Incorporating extreme event attribution into climate change adaptation for civil infrastructure: Methods, benefits, and research needs

Yating Zhang , Bilal M. Ayyub , Juan F. Fung , Zachary M. Labe

Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (1) : 103 -113.

PDF
Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (1) : 103 -113. DOI: 10.1016/j.rcns.2024.03.002
Review article

Incorporating extreme event attribution into climate change adaptation for civil infrastructure: Methods, benefits, and research needs

Author information +
History +
PDF

Abstract

In the last decade, the detection and attribution science that links climate change to extreme weather and climate events has emerged as a growing field of research with an increasing body of literature. This paper overviews the methods for extreme event attribution (EEA) and discusses the new insights that EEA provides for infrastructure adaptation. We found that EEA can inform stakeholders about current climate risk, support vulnerability-based and hazard-based adaptations, assist in the development of cost-effective adaptation strategies, and enhance justice and equity in the allocation of adaptation resources. As engineering practice shifts from a retrospective approach to a proactive, forward-looking risk management strategy, EEA can be used together with climate projections to enhance the comprehensiveness of decision making, including planning and preparing for un-precedented extreme events. Additionally, attribution assessment can be more useful for adaptation planning when the exposure and vulnerability of communities to past events are analyzed, and future changes in the probability of extreme events are evaluated. Given large uncertainties inherent in event attribution and climate projections, future research should examine the sensitivity of engineering design to climate model uncertainties, and adapt engineering practice, including building codes, to uncertain future conditions. While this study focuses on adaptation planning, EEA can also be a useful tool for informing and enhancing decisions related to climate mitigation.

Keywords

Climate change / Extreme weather and climate events / Extreme event attribution / Infrastructure adaptation / Uncertainties

Cite this article

Download citation ▾
Yating Zhang, Bilal M. Ayyub, Juan F. Fung, Zachary M. Labe. Incorporating extreme event attribution into climate change adaptation for civil infrastructure: Methods, benefits, and research needs. Resilient Cities and Structures, 2024, 3(1): 103-113 DOI:10.1016/j.rcns.2024.03.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

NOAA (National Oceanic and Atmospheric Administration). (2022). 2021 U.S. billion-dollar weather and climate disasters in historical context. https://www.climate.gov/news-features/blogs/beyond-data/2021-us-billion-dollar-weather-and-climate-disasters-historical.

[2]

IPCC Intergovernmental Panel on Climate Change Climate Change 2021: the physical science basis. contribution of working group i to the sixth assessment re-port of the intergovernmental panel on climate change. Cambridge, United King-dom and New York, NY, USA: Cambridge University Press; 2021.

[3]

IPCC Intergovernmental Panel on Climate Change Managing the risks of extreme events and disasters to advance climate change adaptation. a special report of work-ing groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cam-bridge, UK, and New York, NY, USA: Cambridge University Press; 2012.

[4]

Philip SY, Kew SF, van Oldenborgh GJ, Yang W, Vecchi GA, Anslow FS, Otto FEL. Rapid attribution analysis of the extraordinary heatwave on the Pacific Coast of the US and Canada June 2021. Earth Syst Dynam 2022;13:1689-713. doi: 10.5194/esd-13-1689-2022.

[5]

Thompson V, Kennedy-Asser AT, Vosper E, Lo YE, Huntingford C, An-drews O, Collins M, Hegerl GC, Mitchell D. The 2021 western North Amer-ica heat wave among the most extreme events ever recorded globally. Sci Adv 2022; 8(18):eabm6860.

[6]

Zscheischler J, Lehner F. Attributing Compound Events to Anthropogenic Climate Change. Bull Am Meteorol Soc 2022;103(3):936-53. doi: 10.1175/BAMS-D-21-0116.1.

[7]

NASEM (National Academies of Sciences, Engineering, and Medicine) Attribution of extreme weather events in the context of climate change. Washington, DC: The National Academies Press; 2016. doi: 1017226/21852.

[8]

Zhai P, Zhou B, Chen Y. A review of climate change attribution studies. J Meteo-rological Res 2018;32:671-92.

