Data for critical infrastructure network modelling of natural hazard impacts: Needs and influence on model characteristics

Roman Schotten , Evelyn Mühlhofer , Georgios-Alexandros Chatzistefanou , Daniel Bachmann , Albert S. Chen , Elco E. Koks

Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (1) : 55 -65.

PDF
Resilient Cities and Structures ›› 2024, Vol. 3 ›› Issue (1) : 55 -65. DOI: 10.1016/j.rcns.2024.01.002
Research article

Data for critical infrastructure network modelling of natural hazard impacts: Needs and influence on model characteristics

Author information +
History +
PDF

Abstract

Natural hazards impact interdependent infrastructure networks that keep modern society functional. While a va-riety of modelling approaches are available to represent critical infrastructure networks (CINs) on different scales and analyse the impacts of natural hazards, a recurring challenge for all modelling approaches is the availability and accessibility of sufficiently high-quality input and validation data. The resulting data gaps often require mod-ellers to assume specific technical parameters, functional relationships, and system behaviours. In other cases, expert knowledge from one sector is extrapolated to other sectoral structures or even cross-sectorally applied to fill data gaps. The uncertainties introduced by these assumptions and extrapolations and their influence on the quality of modelling outcomes are often poorly understood and difficult to capture, thereby eroding the reliability of these models to guide resilience enhancements. Additionally, ways of overcoming the data avail-ability challenges in CIN modelling, with respect to each modelling purpose, remain an open question. To address these challenges, a generic modelling workflow is derived from existing modelling approaches to examine model definition and validations, as well as the six CIN modelling stages, including mapping of infrastructure assets, quantification of dependencies, assessment of natural hazard impacts, response & recovery, quantification of CI services, and adaptation measures. The data requirements of each stage were systematically defined, and the literature on potential sources was reviewed to enhance data collection and raise awareness of potential pitfalls. The application of the derived workflow funnels into a framework to assess data availability challenges. This is shown through three case studies, taking into account their different modelling purposes: hazard hotspot assess-ments, hazard risk management, and sectoral adaptation. Based on the three model purpose types provided, a framework is suggested to explore the implications of data scarcity for certain data types, as well as their reasons and consequences for CIN model reliability. Finally, a discussion on overcoming the challenges of data scarcity is presented.

Keywords

Critical infrastructure networks / Impact modeling / Data availability / Natural hazards

Cite this article

Download citation ▾
Roman Schotten, Evelyn Mühlhofer, Georgios-Alexandros Chatzistefanou, Daniel Bachmann, Albert S. Chen, Elco E. Koks. Data for critical infrastructure network modelling of natural hazard impacts: Needs and influence on model characteristics. Resilient Cities and Structures, 2024, 3(1): 55-65 DOI:10.1016/j.rcns.2024.01.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rinaldi SM.Modeling and simulating critical infrastructures and their interdepen-dencies. In:37th Annual Hawaii International Conference on System Sciences, 2004. Proceedings of the; 2004. p. 8. Jan.p.pp.-.. doi: 10.1109/HICSS.2004.1265180.

[2]

Korkali M, Veneman JG, Tivnan BF, Bagrow JP, Hines PDH.Reducing cascading failure risk by increasing infrastructure network interdependence. Sci Rep 2017;7(1) Art. no. 1, Mar.. doi: 10.1038/srep44499.

[3]

Ouyang M. Review on modeling and simulation of interdependent crit-ical infrastructure systems. Reliab Eng Syst Saf Jan 2014;121:43-60. doi: 10.1016/j.ress.2013.06.040.

[4]

Sun W, Bocchini P, Davison BD. Overview of interdependency models of critical infrastructure for resilience assessment. Nat Hazards Rev Feb 2022;23(1):04021058. doi: 10.1061/(ASCE)NH.1527-6996.0000535.

[5]

Thacker S, Pant R, Hall JW. System-of-systems formulation and disruption anal-ysis for multi-scale critical national infrastructures. Reliab Eng Syst Saf Nov 2017;167:30-41. doi: 10.1016/j.ress.2017.04.023.

[6]

United Nations, ‘Sendai framework for disaster risk reduction 2015 -2030’, 2015. Accessed: May 16, 2023. [Online]. Available: https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030.

[7]

Ani UD, McK Watson JD, Nurse JRC, Cook A, Maples C. A review of critical infras-tructure protection approaches: improving security through responsiveness to the dynamic modelling landscape. In: Living in the internet of things (IoT 2019) Lon-don, UK: Institution of Engineering and Technology;. 2019. p. 6. p.(15 pp.)-6 (15 pp.). doi: 10.1049/cp.2019.0131.

