Understanding the development of bacterial colony: Physiology, new technology, and modeling

Jingwen Zhu , Pan Chu , Xiongfei Fu

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e95

PDF (985KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (4) : e95 DOI: 10.1002/qub2.95
REVIEW ARTICLE

Understanding the development of bacterial colony: Physiology, new technology, and modeling

Author information +
History +
PDF (985KB)

Abstract

Bacterial colonies, as dynamic ecosystems, display intricate behaviors and organizational structures that profoundly influence their survival and functionality. These communities engage in physiological and social interactions, resulting in remarkable spatial heterogeneity. Recent advancements in technology and modeling have significantly enhanced our comprehension of these phenomena, shedding light on the underlying mechanisms governing bacterial colony development. In this review, we explore the multifaceted aspects of bacterial colonies, emphasizing their physiological intricacies, innovative research tools, and predictive modeling approaches. By integrating diverse perspectives, we aim to deepen our understanding of these microbial communities and pave the way for novel applications in biotechnology, ecology, and medicine.

Keywords

bacterial colony / mathematical model / physiological interaction / quantitative technology

Cite this article

Download citation ▾
Jingwen Zhu, Pan Chu, Xiongfei Fu. Understanding the development of bacterial colony: Physiology, new technology, and modeling. Quant. Biol., 2025, 13(4): e95 DOI:10.1002/qub2.95

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ShapiroJA. Bacteria as multicellular organisms. Sci Am. 1988;258(6):82–9.

[2]

ShapiroJA. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol. 1998;52(1):81–104.

[3]

Ben-JacobE, CohenI, LevineH. Cooperative selforganization of microorganisms. Adv Phys. 2000;49(4): 395–554.

[4]

GriffinAS, WestSA, BucklingA. Cooperation and competition in pathogenic bacteria. Nature. 2004;430(7003):1024–7.

[5]

LiuW, CremerJ, HwaT, LiuC. An evolutionarily stable strategy to colonize spatially extended habitats. Nature. 2019;575(7784):664–8.

[6]

DrescherK, NadellC, StoneH, Wingreen N, BasslerB. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24(1):50–5.

[7]

BridierA, PiardJ, BriandetR, Bouchez T. Emergence of a synergistic diversity as a response to competition in Pseudomonas putida biofilms. Microb Ecol. 2020;80(1):47–59.

[8]

LiuW, Tokuyasu TA, FuX, LiuC. The spatial organization of microbial communities during range expansion. Curr Opin Microbiol. 2021;63:109–16.

[9]

ChoH, Jönsson H, CampbellK, MelkeP, Williams JW, JedynakB, et al. Self-organization in high-density bacterial colonies: efficient crowd control. PLoS Biol. 2007;5(11):e302.

[10]

FarrellF, Hallatschek O, MarenduzzoD, WaclawB. Mechanically driven growth of quasi-two-dimensional microbial colonies. Phys Rev Lett. 2013;111(16):168101.

[11]

FarrellFD, GralkaM, HallatschekO, WaclawB. Mechanical interactions in bacterial colonies and the surfing probability of beneficial mutations. J R Soc Interface. 2017;14(131): 20170073.

[12]

YouZ, PearceDJ, SenguptaA, Giomi L. Geometry and mechanics of microdomains in growing bacterial colonies. Phys Rev X. 2018;8(3):031065.

[13]

MaierB. How physical interactions shape bacterial biofilms. Annu Rev Biophys. 2021;50(1):401–17.

[14]

BerozF, YanJ, MeirY, Sabass B, StoneHA, BasslerBL, et al. Verticalization of bacterial biofilms. Nat Phys. 2018;14(9): 954–60.

[15]

GoldingI, Kozlovsky Y, CohenI, Ben-JacobE. Studies of bacterial branching growth using reaction-diffusion models for colonial development. Phys Stat Mech Appl. 1998;260(3–4): 510–54.