[9]

Burger M, Wentz J, Horton R. The law and science of climate change attribution. Columbia J Environ Law 2020;45(1). doi: 10.7916/cjel.v45i1.4730.

[10]

Deser C, Lehner F, Rodgers KB, et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat Clim Chang 2020;10:277-86. doi: 10.1038/s41558-020-0731-2.

[11]

Blanusa ML, López-Zurita CJ, Rasp S. Internal variability plays a dominant role in global climate projections of temperature and precipitation extremes. Clim Dyn 2023;61:1931-45. doi: 10.1007/s00382-023-06664-3.

[12]

Shepherd TG. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geosci 2014;7:703-8. doi: 10.1038/ngeo2253.

[13]

Shaw T, Baldwin M, Barnes E, et al. Storm track processes and the opposing influ-ences of climate change. Nature Geosci 2016;9:656-64. doi: 10.1038/ngeo2783.

[14]

Pfahl S, O’Gorman P, Fischer E. Understanding the regional pattern of projected future changes in extreme precipitation. Nature Clim Change 2017;7:423-7. doi: 10.1038/nclimate3287.

[15]

Stendel M., Francis J., White R., Williams P.D., and Woollings T. (2021). The jet stream and climate change. Book chapter in climate change, 3rd Edition, edited by Trevor M. Letcher. Elsevier, 327-357, ISBN 9780128215753.

[16]

Trenberth KE, Fasullo JT, Shepherd TG. Attribution of climate extreme events. Nat Clim Change 2015;5:725-30. doi: 10.1038/nclimate2657.

[17]

Hulme M. Attributing weather extremes to ‘climate change’: a review. Prog Phys Geog 2014;38(4):499-511. doi: 10.1177/0309133314538644.

[18]

Lusk G. The social utility of event attribution: liability, adaptation, and jus-tice-based loss and damage. Clim Change 2017;143:201-12.

[19]

Jézéquel A, Dépoues V, Guillemot H, Rajaud A, Trolliet M, Vrac M, Vanderlin-den JP, Yiou P. Singular extreme events and their attribution to climate change: a climate service-centered analysis. Weather Clim Soc 2020;12(1):89-101. doi: 10. 1175/WCAS-D-19-0048.1.

[20]

Marjanac S, Patton L. Extreme weather event attribution science and climate change litigation: An essential step in the causal chain? J Energy Nat Resour Law 2018;36:265-98. doi: 10.1080/02646811.2018.1451020.

[21]

Pfrommer T, Goeschl T, Proelss A, Carrier M, Lenhard J, Martin H, Niemeier U, Schmidt H. Establishing causation in climate litigation: admissibility and reliability. Clim Change 2019;152(1):67-84.

[22]

Lloyd EA, Shepherd TG. Climate change attribution and legal contexts: ev-idence and the role of storylines. Clim Change 2021;167:28. doi: 10.1007/s10584-021-03177-y.

[23]

Otto FEL, Minnerop P, Raju E, Harrington LJ, Stuart-Smith RF, Boyd E, James R, Jones R, Lauta KC. Causality and the fate of climate litigation: The role of the social superstructure narrative. Global Policy 2022;13(5):736-50.

[24]

Grant S, Tamason CC, Jensen PKM. Climatization: a critical perspective of framing disasters as climate change events. Climate Risk Manag 2015;10:27-34. doi: 10. 1016/j.crm.2015.09.003.

[25]

Lahsen M, de Azevedo Couto G, Lorenzoni I. When climate change is not blamed: The politics of disaster attribution in international perspective. Clim Change 2020;158:213-33.

[26]

Osaka S, Bellamy R. Natural variability or climate change? Stakeholder and citizen perceptions of extreme event attribution. Glob Environ Chang 2020;62:102070. doi: 10.1016/j.gloenvcha.2020.102070.

[27]

Lahsen M, Ribot J. Politics of attributing extreme events and disasters to climate change. WIREs Clim Change 2021;13:e750. doi: 10.1002/wcc.750.

