Link node: A method to characterize the chain topology of intrinsically disordered proteins

Danqi Lang , Le Chen , Moxin Zhang , Haoyu Song , Jingyuan Li

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e96

PDF (1312KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e96 DOI: 10.1002/qub2.96
RESEARCH ARTICLE

Link node: A method to characterize the chain topology of intrinsically disordered proteins

Author information +
History +
PDF (1312KB)

Abstract

Intrinsically disordered proteins (IDP) are highly dynamic, and the effective characterization of IDP conformations is still a challenge. Here, we analyze the chain topology of IDPs and focus on the physical link of the IDP chain, that is, the entanglement between two segments along the IDP chain. The Gauss linking number of two segments throughout the IDP chain is systematically calculated to analyze the physical link. The crossing points of physical links are identified and denoted as link nodes. We notice that the residues involved in link nodes tend to have lower root mean square fluctuation (RMSF), that is, the entanglement of the IDP chain may affect its conformation fluctuation. Moreover, the evolution of the physical link is considerably slow with a timescale of hundreds of nanoseconds. The essential conformation evolution may be depicted on the basis of chain topology.

Keywords

chain topology / gauss linking number / intrinsically disordered protein / physical link

Cite this article

Download citation ▾
Danqi Lang, Le Chen, Moxin Zhang, Haoyu Song, Jingyuan Li. Link node: A method to characterize the chain topology of intrinsically disordered proteins. Quant. Biol., 2025, 13(3): e96 DOI:10.1002/qub2.96

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dyson HJ , Wright PE . Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 2005; 6 (3): 197- 208.

[2]

Bondos SE , Dunker AK , Uversky VN . On the roles of intrinsically disordered proteins and regions in cell communication and signaling. Cell Commun Signal. 2021; 19 (1): 88.

[3]

Bujnicki JM . Prediction of protein structures, functions, and interactions. John Wiley & Sons; 2008.

[4]

Uversky VN , Gillespie JR , Fink AL . Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins: Struct, Funct, Bioinf. 2000; 41 (3): 415- 27.

[5]

Dunker AK , Cortese MS , Romero P , Iakoucheva LM , Uversky VN . Flexible nets: the roles of intrinsic disorder in protein interaction networks. FEBS J. 2005; 272 (20): 5129- 48.

[6]

Kim PM , Sboner A , Xia Y , Gerstein M . The role of disorder in interaction networks: a structural analysis. Mol Syst Biol. 2008; 4 (1): 179.

[7]

Uversky VN . Unusual biophysics of intrinsically disordered proteins. Biochimica et Biophysica Acta (BBA) Proteins Proteomics. 2013; 1834 (5): 932- 51.

[8]

Lobanov MY , Bogatyreva N , Galzitskaya O . Radius of gyration as an indicator of protein structure compactness. Mol Biol. 2008; 42 (4): 623- 8.

[9]

Ahmed MC , Crehuet R , Lindorff-Larsen K . Computing, analyzing, and comparing the radius of gyration and hydrodynamic radius in conformational ensembles of intrinsically disordered proteins. Intrinsically Disordered Proteins; 2020.

[10]

Rudnick J , Gaspari G . The aspherity of random walks. J Phys Math Gen. 1986; 19 (4): L191- 3.

[11]

Arkın H , Janke W . Gyration tensor based analysis of the shapes of polymer chains in an attractive spherical cage. J Chem Phys. 2013; 138 (5): 054904.

[12]

Ozdilek BA , Thompson VF , Ahmed NS , White CI , Batey RT , Schwartz JC . Intrinsically disordered RGG/RG domains mediate degenerate specificity in RNA binding. Nucleic Acids Res. 2017; 45 (13): 7984- 96.

[13]

Elbaum-Garfinkle S , Kim Y , Szczepaniak K , Chen CCH , Eckmann CR , Myong S , et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci USA. 2015; 112 (23): 7189- 94.

[14]

Dabrowski-Tumanski P , Sulkowska JI . Topological knots and links in proteins. Proc Natl Acad Sci USA. 2017; 114 (13): 3415- 20.

[15]

Dabrowski-Tumanski P , Sulkowska JI . To tie or not to tie? That is the question. Polymers. 2017; 9 (9): 454.

[16]

Yan LZ , Dawson PE . Design and synthesis of a protein catenane. Angew Chem. 2001; 113 (19): 3737- 9.

[17]

Boutz DR , Cascio D , Whitelegge J , Perry LJ , Yeates TO . Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. J Mol Biol. 2007; 368 (5): 1332- 44.