[16]

LuoN, WangS, LuJ, OuyangX, YouL. Collective colony growth is optimized by branching pattern formation in Pseudomonas aeruginosa. Mol Syst Biol. 2021;17(4):e10089.

[17]

LuoN, LuJ, ŞimşekE, SilverA, YaoY, OuyangX, et al. The collapse of cooperation during range expansion of Pseudomonas aeruginosa. Nat Microbiol. 2024;9(5):1220–30.

[18]

BasuS, Gerchman Y, CollinsCH, ArnoldFH, WeissR. A synthetic multicellular system for programmed pattern formation. Nature. 2005;434(7037):1130–4.

[19]

CuratoloA, ZhouN, ZhaoY, Liu C, DaerrA, TailleurJ, et al. Cooperative pattern formation in multi-component bacterial systems through reciprocal motility regulation. Nat Phys. 2020;16(11):1152–7.

[20]

PorterSL, Wadhams GH, ArmitageJP. Signal processing in complex chemotaxis pathways. Nat Rev Microbiol. 2011;9(3): 153–65.

[21]

BiS, Sourjik V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr Opin Microbiol. 2018;45:22–9.

[22]

CremerJ, HondaT, TangY, Wong-Ng J, VergassolaM, HwaT. Chemotaxis as a navigation strategy to boost range expansion. Nature. 2019;575(7784):658–63.

[23]

WadhwaN, BergHC. Bacterial motility: machinery and mechanisms. Nat Rev Microbiol. 2022;20(3):161–73.

[24]

AbisadoRG, Benomar S, KlausJR, DandekarAA, Chandler JR. Bacterial quorum sensing and microbial community interactions. mBio. 2018;9(3):10–1128.

[25]

KellerL, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol. 2006;4: 249–58.

[26]

MaedaS, ItoM, AndoT, Ishimoto Y, FujisawaY, TakahashiH, et al. Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett. 2006;255(1):115–20.

[27]

MichaelisC, Grohmann E. Horizontal gene transfer of antibiotic resistance genes in biofilms. Antibiotics. 2023;12(2):328.

[28]

TodaS, Brunger JM, LimWA. Synthetic development: learning to program multicellular self-organization. Curr Opin Struct Biol. 2019;14:41–9.

[29]

TodaS, McKeithan WL, HakkinenTJ, LopezP, KleinOD, LimWA. Engineering synthetic morphogen systems that can program multicellular patterning. Science. 2020;370(6514): 327–31.

[30]

ZarkeshI, Kazemi Ashtiani M, ShiriZ, AranS, BraunT, BaharvandH. Synthetic developmental biology: engineering approaches to guide multicellular organization. Stem Cell Rep. 2022;17(4):715–33.

[31]

StewartPS, Franklin MJ. Physiological heterogeneity in biofilms. Nat Rev Microbiol. 2008;6(3):199–210.

[32]

SpormannA. Physiology of microbes in biofilms. In: Bacterial biofilms;2008. p. 17–36.

[33]

SerraDO, HenggeR. Stress responses go three dimensional-the spatial order of physiological differentiation in bacterial macrocolony biofilms. Environ Microbiol. 2014;16(6): 1455–71.

[34]

FlemmingH-C, Wingender J, SzewzykU, SteinbergP, RiceSA, KjellebergS. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–75.

[35]

JoJ, Price-Whelan A, DietrichLE. Gradients and consequences of heterogeneity in biofilms. Nat Rev Microbiol. 2022;20(10):593–607.

[36]

NairHA, Periasamy S, YangL, KjellebergS, RiceSA. Real time, spatial, and temporal mapping of the distribution of c-di- GMP during biofilm development. J Biol Chem. 2017;292(2): 477–87.

[37]

KlauckG, SerraDO, PosslingA, Hengge R. Spatial organization of different sigma factor activities and c-di-GMP signalling within the three-dimensional landscape of a bacterial biofilm. Open Biol. 2018;8:180066.