[28]

Mohebbi S, Zhang Q, Wells EC, Zhao T, Nguyen H, Li M, Abdel-Mottaleb N, Ud-din S, Lu Q, Wakhungu MJ, Wu Z, Zhang Y, Tuladhar A, Ou X. Cyber-physical-social interdependencies and organizational resilience: a review of water, trans-portation, and cyber infrastructure systems and processes. Sustainable Cities Soc 2020;62:102327. doi: 10.1016/j.scs.2020.102327.

[29]

Slater LJ, Anderson B, Buechel M, Dadson S, Han S, Harrigan S, Kelder T, Kowal K, Lees T, Matthews T, Murphy C, Wilby RL. Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management. Hydrol Earth Syst Sci 2021;25:3897-935. doi: 10.5194/hess-25-3897-2021.

[30]

Qian C, Ye Y, Chen Y, Zhai P. An updated review of event attribution approaches. J Meteorol Res 2022;36:227-38.

[31]

Clarke B, Otto F, Stuart-Smith R, Harrington L. Extreme weather impacts of climate change: an attribution perspective. Environ Res: Climate 2022;1:012001. doi: 10. 1088/2752-5295/ac6e7d.

[32]

Thompson A, Otto FEL. Ethical and normative implications of weather event attribution for policy discussions concerning loss and damage. Clim Change 2015;133:439-51.

[33]

Harrington LJ, Otto FEL. Adapting attribution science to the climate extremes of tomorrow. Environ Res Lett 2018;13:123006.

[34]

-ATC (Applied Technology Council) Critical assessment of lifeline system perfor-mance: understanding societal needs in disaster recovery, Gaithersburg, MD: Na-tional Institute of Standards and Technology, Engineering Laboratory; 2016. 16-917-39. doi: 10.6028/NIST.GCR.16-917-39.

[35]

ASCE (American Society of Civil Engineers). (2021). Impacts of future weather and climate extremes on United States infrastructure. Edited by Mari R. Tye and Jason P. Giovannettone, Task Committee on Future Weather and Climate Extremes, ISBN 978-0-7844-8372-5.

[36]

Gong S, Ye Y, Gao X, Chen L, Wang T. Empirical patterns of interdependencies among critical infrastructures in cascading disasters: Evidence from a comprehen-sive multi-case analysis. Int J Disaster Risk Reduct 2023;95:103862. doi: 10.1016/j. ijdrr.2023.103862.

[37]

McAllister T. Community resilience planning guide for buildings and infrastructure systems, volume 2. special publication-1190. Gaithersburg, MD: National Institute of Standards and Technology; 2015. doi: 106028/NISTSP1190v2.

[38]

Allen RI, Betley M, Renteria C, Singh A. Integrating infrastructure planning and budgeting. Book chapter in well spent: how strong infrastructure governance can end waste in public investment. Washington, DC: International Monetary Fund; 2020. doi: 105089/9781513511818071.

[39]

NASEM (National Academies of Sciences, Engineering, and Medicine) Incorpo-rating the costs and benefits of adaptation measures in preparation for extreme weather events and climate change guidebook. Washington, DC: The National Academies Press; 2020. doi: 1017226/25744.

[40]

NWS National Weather Service. Severe weather definitions 2022. https://www.weather.gov/bgm/severedefinitions.

[41]

Philip S, Kew S, van Oldenborgh GJ, Otto F, Vautard R, van der Wiel K, King A, Lott F, Arrighi J, Singh R, van Aalst M. A protocol for probabilistic extreme event attribution analyses. Adv Stat Clim Meteorol Oceanogr 2020;6:177-203. doi: 10. 5194/ascmo-6-177-2020.

[42]

van Oldenborgh GJ, van der Wiel K, Kew S, Philip S, Otto F, Vautard R, King A, Lott F, Arrighi J, Singh R, van Aalst M. Pathways and pitfalls in extreme event attribution. Clim Change 2021;166:13. doi: 10.1007/s10584-021-03071-7.

[43]

National Drought Mitigation Center Drought classification. Lincoln, NE: University of Nebraska-Lincoln; 2022 https://droughtmonitor.unl.edu/About/AbouttheData/DroughtClassification.aspx.

