Modeling combination chemo-immunotherapy for heterogeneous tumors

Shaoqing Chen , Zheng Hu , Da Zhou

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e98

PDF (2433KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e98 DOI: 10.1002/qub2.98
RESEARCH ARTICLE

Modeling combination chemo-immunotherapy for heterogeneous tumors

Author information +
History +
PDF (2433KB)

Abstract

Hypermutable cancers create opportunities for the development of various immunotherapies, such as immune checkpoint blockade (ICB) therapy. However, emergent studies have revealed that many hypermutated tumors have poor prognosis due to heterogeneous tumor antigen landscapes, yet the underlying mechanisms remain poorly understood. To understand the mechanisms that govern the responses to therapies, we develop mathematical models to explore the impact of combining chemotherapy and ICB therapy on heterogeneous tumors. Our results uncover how chemotherapy reduces antigenic heterogeneity, creating improved immunological conditions within tumors, which, in turn, enhances the therapeutic effect when combined with ICB. Furthermore, our results show that the recovery of the immune system after chemotherapy is crucial for enhancing the response to chemo-ICB combination therapy.

Keywords

chemo-immunotherapy / immune checkpoint blockade / mathematical modeling / neoantigen heterogeneity / treatment strategy

Cite this article

Download citation ▾
Shaoqing Chen, Zheng Hu, Da Zhou. Modeling combination chemo-immunotherapy for heterogeneous tumors. Quant. Biol., 2025, 13(3): e98 DOI:10.1002/qub2.98

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Coulie PG , van den Eynde BJ , van der Bruggen P , Boon T . Tumour antigens recognized by T lymphocytes: at the core of cancer therapy. Nat Rev Cancer. 2014; 14 (2): 135- 46.

[2]

Xiao Y , Freeman GJ . The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov. 2015; 5 (1): 16- 8.

[3]

Łuksza M , Riaz N , Makarov V , Balachandran VP , Hellmann MD , Solovyov A , et al. A neoantigen fitness model predicts tumour response to checkpoint blockade therapy. Nature. 2017; 551 (7681): 517- 20.

[4]

Butner JD , Martin GV , Wang Z , Corradetti B , Ferrari M , Esnaola N , et al. Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. eLife. 2021; 10: e70130.

[5]

Auslander N , Zhang G , Lee JS , Frederick DT , Miao B , Moll T , et al. Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma. Nat Med. 2018; 24 (10): 1545- 9.

[6]

Aguadé-Gorgorió G , Solé R . Tumour neoantigen heterogeneity thresholds provide a time window for combination immunotherapy. J R Soc Interface. 2020; 17 (171): 20200736.

[7]

Wolf Y , Bartok O , Patkar S , Wolf Y , Bartok O , Patkar S , et al. UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell. 2019; 179 (1): 219- 35.

[8]

Marusyk A , Almendro V , Polyak K . Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012; 12 (5): 323- 34.

[9]

Schreiber H , Wu TH , Nachman J , Kast WM . Immunodominance and tumor escape. Semin Cancer Biol. 2002; 12 (1): 25- 31.

[10]

Gejman RS , Chang AY , Jones HF , DiKun K , Hakimi AA , Schietinger A , et al. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife. 2018; 7: e41090.

[11]

Hanahan D , Weinberg RA . Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646- 74.

[12]

Le DT , Durham JN , Smith KN , Wang H , Bartlett BR , Aulakh LK , et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017; 357 (6349): 409- 13.

[13]

Alsaab HO , Sau S , Alzhrani R , Tatiparti K , Bhise K , Kashaw SK , et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017; 8: 561.

[14]

Mandal R , Samstein RM , Lee KW , Havel JJ , Wang H , Krishna C , et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 therapy response. Science. 2019; 364 (6439): 485- 91.

[15]

Zapata L , Caravagna G , Williams MJ , Lakatos E , AbdulJabbar K , Werner B , et al. Immune selection determines tumor antigenicity and influences response to checkpoint inhibitors. Nat Genet. 2023; 55 (3): 451- 60.

[16]

Mumenthaler SM , Foo J , Leder K , Choi NC , Agus DB , Pao W , et al. Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer. Mol Pharm. 2011; 8 (6): 2069- 79.