[38]

VlamakisH, Aguilar C, LosickR, KolterR. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 2008;22(7):945–53.

[39]

BeloinC, GhigoJM. Finding gene-expression patterns in bacterial biofilms. Trends Microbiol. 2005;13(1):16–9.

[40]

KlumppS, ZhangZ, HwaT. Growth rate-dependent global effects on gene expression in bacteria. Cell. 2009;139(7): 1366–75.

[41]

KlumppS, HwaT. Bacterial growth: global effects on gene expression, growth feedback and proteome partition. Curr Opin Biotechnol. 2014;28:96–102.

[42]

ArabameriN, TsengBS. Methods in microbiology, 53. Elsevier;2023. p. 235–71.

[43]

ZhuJ, ChuP, FuX. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nat Chem Biol. 2023;19(9):1097–104.

[44]

YuanH, BaiY, LiX, FuX. Cross-regulation between proteome reallocation and metabolic flux redistribution governs bacterial growth transition kinetics. Metab Eng. 2024;82:60–8.

[45]

PrindleA, LiuJ, AsallyM, Ly S, Garcia-OjalvoJ, SüelGM. Ion channels enable electrical communication in bacterial communities. Nature. 2015;527(7576):59–63.

[46]

LiuJ, Prindle A, HumphriesJ, Gabalda-SagarraM, Asally M, LeeDD, et al. Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature. 2015;523(7562): 550–4.

[47]

XavierJB, KimW, FosterKR. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79(1):166–79.

[48]

VanDitmarschD, BoyleK, SakhtahH, Oyler J, NadellC, DézielÉ, et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Rep. 2013;4:697–708.

[49]

KollaranAM, JogeS, KotianHS, Badal D, PrakashD, MishraA, et al. Context-specific requirement of forty-four twocomponent loci in Pseudomonas aeruginosa swarming. iScience. 2019;13:305–17.

[50]

Díaz-PascualF, Lempp M, NoshoK, JeckelH, JoJK, NeuhausK, et al. Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. eLife. 2021;10: e70794.

[51]

FrittsRK, McCully AL, McKinlayJB. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol Mol Biol Rev. 2021;85(1):10–1128.

[52]

ColeJA, KohlerL, HedhliJ, Luthey-Schulten Z. Spatiallyresolved metabolic cooperativity within dense bacterial colonies. BMC Syst Biol. 2015;9:1–17.

[53]

WolfsbergE, LongCP, AntoniewiczMR. Metabolism in dense microbial colonies: 13C metabolic flux analysis of E. coli grown on agar identifies two distinct cell populations with acetate cross-feeding. Metab Eng. 2018;49:242–7.

[54]

KannanH, SunP, ÇağlarT, YaoP, TaylorBR, SahuK, et al. Spatiotemporal development of growth and death zones in expanding bacterial colonies driven by emergent nutrient dynamics.2023. Preprint at bioRxiv:2023. 2008. 2027.554977.

[55]

PandeS, MerkerH, BohlK, Reichelt M, SchusterS, de FigueiredoLF, et al. Fitness and stability of obligate crossfeeding interactions that emerge upon gene loss in bacteria. ISME J. 2014;8(5):953–62.

[56]

GoldschmidtF, CaduffL, JohnsonDR. Causes and consequences of pattern diversification in a spatially self-organizing microbial community. ISME J. 2021;15(8):2415–26.

[57]

GuéneauV, Charron R, CostacheV, BridierA, Briandet R. Methods in microbiology, 53. Elsevier;2023. p. 275ndash;307.

[58]

ShapiroJA. Scanning electron microscope study of Pseudomonas putida colonies. J Bacteriol. 1985;164(3):1171–81.

[59]

ShapiroJA, HsuC. Escherichia coli K-12 cell-cell interactions seen by time-lapse video. J Bacteriol. 1989;171(11):5963–74.

[60]

BridierA, Briandet R. Microbial biofilms: structural plasticity and emerging properties. Microorganisms. 2022;10(1):138.

