korean Institute of Bridge and Structural Engineers; 2019. p. 1318-25. doi: 10.22725/ICASP13.244.

[15]

Attary N, Van De Lindt JW, Barbosa AR, Cox DT, Unnikrishnan VU. Performance- Based tsunami engineering for risk assessment of structures subjected to multihazards: tsunami following earthquake. J Earthquake Eng 2021;25:2065-84. doi: 10.1080/13632469.2019.1616335.

[16]

Carey TJ, Mason HB, Barbosa AR, Scott MH. Multihazard earthquake and tsunami effects on soil-foundation-bridge systems. J Bridge Eng 2019;24:04019004. doi: 10.1061/(ASCE)BE.1943-5592.0001353.

[17]

Park S, van de Lindt JW, Cox D, Gupta R, Aguiniga F. Successive earthquaketsunami analysis to develop collapse fragilities. J Earthquake Eng 2012;16:851-63. doi: 10.1080/13632469.2012.685209.

[18]

Petrone C, Rossetto T, Baiguera M, la Barra Bustamante CD, Ioannou I. Fragility functions for a reinforced concrete structure subjected to earthquake and tsunami in sequence. Eng Struct 2020;205:110120. doi: 10.1016/j.engstruct.2019.110120.

[19]

Rossetto T, De la Barra C, Petrone C, De la Llera JC, Vásquez J, Baiguera M. Comparative assessment of nonlinear static and dynamic methods for analysing building response under sequential earthquake and tsunami. Earthquake Eng Struct Dyn 2019;48:867-87. doi: 10.1002/eqe.3167.

[20]

Xu JG, Wu G, Feng D-C, Fan JJ. Probabilistic multi-hazard fragility analysis of RC bridges under earthquake-tsunami sequential events. Eng Struct 2021;238:112250. doi: 10.1016/j.engstruct.2021.112250.

[21]

Harati Mojtaba, Lindt John van de. Methodology to generate earthquake-tsunami fragility surfaces for community resilience modeling. Eng Struct 2024.

[22]

Harati Mojtaba, van de Lindt John W. Impact of long-duration earthquakes on successive earthquake-tsunami fragilities for reinforced concrete frame archetypes. J Struct Eng 2024.

[23]

Harati Mojtaba, van de Lindt John W. Fragility function development of RC building portfolio for use in earthquake-tsunami community resilience studies. J Perform Constr Facil 2024.

[24]

Cox D., Barbosa A., Alam M., Amini M., Kameshwar S., Park H., et al. Report, in seaside testbed data inventory for infrastructure, population, and earthquake-tsunami hazard 2022. https://doi.org/10.17603/DS2-SP99-XV89.

[25]

FEMA. Hazus tsunami model user guidance 2022. https://www.emat-tx.org/News/12989969 (accessed March 25, 2024).

[26]

Amini M, Jeon H, Sanderson DR, Cox DT, Barbosa AR, Cutler H. Integrated engineering-economic analysis for multihazard damage and loss assessment. J Infrastruct Syst 2023;29:04023031. doi: 10.1061/JITSE4.ISENG-2229.

[27]

Attary N, Unnikrishnan VU, van de Lindt JW, Cox DT, Barbosa AR. Performance- Based tsunami engineering methodology for risk assessment of structures. Eng Struct 2017;141:676-86. doi: 10.1016/j.engstruct.2017.03.071.

[28]

Barbato M, Petrini F, Unnikrishnan VU, Ciampoli M. Performance-Based Hurricane Engineering (PBHE) framework. Struct Saf 2013;45:24-35. doi: 10.1016/j.strusafe.2013.07.002.

[29]

González-Dueñas C, Padgett JE. Performance-Based coastal engineering framework. Front Built Environ 2021;7:690715. doi: 10.3389/fbuil.2021.690715.

[30]

Spence SMJ, Arunachalam S. Performance-Based wind engineering: background and state of the art. Front Built Environ 2022;8:830207. doi: 10.3389/fbuil.2022.830207.

[31]

Günay S, Mosalam KM. PEER performance-based earthquake engineering methodology, revisited. J Earthquake Eng 2013;17:829-58. doi: 10.1080/13632469.2013.787377.

[32]

Hamburger RO, Krawinkler H, Malley JO, Adan SM. Seismic design of steel special moment frames: a guide for practicing engineers. Gaithersburg, MD: National Institute of Standards and Technology; 2009. doi: 106028/NISTGCR09-917-3.

[33]

McLaren TM, Myers JD, Lee JS, Tolbert NL, Hampton SD, Navarro CM. MAEviz: an earthquake risk assessment system. In: Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems. Irvine California: ACM; 2008. p. 1-2. doi: 10.1145/1463434.1463534.

[34]

Hazus Earthquake Model Technical Manual 2020:436.