[44]

Luu LN, van Meijgaard E, Philip SY, Kew SF, de Baar JHS, Stepek A.Im-pact of surface roughness changes on surface wind speed over western Eu-rope: a study with the regional climate model RACMO. J Geophys Res: Atmos 2023;128: e2022JD038426. doi: 10.1029/2022JD038426.

[45]

Stone DA, Lawal KA, Lennard C, Tadross M, Wolski P, Wehner MF. The life and times of the weather risk attribution forecast. Bull Am Meteorol Soc 2022;103(3):S1-6. doi: 10.1175/BAMS-D-21-0263.1.

[46]

Otto FEL, Kew S, Philip S, Stott P, Van Oldenborgh GJ. How to provide useful attri-bution statements: lessons learned from operationalizing event attribution in Eu-rope. Bull Am Meteorol Soc 2022;103(3):S21-5. doi: 10.1175/BAMS-D-21-0267.1.

[47]

Tradowsky J, Bodeker G, Bird L, Kremser S, Kreft P, Soltanzadeh I, Rausch J, Rana S, Rye G, Ziegler A, Rosier S, Stone D, Dean S, Renwick J, Frame D, McDon-ald A.The Extreme Weather Event Real-time Attribution Machine (EWERAM) -an overview. EGU General Assembly 2020;2020 Online, 4-8 May 2020, EGU2020-11715. doi: 10.5194/egusphere-egu2020-11715.

[48]

Tradowsky JS, Bird L, Kreft PV, Rosier SM, Soltanzadeh I, Stone DA, Bodeker GE. Toward near-real-time attribution of extreme weather events in aotearoa New Zealand. Bull Am Meteor Soc 2022;103(3):S105-10. doi: 10.1175/BAMS-D-21-0236.1.

[49]

Barsugli JJ, Easterling DR, Arndt DS, Coates DA, Delworth TL, Hoerling MP, John-son N, Kapnick SB, Kumar A, Kunkel KE, Schreck CJ, Vose RS, Zhang T. Devel-opment of a rapid response capability to evaluate causes of extreme temperature and drought events in the United States. Bull Am Meteor Soc 2022;103(3): S14-20. doi: 10.1175/BAMS-D-21-0237.1.

[50]

Hope P, Zhao M, Abhik S, Tolhurst G, McKay RC, Rauniyar SP, Bettio L, Ram-churn A, Lim E, Pepler AS, Cowan T, Watkins AB. Subseasonal to seasonal climate forecasts provide the backbone of a near-real-time event explainer service. Bull Am Meteorol Soc 2022;103(3):S7-S13. doi: 10.1175/BAMS-D-21-0253.1.

[51]

Witze A. Extreme heatwaves: surprising lessons from the record warmth. Nature 2022;608:464-5. doi: 10.1038/d41586-022-02114-y.

[52]

Harrington LJ, Ebi KL, Frame DJ, Otto FEL. Integrating attribution with adapta-tion for unprecedented future heatwaves. Clim Change 2022;172:2. doi: 10.1007/s10584-022-03357-4.

[53]

Clarke B, Otto FEL, Jones R. When don’t we need a new extreme event attribution study? Clim Change 2023;176:60. doi: 10.1007/s10584-023-03521-4.

[54]

BAMS (Bulletin of the American Meteorological Society)Explaining extreme events of 2020 from a climate perspective. Edited by Herring, S. C., N. Christidis, A. Hoell, M. P. Hoerling, and P. A. Stott. Bull Am Meteor Soc 2022;103(3). doi: 10.1175/BAMS-ExplainingExtremeEvents2020.1.

[55]

Philip S, Kew SF, van Oldenborgh GJ, Jan G, Aalbers E, Vautard R, Otto F, Haustein K, Habets F, Singh R. Validation of a rapid attribution of the May/June 2016 flood-inducing precipitation in France to climate change. J Hydrometeor 2018; 19:1881-98. doi: 10.1175/JHM-D-18-0074.1.