[61]

HallatschekO, HersenP, RamanathanS, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104(50):19926–30.

[62]

Celik OzgenV, KongW, BlanchardAE, Liu F, LuT. Spatial interference scale as a determinant of microbial range expansion. Sci Adv. 2018;4(11):eaau0695.

[63]

SuPT, LiaoCT, RoanJR, Wang SH, ChiouA, SyuWJ. Bacterial colony from two-dimensional division to threedimensional development. PLoS One. 2012;7(11):e48098.

[64]

WarrenMR, SunH, YanY, CremerJ, HwaT. Spatiotemporal establishment of dense bacterial colonies growing on hard agar. eLife. 2019;8:e41093.

[65]

AhmadianS, Lindsey PJ, SmeetsHJM, van TienenFHJ, van Zandvoort MAMJ. Spinning disk confocal microscopy for optimized and quantified live imaging of 3D mitochondrial network. Int J Mol Sci. 2024;25(9):4819.

[66]

ChuP, ZhuJ, MaZ, FuX. Colony pattern development of a synthetic bistable switch.2024. Preprint at bioRxiv: 2024.2006.2017.599191.

[67]

QinB, FeiC, BridgesAA, Mashruwala AA, StoneHA, WingreenNS, et al. Cell position fates and collective fountain flow in bacterial biofilms revealed by light-sheet microscopy. Science. 2020;369(6499):71–7.

[68]

ZhangM, ZhangJ, WangY, Wang J, AchimovichAM, ActonST, et al. Non-invasive single-cell morphometry in living bacterial biofilms. Nat Commun. 2020;11(1):6151.

[69]

LawrenceJ, KorberDR, HoyleBD, Costerton JW, CaldwellDE. Optical sectioning of microbial biofilms. J Bacteriol. 1991;173(20):6558–67.

[70]

ZhangQ, LiJ, NijjerJ, Lu H, KothariM, AlertR, et al. Morphogenesis and cell ordering in confined bacterial biofilms. Proc Natl Acad Sci USA. 2021;118(31):e2107107118.

[71]

Martínez-CalvoA, Bhattacharjee T, BayRK, LuuHN, Hancock AM, WingreenNS, et al. Morphological instability and roughening of growing 3D bacterial colonies. Proc Natl Acad Sci USA. 2022;119(43):e2208019119.

[72]

RooneyLM, AmosWB, HoskissonPA, McConnell G. Intracolony channels in E. coli function as a nutrient uptake system. ISME J. 2020;14(10):2461–73.

[73]

HuangY, ChenW, ChungJ, Yin J, YoonJ. Recent progress in fluorescent probes for bacteria. Chem Soc Rev. 2021;50(13): 7725–44.

[74]

Remus-EmsermannMN, Lücker S, MüllerDB, PotthoffE, DaimsH, VorholtJA. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization. Environ Microbiol. 2014;16(7):2329–40.

[75]

DarD, DarN, CaiL, NewmanDK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373(6556):eabi4882.

[76]

CaoZ, ZuoW, WangL, Chen J, QuZ, JinF, et al. Spatial profiling of microbial communities by sequential FISH with error-robust encoding. Nat Commun. 2023;14(1):1477.

[77]

WangT, ShenP, HeY, ZhangY, LiuJ. Spatial transcriptome uncovers rich coordination of metabolism in E. coli K12 biofilm. Nat Chem Biol. 2023;19(8):940–50.

[78]

LagendijkEL, Validov S, LamersGE, De WeertS, Bloemberg GV. Genetic tools for tagging Gram-negative bacteria with mCherry for visualization in vitro and in natural habitats, biofilm and pathogenicity studies. FEMS Microbiol Lett. 2010;305(1):81–90.

[79]

NakanoA. Spinning-disk confocal microscopy-a cuttingedge tool for imaging of membrane traffic. Cell Struct Funct. 2002;27(5):349–55.