[35]

Van De Lindt JW, Kruse J, Cox DT, Gardoni P, Lee JS, Padgett J, et al. The interdependent networked community resilience modeling environment (IN-CORE). Resilient Cities Struct 2023;2:57-66. doi: 10.1016/j.rcns.2023.07.004.

[36]

de Lindt JW van, B Ellingwood, McAllister TP, Gardoni P, Cox D, Peacock WG, et al. Modeling community resilience: update on the center for risk-based community resilience planning and the computational environment in-core. NIST; 2018.

[37]

Park H, Cox DT, Barbosa AR. Comparison of inundation depth and momentum flux based fragilities for probabilistic tsunami damage assessment and uncertainty analysis. Coastal Eng 2017;122:10-26. doi: 10.1016/j.coastaleng.2017.01.008.

[38]

Park H, Cox DT, Alam MS, Barbosa AR. Probabilistic seismic and tsunami hazard analysis conditioned on a megathrust rupture of the cascadia subduction zone. Front Built Environ 2017;3:32. doi: 10.3389/fbuil.2017.00032.

[39]

Kern SE, Xie G, White JL, Egan TD. A response surface analysis of propofol- remifentanil pharmacodynamic interaction in volunteers. Anesthesiology 2004;100:1373-81. doi: 10.1097/00000542-200406000-00007.

[40]

Publications :: FEMA P-695, Quantification of Building Seismic Performance Factors - Applied Technology Council Online Store 2009. https://store.atcouncil.org/index.php?dispatch=products.view&product_id=210 (accessed November 30, 2009).

[41]

Frankel A., Wirth E., Marafi N.The M9 Project Ground Motions 2018. https://doi.org/10.17603/DS2WM3W.

[42]

Shinozuka M, Feng MQ, Lee J, Naganuma T. Statistical analysis of fragility curves. J Eng Mech 2000;126:1224-31. doi: 10.1061/(ASCE)0733-9399(2000)126:12(1224).

[43]

Bahmani P, van de Lindt JW, Gershfeld M, Mochizuki GL, Pryor SE, Rammer D. Experimental seismic behavior of a full-scale four-story soft-story wood-frame building with retrofits. i: building design, retrofit methodology, and numerical validation. J Struct Eng 2016;142:E4014003. doi: 10.1061/(ASCE)ST.1943-541X.0001207.

[44]

Folz B, Filiatrault A. Cyclic Analysis of Wood Shear Walls. J Struct Eng 2001;127:433-41. doi: 10.1061/(ASCE)0733-9445(2001)127:4(433).

[45]

Zhu M. OpenSeesPy Documentation. 2021.

[46]

Anil Ö, Togay A, Karagöz I şleyen Ü, Döngel N, Söğütlü C. Effect of timber type and nail spacing on the hysteretic behavior of timber-framed shear walls with openings. Int J Civ Eng 2018;16:629-46. doi: 10.1007/s40999-016-0138-7.

[47]

Bahmani P. Performance-based seismic retrofit (PBSR) methodology for multi- story buildings with full-scale experimental validation 2015.

[48]

Roohi M, Hernandez EM, Rosowsky D. Nonlinear seismic response reconstruction and performance assessment of instrumented wood-frame buildings —Validation using NEESWood Capstone full-scale tests. Struct Control Health Monit 2019; 26. doi: 10.1002/stc.2373.

[49]

Amini MO. Ph.D. Colorado State University; 2012.

[50]

Nofal OM, van de Lindt JW. Minimal building flood fragility and loss function portfolio for resilience analysis at the community level. Water 2020;12:2277. doi: 10.3390/w12082277.

[51]

Bommer JJ, Scherbaum F, Bungum H, Cotton F, Sabetta F, Abrahamson NA. On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull Seismol Soc Am 2005;95:377-89. doi: 10.1785/0120040073.

[52]

Kagan YY. Seismic moment distribution revisited: I. Statistical results. Geophys J Int 2002;148:520-41. doi: 10.1046/j.1365-246x.2002.01594.x.

[53]

Abrahamson N, Gregor N, Addo K. BC hydro ground motion prediction equations for subduction earthquakes. Earthquake Spectra 2016;32:23-44. doi: 10.1193/051712EQS188MR.

[54]

Lynett PJ, Wu TR, Liu PLF. Modeling wave runup with depth-integrated equations. Coastal Eng 2002;46:89-107. doi: 10.1016/S0378-3839(02)00043-1.

[55]

Titov VV, Moore CW, Greenslade DJM, Pattiaratchi C, Badal R, Synolakis CE, et al. A new tool for inundation modeling: community Modeling Interface for Tsunamis (ComMIT). Pure Appl Geophys 2011;168:2121-31. doi: 10.1007/s00024-011-0292-4.

AI Summary AI Mindmap
PDF (6339KB)

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/