[56]

Otto FEL, van der Wiel K, van Oldenborgh GJ, Philip S, Kew SF, Uhe P, Cullen H. Cli-mate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond —a real-time event attribution revisited. En-viron Res Lett 2017;13(2):024006. doi: 10.1088/1748-9326/aa9663.

[57]

Raymond C, Horton RM, Zscheischler J, Martius O, AghaKouchak A, Balch J, et al. Understanding and managing connected extreme events. Nat Clim Chang 2020;10:611-21.

[58]

Zscheischler J, Martius O, Westra S, Bevacqua E, Raymond C, Horton RM, van den Hurk B, AghaKouchak A, Jézéquel A, Mahecha MD, Maraun D, Ramos AM, Ridder NN, Thiery W, Vignotto E. A typology of compound weather and climate events. Nat Rev Earth Environ2020;1:333-47. 2020; 333-47. doi: 10.1038/s43017-020-0060-z.

[59]

Schumacher DL, Zachariah M, Otto F, Barnes C, Philip S, Kew S, Senevi-ratne SI. High temperatures exacerbated by climate change made 2022 North-ern Hemisphere soil moisture droughts more likely. World Weather Attri-bution 2022. https://www.worldweatherattribution.org/wp-content/uploads/WCE-NH-drought-scientific-report.pdf.

[60]

Goss M, Swain DL, Abatzoglou JT, Sarhadi A, Kolden CA, Williams AP, Diffen-baugh NS. Climate change is increasing the likelihood of extreme autumn wild-fire conditions across California. Environ Res Lett 2020;15:094016. doi: 10.1088/1748-9326/ab83a7.

[61]

van Oldenborgh GJ, Krikken F, Lewis S, Leach NJ, Lehner F, Saunders KR, Otto FEL. Attribution of the Australian bushfire risk to anthropogenic climate change. Nat Hazards Earth Syst Sci 2021;21:941-60. doi: 10.5194/nhess-21-941-2021.

[62]

Liu Z, Eden JM, Dieppois B, Drobyshev I, Gallo C, Blackett M.Were meteorolog-ical conditions related to the 2020 Siberia wildfires made more likely by anthro-pogenic climate change? Bull Am Meteorol Soc 2022;103(3):S44-9. doi: 10.1175/BAMS-D-21-0168.1.

[63]

Martius O, Pfahl S, Chevalier C. A global quantification of compound precip-itation and wind extremes. Geophys Res Lett 2016;43:7709-17. doi: 10.1002/2016GL070017.

[64]

De Luca P, Messori G, Pons FME, Faranda D. Dynamical systems theory sheds new light on compound climate extremes in Europe and Eastern North America. Q J R Meteorolog Soc 2020;146:1636-50. doi: 10.1002/qj.3757.

[65]

Zscheischler J, Naveau P, Martius O, Engelke S, Raible CC. Evaluating the depen-dence structure of compound precipitation and wind speed extremes. Earth Syst. Dyn. 2021;12:1-16. doi: 10.5194/esd-12-1-2021.

[66]

Bevacqua E, Maraun D, Vousdoukas MI, Voukouvalas E, Vrac M, Mentaschi L, Wid-mann M. Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Sci Adv 2019;5:eaaw5531.

[67]

Poschlod B, Zscheischler J, Sillmann J, Wood RR, Ludwig R. Climate change effects on hydrometeorological compound events over southern Norway. Weather Clim Extremes 2020;28:100253. doi: 10.1016/j.wace.2020.100253.

[68]

Couasnon A, Eilander D, Muis S, Veldkamp TIE, Haigh ID, Wahl T, Winsemius HC, Ward PJ. Measuring compound flood potential from river discharge and storm surge extremes at the global scale. Nat Hazards Earth Syst Sci 2020;20:489-504. doi: 10.5194/nhess-20-489-2020.

[69]

Bevacqua E, Suarez-Gutierrez L, Jézéquel A, et al. Advancing research on com-pound weather and climate events via large ensemble model simulations. Nat Com-mun 2023;14:2145. doi: 10.1038/s41467-023-37847-5.

[70]

Stott PA, Stone DA, Allen MR. Human contribution to the European heatwave of 2003. Nature 2004;432:610-14. doi: 10.1038/nature03089.