[80]

SchulzO, PieperC, CleverM, Pfaff J, RuhlandtA, KehlenbachRH, et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proc Natl Acad Sci USA. 2013;110(52):21000–5.

[81]

OreopoulosJ, BermanR, BrowneM. Spinning-disk confocal microscopy: present technology and future trends. Methods Cell Biol. 2014;123:153–75.

[82]

NijjerJ, ZhangQ, LuH, ZhangS, YanJ. Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nat Commun. 2021;12(1):6632.

[83]

JeckelH, íaz-Pascual F, SkinnerDJ, SongB, Jiménez-Siebert E, StrengerK, et al. Shared biophysical mechanisms determine early biofilm architecture development across different bacterial species. PLoS Biol. 2022;20(10):e3001846.

[84]

NijjerJ, LiC, KothariM, Henzel T, ZhangQ, TaiJSB, et al. Biofilms as self-shaping growing nematics. Nat Phys. 2023;19(12):1936–44.

[85]

ParthasarathyR. Monitoring microbial communities using light sheet fluorescence microscopy. Curr Opin Microbiol. 2018;43: 31–7.

[86]

StelzerEH, StroblF, ChangBJ, Preusser F, PreibischS, McDoleK, et al. Light sheet fluorescence microscopy. Nat Rev Methods Primers. 2021;1:73.

[87]

ZhangJ, WangY, DonarskiED, Toma TT, MilesMT, ActonST, et al. BCM3D 2.0: accurate segmentation of single bacterial cells in dense biofilms using computationally generated intermediate image representations. npj Biofilms Microbiomes. 2022;8(1):99.

[88]

NgoThiN, Naumann D. Investigating the heterogeneity of cell growth in microbial colonies by FTIR microspectroscopy. Anal Bioanal Chem. 2007;387(5):1769–77.

[89]

CheesemanS, Elbourne A, KariukiR, RamaraoAV, Zavabeti A, SyedN, et al. Broad-spectrum treatment of bacterial biofilms using magneto-responsive liquid metal particles. J Mater Chem B. 2020;8(47):10776–87.

[90]

CheesemanS, ShawZL, VongsvivutJ, Crawford RJ, DupontMF, BoyceKJ, et al. Analysis of pathogenic bacterial and yeast biofilms using the combination of synchrotron ATRFTIR microspectroscopy and chemometric approaches. Molecules. 2021;26(13):3890.

[91]

WatrousJD, PhelanVV, HsuCC, Moree WJ, DugganBM, AlexandrovT, et al. Microbial metabolic exchange in 3D. ISME J. 2013;7(4):770–80.

[92]

SiT, ZhangK, XuY, ZhaoH, SweedlerJV. Characterization of Bacillus subtilis colony biofilms via mass spectrometry and fluorescence imaging. J Proteome Res. 2016;15(6): 1955–62.

[93]

BrockmannEU, Potthoff A, TortorellaS, SoltwischJ, Dreisewerd K. Infrared MALDI mass spectrometry with laserinduced postionization for imaging of bacterial colonies. J Am Soc Mass Spectrom. 2021;32(4):1053–64.

[94]

BodelónG, Montes-García V, López-PuenteV, HillEH, Hamon C, Sanz-OrtizMN, et al. Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater. 2016;15(11):1203–11.

[95]

LiuXY, GuoS, RamojiA, Bocklitz T, RöschP, PoppJ, et al. Spatiotemporal organization of biofilm matrix revealed by confocal Raman mapping integrated with non-negative matrix factorization analysis. Anal Chem. 2019;92(1): 707–15.

[96]

WilliamsonKS, Richards LA, Perez-OsorioAC, PittsB, McInnerney K, StewartPS, et al. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol. 2012;194(8):2062–73.

[97]

Dal CoA, Van Vliet S, AckermannM. Emergent microscale gradients give rise to metabolic cross-feeding and antibiotic tolerance in clonal bacterial populations. Philos Trans R Soc B. 2019;374(1786):20190080.