[8]

Schotten R, Bachmann D.Integrating critical infrastructure networks into flood risk management. Sustainability Jan 2023;15(6) no. 6, Art.. doi: 10.3390/su15065475.

[9]

UNDRR, ‘Addressing the infrastructure failure data gap: a governance challenge’, 2021. https://www.undrr.org/publication/addressing-infrastructure-failure-data-gap-governance-challenge (accessed May 09, 2023).

[10]

Johansson J, Månsson P. Data and methods related to major accidents and crises : empirical and predictive approaches focused on disaster risk management, critical infrastructure resilience & GIS. Swedish Civil Contingencies Agency; 2020. Available: https://rib.msb.se/filer/pdf/29975.pdf.

[11]

Ramachandran V, Long S, Shoberg T, Corns S, Carlo H.Post-disaster supply chain interdependent critical infrastructure system restoration: a review of data necessary and available for modeling. Data Sci J Jan 2016;15:1 p.. doi: 10.5334/dsj-2016-001.

[12]

Huang Y, Bardossy A.Impacts of data quantity and quality on model calibration: implications for model parameterization in data-scarce catchments. Water (Basel) Sep 2020;12(9) Art. no. 9. doi: 10.3390/w12092352.

[13]

McCarl BA. Model validation: an overview with some emphasis on risk models. Rev Mark Agric Econ 1984. doi: 10.22004/ag.econ.12282.

[14]

Aumann CA. A methodology for developing simulation models of complex systems. Ecol Model Apr 2007;202(3):385-96. doi: 10.1016/j.ecolmodel.2006.11.005.

[15]

R. Sargent, Verification and validation of simulation models, vol. 37. 2011, p. 183. 10.1109/WSC.2010. 5679166.

[16]

Farina A, Graziano A, Panzieri S, Pascucci F, Setola R. How to perform verification and validation of critical infrastructure modeling tools. In: BolognaS, HämmerliB, GritzalisD, WolthusenS, editors. Criticalinformation infrastructure security. Berlin, Heidelberg: Springer Berlin Heidelberg; 2013. p. 116-27. Eds., in Lecture Notes in Computer Science, vol. 6983. doi: 10.1007/978-3-642-41476-3_10.

[17]

United States Department of Homeland Security, ‘HIFLD Open Data’. 2021. Accessed: May 28, 2023. [Online]. Available: https://hifld-geoplatform.opendata.arcgis.com/.

[18]

Coordinating body for federal geoinformation Geoportal of the Swiss Confederation; 2023.

[19]

OpenStreetMap contributors, ‘Planet dump retrieved from https://planet.osm.org’. 2017. Accessed: May 16, 2023. Available: https://www.openstreetmap.org/.

[20]

Barrington-Leigh C, Millard-Ball A. The world’s user-generated road map is more than 80% complete. PLoS ONE Aug 2017;12(8):e0180698. doi: 10.1371/jour-nal.pone.0180698.

[21]

C. Stip, Z. Mao, L. Bonzanigo, G. Browder, and J. Tracy, ‘Water infrastructure re-silience’, Jun. 2019, 10.1596/31911.

[22]

Ellingwood BR, Cutler H, Gardoni P, Peacock WG, van de Lindt JW, Wang N. The Centerville Virtual Community: a fully integrated decision model of interacting phys-ical and social infrastructure systems. Sustain Resilient Infrastruct Nov 2016;1(3-4):95-107. doi: 10.1080/23789689.2016.1255000.

[23]

Guidotti R, Chmielewski H, Unnikrishnan V, Gardoni P, McAllister T, van de Lindt J. Modeling the resilience of critical infrastructure: the role of net-work dependencies. Sustain Resilient Infrastruct. Nov 2016 ;1(3-4):153-68 no.. doi: 10.1080/23789689.2016.1254999.

[24]

Arderne C, Zorn C, Nicolas C, Koks EE.Predictive mapping of the global power system using open data. Sci Data Jan 2020;7(1) Art. no. 1. doi: 10.1038/s41597-019-0347-4.

[25]

Zorn C, Pant R, Thacker S, Andreae L, Shamseldin AY. Quantifying system-level dependencies between connected electricity and transport infrastructure networks incorporating expert judgement. Civ Eng Environ Syst Jul 2021;38(3):176-96. doi: 10.1080/10286608.2021.1943664.