[17]

Kessler DA , Austin RH , Levine H . Resistance to chemotherapy: patient variability and cellular heterogeneity. Cancer Res. 2014; 74 (17): 4663- 70.

[18]

Heinhuis KM , Ros W , Kok M , Steeghs N , Beijnen JH , Schellens JHM . Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol. 2019; 30 (2): 219- 35.

[19]

Liu Z , Liu J , Li Z . Chemoimmunotherapy in advanced esophageal squamous cell carcinoma: optimizing chemotherapy regimens for immunotherapy combination. Signal Transduct Targeted Ther. 2022; 7 (1): 233.

[20]

Dafni U , Tsourti Z , Vervita K , Peters S . Immune checkpoint inhibitors, alone or in combination with chemotherapy, as first-line treatment for advanced non-small cell lung cancer. A systematic review and network meta-analysis. Lung Cancer. 2019. 134: 127- 40.

[21]

Machiels JPH , Reilly RT , Emens LA , Ercolini AM , Lei RY , Weintraub D , et al. Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res. 2001; 61 (9): 3689- 97.

[22]

Sakai H , Kokura S , Ishikawa T , Tsuchiya R , Okajima M , Matsuyama T , et al. Effects of anticancer agents on cell viability, proliferative activity and cytokine production of peripheral blood mononuclear cells. J Clin Biochem Nutr. 2012; 52 (1): 64- 71.

[23]

Pol J , Vacchelli E , Aranda F , Castoldi F , Eggermont A , Cremer I , et al. Trial Watch: immunogenic cell death inducers for anticancer chemotherapy. OncoImmunology. 2015; 4 (4): e1008866.

[24]

Lai X , Stiff A , Duggan M , Wesolowski R , Carson IIIWE , Friedman A . Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc Natl Acad Sci USA. 2018; 115 (21): 5534- 9.

[25]

Lai X , Friedman A . Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model. PLoS One. 2017; 12 (5): e0178479.

[26]

Zhang H , Lei J . Optimal treatment strategy of cancers with intratumor heterogeneity. Math Biosci Eng. 2022; 19 (12): 13337- 73.

[27]

Ma S , Lei J , Lai X . Modeling tumour heterogeneity of PD-L1 expression in tumour progression and adaptive therapy. Math Biosci Eng. 2023; 86 (3): 38.

[28]

Deboever N , Zhang J . Neoadjuvant chemo-immunotherapy for lung cancer: how much is too much? Transl Lung Cancer Res. 2022; 11 (12): 2360- 3.

[29]

Gong K , Gong ZJ , Lu PX , Ni XL , Shen S , Liu H , et al. PLAC8 overexpression correlates with PD-L1 upregulation and acquired resistance to chemotherapies in gallbladder carcinoma. Biochem Bioph Res Co. 2019; 516 (3): 983- 90.

[30]

Jiao Y , Liu M , Luo N , Guo H , Li J . Successful treatment of advanced pulmonary sarcomatoid carcinoma with the PD-1 inhibitor toripalimab: a case report. Oral Oncol. 2021; 112: 104992.

[31]

Herbst RS , Soria JC , Kowanetz M , Fine GD , Hamid O , Gordon MS , et al. Predictive correlates of response to the antiPD-L1 antibody MPDL3280A in cancer patients. Nature. 2014; 515 (7528): 563- 7.

[32]

Liu YT , Sun ZJ . Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021; 11 (11): 5365- 86.

[33]

Eladdadi A , Kim P , Mallet D . Mathematical models of tumor-immune system dynamics. New York: Springer; 2014. p. 21- 108.

[34]

Lakatos E , Williams MJ , Schenck RO , Cross WC , Househam J , Zapata L , et al. Evolutionary dynamics of neoantigens in growing tumors. Nat Genet. 2020; 52 (10): 1057- 66.

[35]

Chen S , Xie D , Wang J , Hu Z , Zhou D . Frequency-dependent selection of neoantigens fosters tumor immune escape and predicts immunotherapy response. Commun Biol. 2024; 7 (1): 770.

[36]

Huang W , Hauert C , Traulsen A . Stochastic game dynamics under demographic fluctuations. Proc Natl Acad Sci USA. 2015; 7112 (29): 9064- 9.