[98]

NadezhdinE, MurphyN, DalchauN, Phillips A, LockeJCW. Stochastic pulsing of gene expression enables the generation of spatial patterns in Bacillus subtilis biofilms. Nat Commun. 2020;11(1):950.

[99]

HartmannR, JeckelH, JelliE, Singh PK, VaidyaS, BayerM, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6(2):151–6.

[100]

MaZ, ChuPM, SuY, YuY, WenH, FuX, et al. Applications of single-cell technology on bacterial analysis. Quant Biol. 2019;7(3):171–81.

[101]

KodakkatS, Ch’ng S, SultanaT, LeongMM, ShawZ, NisbetDR, et al. Methods in microbiology, 54. Elsevier;2024 p. 39–79.

[102]

SmithWP, DavitY, OsborneJM, Kim W, FosterKR, Pitt-FrancisJM. Cell morphology drives spatial patterning in microbial communities. Proc Natl Acad Sci USA. 2017;114(3):E280–6.

[103]

Ben-JacobE, GarikP. The formation of patterns in nonequilibrium growth. Nature. 1990;343(6258):523–30.

[104]

Ben-JacobE, Schochet O, TenenbaumA, CohenI, Czirók A, VicsekT. Generic modelling of cooperative growth patterns in bacterial colonies. Nature. 1994;368(6466):46–9.

[105]

KesslerDA, LevineH. Fluctuation-induced diffusive instabilities. Nature. 1998;394(6693):556–8.

[106]

MimuraM, Sakaguchi H, MatsushitaM. Reaction-diffusion modelling of bacterial colony patterns. Phys Stat Mech Appl. 2000;282(1-2):283–303.

[107]

LiuC, FuX, HuangJD. Synthetic biology: a new approach to study biological pattern formation. Quant Biol. 2013;1(4): 246–52.

[108]

HeC, Bayakhmetov S, HarrisD, KuangY, WangX. A predictive reaction-diffusion based model of E. coli colony growth control. IEEE Control Syst Lett. 2020;5(6):1952–7.

[109]

VolfsonD, Cookson S, HastyJ, TsimringLS. Biomechanical ordering of dense cell populations. Proc Natl Acad Sci USA. 2008;105(40):15346–51.

[110]

ShaoD, RappelW-J, LevineH. Computational model for cell morphodynamics. Phys Rev Lett. 2010;105(10):108104.

[111]

FeiC, MaoS, YanJ, AlertR, StoneHA, Bassler BL, et al. Nonuniform growth and surface friction determine bacterial biofilm morphology on soft substrates. Proc Natl Acad Sci USA. 2020;117(14):7622–32.

[112]

XiongL, CaoY, CooperR, Rappel WJ, HastyJ, TsimringL. Flower-like patterns in multi-species bacterial colonies. eLife. 2020;9:e48885.

[113]

KreftJ-U, BoothG, WimpennyJW. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology. 1998;144(12):3275–87.

[114]

WangCY, LiuP-L, BassingthwaighteJ. Off-lattice Eden-C cluster growth model. J Phys Math Gen. 1995;28(8):2141–7.

[115]

LiuC, FuX, LiuL, RenX, ChauCK, Li S, et al. Sequential establishment of stripe patterns in an expanding cell population. Science. 2011;334(6053):238–41.

[116]

GrimsonMJ, BarkerGC. Continuum model for the spatiotemporal growth of bacterial colonies. Phys Rev E. 1994;49(2):1680–4.

[117]

Dal CoA, van Vliet S, KivietDJ, SchlegelS, Ackermann M. Short-range interactions govern the dynamics and functions of microbial communities. Nat Ecol Evol. 2020;4(3):366–75.

[118]

BorerB, Ciccarese D, JohnsonD, OrD. Spatial organization in microbial range expansion emerges from trophic dependencies and successful lineages. Commun Biol. 2020;3(1):685.

RIGHTS & PERMISSIONS

2025 The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (985KB)

601

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/