[71]

Stone DA, Allen MR. The end-to-end attribution problem: from emissions to im-pacts. Clim Change 2005;71:303-18. doi: 10.1007/s10584-005-6778-2.

[72]

Shepherd TG. A common framework for approaches to extreme event attribution. Curr Clim Change Rep 2016;2(1):28-38. doi: 10.1007/s40641-016-0033-y.

[73]

Terray L. A dynamical adjustment perspective on extreme event attribution. Weather Clim Dynam 2021;2:971-89. doi: 10.5194/wcd-2-971-2021.

[74]

Kirchmeier-Young MC, Wan H, Zhang X. Using a model comparison to sup-port the interpretation of extreme event attribution. Weather Clim Extremes 2022 ;36(2022):100444. doi: 10.1016/j.wace.2022.100444.

[75]

Shepherd TG, Boyd E, Calel RA, et al. Storylines: an alternative approach to representing uncertainty in physical aspects of climate change. Clim Change 2018;151:555-71. doi: 10.1007/s10584-018-2317-9.

[76]

Lloyd EA, Oreskes N. Climate change attribution: when is it appropriate to accept new methods? Earth’s Future 2018;6:311-25. doi: 10.1002/2017EF000665.

[77]

Sillmann J, Shepherd TG, van den Hurk B, Hazeleger W, Martius O, Slingo J, Zscheischler J. Event-based storylines to address climate risk. Earth’s Future2021;9: e2020EF001783. doi: 10.1029/2020EF001783.

[78]

Singh D, Crimmins AR, Pflug JM, Barnard PL, Helgeson JF, Hoell A, Jacobs FH, Ja-cox MG, Jerolleman A, Wehner MF. Focus on compound events. Fifth national cli-mate assessment. Crimmins AR, Avery CW, Easterling DR, Kunkel KE, Stewart BC, Maycock TK, editors. Washington, DC, USA: U.S. Global Change Research Program; 2023. doi: 10.7930/NCA5.2023.F1.

[79]

Turner SWD, Voisin N, Fazio J, Hua D, Jourabcho M. Compound climate events transform electrical power shortfall risk in the Pacific Northwest. Nat Commun 2019;10:8. doi: 10.1038/s41467-018-07894-4.

[80]

Otero N, Horton P, Martius O, Allen S, Zappa M, Wechsler T, Schaefli B. Impacts of hot-dry conditions on hydropower production in Switzerland. Environ Res Lett 2023;18:064038. doi: 10.1088/1748-9326/acd8d7.

[81]

GRD (Global Resiliency Dialogue). (2021). The Use of Climate Data and Assess-ment of Extreme Weather Event Risks in Building Codes Around the World: Survey Findings from the Global Resiliency Dialogue. https://www.iccsafe.org/wp-content/uploads/21-19612_CORP_CANZUS_Survey_Whitepaper_RPT_FINAL_ HIRES.pdf.

[82]

GRD (Global Resiliency Dialogue). (2021). Delivering Climate Responsive Resilient Building Codes and Standards Findings from the Global Resiliency Dialogue Sur-vey of Building Code Stakeholders in Canada, Australia, New Zealand and the United States. https://www.iccsafe.org/wp-content/uploads/Delivering_Resilient_Building_Codes_and_Standards.pdf.

[83]

ASCE (American Society of Civil Engineers). (2018). Climate-Resilient Infrastruc-ture:Adaptive Design and Risk Management. Edited by Bilal M. Ayyub, ASCE man-uals and reports on engineering practice No.140, ISBN 9780784415191.

[84]

ASCE American Society of Civil Engineers and NOAA National Oceanic and At-mospheric Administration. (2023). ASCE-NOAA Workshops on Leveraging Earth System Science and Modeling to Inform Civil Engineering Design. Edited by Ayyub, B.A., DeAngelo B., Walker, D., and Barsugli, J. https://doi.org/10.25923/e8kn-n884

[85]

ASCE (American Society of Civil Engineers). (2022). Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE/SEI 7-22, ISBN 9780784415788.