[26]

de Bruijn KM, et al. Flood resilience of critical infrastructure: approach and method applied to Fort Lauderdale, Florida. Water (Basel) Mar 2019;11(3) Art. no. 3. doi: 10.3390/w11030517.

[27]

Luiijf E, Klaver M. Analysis and lessons identified on critical infrastructures and dependencies from an empirical data set. Int J Crit Infrastruct Prot Dec 2021;35:100471. doi: 10.1016/j.ijcip.2021.100471.

[28]

Dueñas-Osorio L, Kwasinski A.Quantification of lifeline system interdependencies after the 27 February 2010 Mw 8.8 Offshore Maule, Chile, Earthquake’. Earthq Spec-tra Jun 2012;

[29]

28(1_suppl1):581-603. doi: 10.1193/1.4000054.

[30]

Zimmerman R. Decision-making and the vulnerability of interdependent critical infrastructure. In: 2004 IEEE International Conference on Systems, Man and Cy-bernetics (IEEE Cat. No.04CH37583), 5;

[31]

Oct 2004.p.4059-63. doi: 10.1109/IC-SMC.2004.1401166.

[32]

Luiijf E, Nieuwenhuijs A, Klaver M, van Eeten M, Cruz E. Empirical findings on criti-cal infrastructure dependencies in Europe. In: SetolaR, GeretshuberS, editors. Crit-ical information infrastructure security. Berlin, Heidelberg: Springer; 2009. p. 302-10. Eds.in Lecture Notes in Computer Science. doi: 10.1007/978-3-642-03552-4_28.

[33]

Zorn CR, Shamseldin AY. Quantifying directional dependencies from in-frastructure restoration data. Earthq Spectra Aug 2016;32(3):1363-81. doi: 10.1193/013015EQS015M.

[34]

Pant R, Thacker S, Hall JW, Alderson D, Barr S. Critical infrastructure impact assessment due to flood exposure. J Flood Risk Manag Mar 2018;11(1):22-33. doi: 10.1111/jfr3.12288.

[35]

Evans B, et al. Mapping urban infrastructure interdependencies and fuzzy risks. Proc. Eng Jan 2018;212:816-23. doi: 10.1016/j.proeng.2018.01.105.

[36]

Pala O, Wilson D, Bent R, Linger S, Arnold JButts J, Shenoi S, editors. Accuracy of service area estimation methods used for critical infrastructure recovery. Critical infrastructure protection VIII 2014:173-91 Eds.in IFIP Advances in Information and Communication Technology. doi: 10.1007/978-3-662-45355-1_12.

[37]

Mühlhofer E, Koks EE, Kropf CM, Sansavini G, Bresch DN. A generalized natural hazard risk modelling framework for infrastructure failure cascades. Reliab Eng Syst Saf Jun 2023;234:109194. doi: 10.1016/j.ress.2023.109194.

[38]

Dong S, Esmalian A, Farahmand H, Mostafavi A. An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tol-erance in urban flooding. Comput Environ Urban Syst Mar 2020;80:101443. doi: 10.1016/j.compenvurbsys.2019.101443.

[39]

C. Zorn, A. Shamseldin, R. Pant, and S. Thacker, Evaluating the magnitude and spa-tial extent of disruptions across interdependent national infrastructure networks. 2019. 10.13140/RG.2.2.30146.84163.

[40]

Stock A, et al. Household impacts of interruption to electric power and water ser-vices. Nat Hazards 2023;115(3):2279-306. doi: 10.1007/s11069-022-05638-8.

[41]

Blokker EJM, Vreeburg JHG, van Dijk JC. Simulating residential water demand with a stochastic end-use model. J Water Resour Plan Manag 2010;136(1):19-26. doi: 10.1061/(ASCE)WR.1943-5452.0000002.

[42]

Mazzoni F, et al. Investigating the characteristics of residential end uses of water: a worldwide review. Water Res 2023;230:119500. doi: 10.1016/j.watres.2022.119500.

[43]

L. Poirier, P. Knox, E. Murphy, and M. Provan, Flood Damage to Critical Infrastructure. 2022. 10.4224/40002986.

[44]

Merz B, Kreibich H, Schwarze R, Thieken A. Review article “Assessment of economic flood damage. Nat Hazards Earth Syst Sci 2010;10(8):1697-724. doi: 10.5194/nhess-10-1697-2010.

[45]

Hammond MJ, Chen AS, Djordjevi ćS, Butler D, Mark O. Urban flood im-pact assessment: a state-of-the-art review. Urban Water J 2015;12(1):14-29. doi: 10.1080/1573062X.2013.857421.