[18]

Dabrowski-Tumanski P , Jarmolinska AI , Niemyska W , Rawdon EJ , Millett KC , Sulkowska JI . LinkProt: a database collecting information about biological links. Nucleic Acids Res. 2016: gkw976.

[19]

Mansfield ML . Are there knots in proteins? Nat Struct Biol. 1994; 1 (4): 213- 4.

[20]

Lua RC , Grosberg AY . Statistics of knots, geometry of conformations, and evolution of proteins. PLoS Comput Biol. 2006; 2 (5): e45.

[21]

Virnau P , Mirny LA , Kardar M . Intricate knots in proteins: function and evolution. PLoS Comput Biol. 2006; 2 (9): e122.

[22]

Yeates TO , Norcross TS , King NP . Knotted and topologically complex proteins as models for studying folding and stability. Curr Opin Chem Biol. 2007; 11 (6): 595- 603.

[23]

Jamroz M , Niemyska W , Rawdon EJ , Stasiak A , Millett KC , Sułkowski P , et al. KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res. 2015; 43 (D1): D306- 14.

[24]

Haglund E , Sulkowska JI , Noel JK , Lammert H , Onuchic JN , Jennings PA . Pierced lasso bundles are a new class of knot-like motifs. PLoS Comput Biol. 2014; 10 (6): e1003613.

[25]

Niemyska W , Dabrowski-Tumanski P , Kadlof M , Haglund E , Sułkowski P , Sulkowska JI , et al. Complex lasso: new entangled motifs in proteins. Sci Rep 2016; 2016; 6 (1): 36895.

[26]

Pawel DT , Wanda N , Pawel P , Sulkowska JI . LassoProt: server to analyze biopolymers with lassos. Nuclc Acids Research; 2016; (W1): gkw308.

[27]

Taylor WR , May AC , Brown NP , Aszódi A . Protein structure: geometry, topology and classification. Rep Prog Phys. 2001; 64 (4): 517- 90.

[28]

Caraglio M , Micheletti C , Orlandini E . Physical links: defining and detecting inter-chain entanglement. Sci Rep. 2017; 7 (1): 1- 10.

[29]

Staple DW , Butcher SE . Pseudoknots: RNA structures with diverse functions. PLoS Biol. 2005; 3 (6): e213.

[30]

Sun PD , Foster CE , Boyington JC . Overview of protein structural and functional folds. Current protocols in protein science. 2004; Chapter 17 (1).

[31]

Grønbæk C , Hamelryck T , Røgen P . GISA: using Gauss Integrals to identify rare conformations in protein structures. PeerJ. 2020; 8: e9159.

[32]

Banchoff T . Self linking numbers of space polygons. Indiana Univ Math J. 1976; 25 (12): 1171- 88.

[33]

Kusner RB , Sullivan JM . On distortion and thickness of knots, Topology and Geometry in Polymer science (Whittington, Sumners, and Lodge, eds.), Vol. 103. Springer; 1997.

[34]

Niemyska W , Millett K , Sulkowska J . GLN: a method to reveal unique properties of lasso type topology in proteins. Sci Rep. 2020; 10 (1): 15186.

[35]

Dabrowski-Tumanski P , Jarmolinska AI , Niemyska W , Rawdon EJ , Millett KC , Sulkowska JI . LinkProt: a database collecting information about biological links. Nucleic Acids Res. 2017; 45 (D1): D243- 9.

[36]

White JH . Self-linking and the Gauss integral in higher dimensions. American Journal of Mathematics. 1969; 91 (3): 693- 728.

[37]

Baiesi M , Orlandini E , Trovato A , Seno F . Linking in domain-swapped protein dimers. Sci Rep. 2016; 6 (1): 33872.

[38]

Das RK , Pappu RV . Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc Natl Acad Sci U S A. 2013; 110 (33): 13392- 7.

[39]

Dabrowski-Tumanski P , Rubach P , Niemyska W , Gren B , Sulkowska J . Topoly: Python package to analyze topology of polymers. Briefings Bioinf. 2020; 22 (3).

[40]

Zhang M , Xue B , Li Q , Shi R , Cao Y , Wang W , et al. Sequence tendency for the interaction between LowComplexity intrinsically disordered proteins. JACS Au. 2022; 3 (1): 93- 104.

[41]

Livingston C . Enhanced linking numbers. Am Math Mon. 2003; 110 (5): 361- 85.

[42]

Baiesi M , Orlandini E , Seno F , Trovato A . Exploring the correlation between the folding rates of proteins and the entanglement of their native states. J Phys Math Theor. 2017; 50 (50): 504001.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (1312KB)

437

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/