[86]

Cannon AJ, Jeong DI, Zhang X, Zwiers FW. Climate-Resilient buildings and core public infrastructure:an assessment of the impact of climate change on cli-matic design data in Canada, Ottawa, ON: Government of Canada; 2020. ISBN 9780660364780.

[87]

NYC (New York City Mayor’s Office of Climate and Environmental Justice). (2022). Climate Resiliency Design Guidelines, Version 4.1. https://climate.cityofnewyork. us/wp-content/uploads/2022/10/CRDG-4-1-May-2022.pdf

[88]

Zhang Y, Ayyub BM. Electricity system assessment and adaptation to rising tem-peratures in a changing climate with Washington metro area as a case study. ASCE Journal of Infrastructure Systems 2020;26(2):04020017.

[89]

Stewart MG, Deng X. Climate impact risks and climate adaptation engineering for built infrastructure. ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng. 2015;1(1):04014001. doi: 10.1061/AJRUA6.0000809.

[90]

Fung JF, Zhang Y, Johnson KJ, Cook D, Sattar S. A framework to evaluate the cost-effectiveness of recovery-based design. NIST SP-1277. Gaithersburg, MD: National Institute of Standards and Technology, Engineering Laboratory; 2022. doi: 106028/NISTSP1277.

[91]

Newman R, Noy I. The global costs of extreme weather that are attributable to climate change. Nat Commun 2023;14:6103. doi: 10.1038/s41467-023-41888-1.

[92]

Smiley KT, Noy I, Wehner MF, Frame D, Sampson CC, Wing OEJ. Social in-equalities in climate change-attributed impacts of Hurricane Harvey. Nat Commun 2022;13:3418. doi: 10.1038/s41467-022-31056-2.

[93]

Frame DJ, Wehner MF, Noy I, Rosier SM. The economic costs of Hurricane Har-vey attributable to climate change. Clim Change 2020;160:271-81. doi: 10.1007/s10584-020-02692-8.

[94]

Esposito S, Stojadinovic B, Babi čA, Dolš ek M, Iqbal S, Selva J, Broc-cardo M, Mignan A, Giardini D. Risk-Based multilevel methodology to stress test critical infrastructure systems. ASCE Journal of Infrastructure Systems 2019;26(1):04019035.

[95]

NOAA (National Oceanic and Atmospheric Administration). (2023). Saffir-Simpson Hurricane Wind Scale. National Hurricane Center and Central Pacific Hurricane Center. https://www.nhc.noaa.gov/aboutsshws.php

[96]

Helderop E, Grubesic TH. Hurricane storm surge in Volusia County, Florida: evi-dence of a tipping point for infrastructure damage. Disasters 2018;43(1):157-80. doi: 10.1111/disa.12296.

[97]

Krueger EH, Borchardt D, Jawitz JW, Klammler H, Yang S, Zischg J, Rao PSC. Resilience dynamics of urban water supply security and potential of tipping points. Earth’s Future 2019;7(10):1167-91. doi: 10.1029/2019EF001306.

[98]

Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsev-ell MDA, Zurek MB. New assessment methods and the characterisation of future conditions. In: ParryML, CanzianiOF, PalutikofJP, vander Linden PJ, HansonCE, editors. Book chapter in climate change 2007: impacts, adaptation and vulnera-bility. contribution of working group ii to the fourth assessment report of the in-tergovernmental panel on climate change. Cambridge, UK: Cambridge University Press; 2007. p. 133-71.

[99]

Jones R, Boer R. Assessing Current Climate Risks. In: LimBo, Spanger-SiegfriedErika, BurtonIan, MaloneElizabeth, HuqSaleemul, Cambridge, edi-tors. Book chapter in adaptation policy frameworks for climate change:developing strategies, policies and measures. UK: Cambridge University Press; 2004. p. 91-117.

[100]

NASEM (National Academies of Sciences, Engineering, and Medicine) Resilience for compounding and cascading events. Washington, DC: The National Academies Press; 2022. doi: 1017226/26659.