[46]

Ranger N, et al. An assessment of the potential impact of climate change on flood risk in Mumbai. Clim Change 2011;104(1):139-67. doi: 10.1007/s10584-010-9979-2.

[47]

Chen AS, Hammond MJ, Djordjevi ćS, Butler D, Khan DM, Veerbeek W. From hazard to impact: flood damage assessment tools for mega cities. Nat Hazards 2016;82(2):857-90. doi: 10.1007/s11069-016-2223-2.

[48]

Kreibich H, et al. Is flow velocity a significant parameter in flood dam-age modelling? Nat Hazards Earth Syst Sci doi: 10.5194/nhess-9-1679-2009.

[49]

Kameshwar S, Park H, Cox DT, Barbosa AR. Effect of disaster debris, floodwater pooling duration, and bridge damage on immediate post-tsunami connectivity. Int J Disaster Risk Reduct 2021;56:102119. doi: 10.1016/j.ijdrr.2021.102119.

[50]

Jongman B, et al. Comparative flood damage model assessment: towards a European approach. Nat Hazards Earth Syst Sci 2012;12(12):3733-52. doi: 10.5194/nhess-12-3733-2012.

[51]

Pitilakis K, Franchin P, Khazai B, Wenzel H. SYNER-G: systemic seismic vulner-ability and risk assessment of complex urban, utility, lifeline systems and criti-cal facilities: methodology and applications. Geotechnical, Geological and Earth-quake Engineering, vol. doi: doi: 101007/978-94-017-8835-9.

[52]

Sun W, Bocchini P, Davison BD. Model for estimating the impact of inter-dependencies on system recovery. J Infrastruct Syst 2020;26(3):04020031. doi: 10.1061/(ASCE)IS.1943-555X.0000569.

[53]

Evans B, Chen AS, Djordjevi ćS, Webber J, Gómez AG, Stevens J. Investigating the ef-fects of pluvial flooding and climate change on traffic flows in Barcelona and Bristol. Sustainability 2020;12(6) Art. no. 6. doi: 10.3390/su12062330.

[54]

Vamvakeridou-Lyroudia LS, et al. Assessing and visualising hazard impacts to en-hance the resilience of Critical Infrastructures to urban flooding. Sci Total Environ 2020;707:136078. doi: 10.1016/j.scitotenv.2019.136078.

[55]

Pregnolato M, Ford A, Wilkinson SM, Dawson RJ. The impact of flooding on road transport: a depth-disruption function. Transp Res Part Transp Environ 2017;55:67-81. doi: 10.1016/j.trd.2017.06.020.

[56]

Koks EE, et al. A global multi-hazard risk analysis of road and railway infrastructure assets. Nat Commun 2019;10(1) Art. no. 1. doi: 10.1038/s41467-019-10442-3.

[57]

Koks EE, van Marle MJE, Lemnitzer A. Brief communication: criti-cal infrastructure impacts of the 2021 mid-July western European flood event. Nat Hazards Earth Syst Sci 2022;22(12):3831-8. doi: 10.5194/nhess-22-3831-2022.

[58]

Murdock HJ, De Bruijn KM, Gersonius B. Assessment of critical infrastructure re-silience to flooding using a response curve approach. Sustainability 2018;10(10) Art. no. 10. doi: 10.3390/su10103470.

[59]

Lee EE II, Mitchell JE, Wallace WA. Restoration of services in interdependent infras-tructure systems: a network flows approach. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2007;37(6):1303-17. doi: 10.1109/TSMCC.2007.905859.

[60]

Federal Emergency Management Agency, ‘Hazus’. 2022. Accessed: May 17, 2023.[Online]. Available: https://www.fema.gov/flood-maps/products-tools/hazus.

[61]

Federal Emergency Management Agency Estimating losses from future earth-quakes panel report; 1989. Accessed: May 17, 2023. [Online]Available: https://www.fema.gov/sites/default/files/documents/fema176_estimating_losses_future_earthquakes_panel_report.pdf.

[62]

Almoghathawi Y, Barker K, Albert LA. Resilience-driven restoration model for interdependent infrastructure networks. Reliab Eng Syst Saf 2019;185:12-23. doi: 10.1016/j.ress.2018.12.006.

[63]

Davlasheridze M, et al. Economic impacts of storm surge and the cost-benefit analysis of a coastal spine as the surge mitigation strategy in Houston-Galveston area in the USA. Mitig Adapt Strateg Glob Change 2019;24(3):329-54. doi: 10.1007/s11027-018-9814-z.