[37]

Baker NE . Emerging mechanisms of cell competition. Nat Rev Genet. 2020; 21 (11): 683- 97.

[38]

Perestyuk N , Samoilenko AM . Impulsive differential equations. World Scientific. 1995.

[39]

Goodman LS . Goodman and Gilman’s the pharmacological basis of therapeutics. Am J Pharmaceut Educ. 2002; 66 (1): 95.

[40]

Mitchison TJ . The proliferation rate paradox in antimitotic chemotherapy. Mol Biol Cell. 2012; 23 (1): 1- 6.

[41]

Gardner SN . A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and-nonspecific drugs. Cancer Res. 2000; 60 (5): 1417- 25.

[42]

Russo M , Pompei S , Sogari A , Corigliano M , Crisafulli G , Puliafito A , et al. A modified fluctuation-test framework characterizes the population dynamics and mutation rate of colorectal cancer persister cells. Nat Genet. 2022; 54 (7): 976- 84.

[43]

Ghiringhelli F , Apetoh L . The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expet Rev Clin Immunol. 2014; 10 (1): 19- 30.

[44]

Luster MI , Blank JA , Dean JH . Molecular and cellular basis of chemically induced immunotoxicity. Annu Rev Pharmacol Toxicol. 1987; 27 (1): 23- 49.

[45]

Calabresi P . Basic principles and clinical management of cancer. New York: McGraw-Hill; 1993.

[46]

Perry MC . The chemotherapy source book. 4th ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

[47]

Principe N , Aston WJ , Hope DE , Tilsed CM , Fisher SA , Boon L , et al. Comprehensive testing of chemotherapy and immune checkpoint blockade in preclinical cancer models identifies additive combinations. Front Immunol. 2022; 13: 872295.

[48]

Ng HY , Li J , Tao L , Lam AKY , Chan KW , Ko JMY , et al. Chemotherapeutic treatments increase PD-L1 expression in esophageal squamous cell carcinoma through EGFR/ERK activation. Transl Oncol. 2018; 11 (6): 1323- 33.

[49]

Reuben A , Spencer CN , Prieto PA , Gopalakrishnan V , Reddy SM , Miller JP , et al. Genomic and immune heterogeneity are associated with differential responses to therapy in melanoma. NPJ Genom Med. 2017; 2 (1): 10.

[50]

Dunn GP , Bruce AT , Ikeda H , Old LJ , Schreiber RD . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002; 3 (11): 991- 8.

[51]

Woo SR , Turnis ME , Goldberg MV , Bankoti J , Selby M , Nirschl CJ , et al. Immune inhibitory molecules LAG-3 and PD -1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012; 72 (4): 917- 27.

[52]

Beatty GL , Gladney WL . Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015; 21 (4): 687- 92.

[53]

Gong X , Karchin R . Clustering by antigen-presenting genes reveals immune landscapes and predicts response to checkpoint immunotherapy. Sci Rep. 2023; 13 (1): 950.

[54]

Bonnet D , Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997; 3 (7): 730- 7.

[55]

Perez-Losada J , Balmain A . Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003; 3 (6): 434- 43.

[56]

O'Brien CA , Kreso A , Dick JE . Cancer stem cells in solid tumors: an overview. Semin Radiat Oncol. 2009; 19 (2): 71- 7.

[57]

Tang S , Li S , Tang B , Wang X , Xiao Y , Cheke RA . Hormetic and synergistic effects of cancer treatments revealed by modelling combinations of radio-or chemotherapy with immunotherapy. BMC Cancer. 2023; 123 (1): 1040.

[58]

Haeno H , Gonen M , Davis MB , Herman JM , Iacobuzio-Donahue CA , Michor F . Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell. 2012; 148 (1): 362- 75.

[59]

Michor F , Beal K . Improving cancer treatment via mathematical modeling: surmounting the challenges is worth the effort. Cell. 2015; 163 (5): 1059- 63.

[60]

Ogungbenro K , Patel A , Duncombe R , Nuttall R , Clark J , Lorigan P . Dose rationalization of pembrolizumab and nivolumab using pharmacokinetic modeling and simulation and cost analysis. Clin Pharmacol Ther. 2017; 103 (4): 582- 90.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2433KB)

434

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/