[101]

Vaughan E, Turner J. The value and impact of building codes. Washington, DC: En-vironmental and Energy Study Institute; https://www.eesi.org/papers/view/the-value-and-impact-of-building-codes Accessed on February 5, 2024. 2013

[102]

Van Oldenborgh GJ, Wehner MF, Vautard R, Otto FEL, Seneviratne SI, Stott PA, Hegerl GC, Philip SY, Kew SF.Attributing and projecting heatwaves is hard: we can do better. Earth’s Future 2022;10(6):e2021EF002271.

[103]

Huggel C, Wallimann-Helmer I, Stone D, Cramer W. Reconciling justice and at-tribution research to advance climate policy. Nat Clim Change 2016;6:901-8. doi: 10.1038/nclimate3104.

[104]

Otto FEL, Skeie R, Fuglestvedt J, Berntsen T, Allen MR. Assigning historic re-sponsibility for extreme weather events. Nature Clim Change 2017;7:757-9. doi: 10.1038/nclimate3419.

[105]

Jézéquel A, Yiou P, Vanderlinden JP. Comparing scientists and delegates perspec-tives on the use of extreme event attribution for loss and damage. Weather Clim Extremes 2019;2019;26:100231. doi: 10.1016/j.wace.2019.100231.

[106]

Zachariah M, Philip S, Pinto I, Vahlberg M, Singh R, Otto F, Barnes C, Kimutai J. Extreme heat in North America, Europe and China in July 2023 made much more likely by climate change. Imperial College London; 2023. doi: 1025561/105549.

[107]

World Health Organization (2023). Heatwaves. https://www.who.int/health-topics/heatwaves#tab=tab_1. Accessed on February 4, 2024.

[108]

Formetta G, Feyen L. Empirical evidence of declining global vulnerability to climate-related hazards. Glob Environ Chang 2019;57:101920. doi: 10.1016/j.gloenvcha.2019.05.004.

[109]

Jerome A. Infrastructure, economic growth and poverty reduction in Africa. J In-frastruct Develop 2011;3(2):127-51. doi: 10.1177/097493061100300203.

[110]

Gaal HO, Afrah NA. Lack of infrastructure: the impact on economic develop-ment as a case of Benadir region and Hir-shabelle, Somalia. Develop Country Stud 2017;7(1):49-55.

[111]

Bank The World. Well maintained: economic benefits from more reliable and resilient infrastructure. Washington, DC: World Bank Publications; 2021 https://www.globalinfrafacility.org/sites/gif/files/2021-07/Well%20Maintained_Economic%20Benefits_WB_G20_Report_.pdf.

[112]

Raju E, Boyd E, Otto F. Stop blaming the climate for disasters. Commun Earth Environ 2022;3:1. doi: 10.1038/s43247-021-00332-2.

[113]

Iglesias V, Braswell AE, Rossi MW, Joseph MB, McShane C, Cattau M, Koontz MJ, McGlinchy J, Nagy RC, Balch J, Leyk S, Travis WR. Risky development: in-creasing exposure to natural hazards in the United States. Earth’s Future e2020EF001795. doi: 10.1029/2020EF001795.

[114]

Zhang Y, Ayyub BM, Fung JF. Projections of corrosion and deterioration of in-frastructure in United States Coasts under a changing climate. Resilient Cities and Structures 2022;1(1):98-109. doi: 10.1016/j.rcns.2022.04.004.

[115]

Grubesic TH, Matisziw TC. A typological framework for categorizing infrastructure vulnerability. GeoJournal 2013;78:287-301. doi: 10.1007/s10708-011-9411-0.

[116]

Hauser M, Gudmundsson L, Orth R, Jézéquel A, Haustein K, Vautard R, Olden-borgh GJV, Wilcox L, Seneviratne SI. Methods and model dependency of extreme event attribution: the 2015 European drought. Earth’s Future 2017;5:1034-43. doi: 10.1002/2017EF000612.

[117]

Jézéquel A, Dépoues V, Guillemot H, Trolliet M, Vanderlinden JP, Yiou P. Behind the veil of extreme event attribution. Clim Change 2018;149:367-83. doi: 10.1007/s10584-018-2252-9.

AI Summary AI Mindmap
PDF

650

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/