[64]

Wild AJ, Wilson TM, Bebbington MS, Cole JW, Craig HM. Probabilistic vol-canic impact assessment and cost-benefit analysis on network infrastructure for secondary evacuation of farm livestock: a case study from the dairy in-dustry, Taranaki, New Zealand’. J Volcanol Geotherm Res 2019;387:106670. doi: 10.1016/j.jvolgeores.2019.106670.

[65]

Ryan PC, Stewart MG. Cost-benefit analysis of climate change adapta-tion for power pole networks. Clim Change Aug 2017;143(3):519-33. doi: 10.1007/s10584-017-2000-6.

[66]

Cimellaro GP, Solari D, Bruneau M. Physical infrastructure interdependency and regional resilience index after the 2011 Tohoku Earthquake in Japan. Earthq Eng Struct Dyn 2014;43(12):1763-84. doi: 10.1002/eqe.2422.

[67]

Briere C, et al. Multi-hazard risk assessment for the schools sector in Mozambique. Deltares 2018. Accessed: May 22, 2023. [Online]. Available: https://www.gfdrr.org/sites/default/files/publication/1230818-002-ZKS-0008-r-Multi-Hazard%20Risk%20Assessment%20for%20the%20Schools%20Sector%20in%20Mozambique%20final.pdf.

[68]

Voinov A, Bousquet F. Modelling with stakeholders. Environ Model Softw Nov 2010;25(11):1268-81. doi: 10.1016/j.envsoft.2010.03.007.

[69]

Verschuur J, Koks EE, Hall JW. Port disruptions due to natural disasters: insights into port and logistics resilience. Transp Res Part Transp Enviro. 2020;85:102393. doi: 10.1016/j.trd.2020.102393.

[70]

Schotten R, Bachmann D. Critical infrastructure network modelling for flood risk analyses: approach and proof of concept in Accra, Ghana. J Flood Risk Manag 2023. doi: 10.1111/jfr3.12913.

[71]

Mühlhofer E, Stalhandske Z, Schlumberger J, Bresch DN, Koks EE, Sarcinella M. Supporting robust and climate-sensitive adaptation strategies for infrastructure net-works: a multi-hazard case study on Mozambique’s healthcare sector. presented at the 14th International Conference on Applications of Statistics and Probability in Civil Engineering Dubling, Ireland; 2023. 13.07.

[72]

Arosio M, Martina MLV, Figueiredo R. The whole is greater than the sum of its parts: a holistic graph-based assessment approach for natural hazard risk of complex systems. Nat Hazards Earth Syst Sci Feb 2020;20(2):521-47. doi: 10.5194/nhess-20-521-2020.

[73]

(BBK) Federal Office of civil protection an disaster assistance. BBK; 2023. Defini-tion of CI Hazards -KRITIS-Gefahren’ https://www.bbk.bund.de/DE/Themen/Kritische-Infrastrukturen/KRITIS-Gefahrenlagen/kritis-gefahrenlagen_node.html(accessed May 30, 2023).

[74]

de Moel H, Jongman B, Kreibich H, Merz B, Penning-Rowsell E, Ward PJ. Flood risk assessments at different spatial scales. Mitig Adapt Strateg Glob Change Aug 2015;20(6):865-90. doi: 10.1007/s11027-015-9654-z.

[75]

Winter B, Schneeberger K, Huttenlau M, Stötter J. Sources of uncertainty in a probabilistic flood risk model. Nat Hazards 2018;91(2):431-46. doi: 10.1007/s11069-017-3135-5.

[76]

Tabandeh A, Sharma N, Gardoni P. Uncertainty propagation in risk and resilience analysis of hierarchical systems. Reliab Eng Syst Saf Mar 2022;219:108208. doi: 10.1016/j.ress.2021.108208.

[77]

De Kleermaeker S, Verkade JS. A decision support system for use of probability fore-casts.In: ISCRAM 2013 Proc. 10th Int. Conf. Inf. Syst. Crisis Response Manag. Baden-Baden Ger. 12-15 May 2013; 2023. 2013, Accessed: Jun. 01[Online]. Available: https://repository.tudelft.nl/islandora/object/uuid%3A3dc8f192-25fc-4b9c-a548-fd78eb2caca5.

[78]

Zorn C, Pant R, Thacker S, Shamseldin AY. Evaluating the magnitude and spa-tial extent of disruptions across interdependent national infrastructure networks. ASCE-ASME J Risk Uncert Engrg Sys Part B Mech Engrg 2020;6(020904). doi: 10.1115/1.4046327.

AI Summary AI Mindmap
PDF

967

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/