Action functional as an early warning indicator in the space of probability measures via Schrödinger bridge

Peng Zhang , Ting Gao , Jin Guo , Jinqiao Duan

Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e86

PDF (2983KB)
Quant. Biol. ›› 2025, Vol. 13 ›› Issue (3) : e86 DOI: 10.1002/qub2.86
RESEARCH ARTICLE

Action functional as an early warning indicator in the space of probability measures via Schrödinger bridge

Author information +
History +
PDF (2983KB)

Abstract

Critical transitions and tipping phenomena between two meta-stable states in stochastic dynamical systems are a scientific issue. In this work, we expand the methodology of identifying the most probable transition pathway between two meta-stable states with Onsager-Machlup action functional, to investigate the evolutionary transition dynamics between two meta-stable invariant sets with Schrödinger bridge. In contrast to existing methodologies such as statistical analysis, bifurcation theory, information theory, statistical physics, topology, and graph theory for early warning indicators, we introduce a novel framework on Early Warning Signals (EWS) within the realm of probability measures that align with the entropy production rate. To validate our framework, we apply it to the Morris-Lecar model and investigate the transition dynamics between a meta-stable state and a stable invariant set (the limit cycle or homoclinic orbit) under various conditions. Additionally, we analyze real Alzheimer’s data from the Alzheimer’s Disease Neuroimaging Initiative database to explore EWS indicating the transition from healthy to pre-AD states. This framework not only expands the transition pathway to encompass measures between two specified densities on invariant sets, but also demonstrates the potential of our early warning indicators for complex diseases.

Keywords

action functional / Alzheimer’s disease / early warning indicator / Schrödinger bridge / transition dynamics

Cite this article

Download citation ▾
Peng Zhang, Ting Gao, Jin Guo, Jinqiao Duan. Action functional as an early warning indicator in the space of probability measures via Schrödinger bridge. Quant. Biol., 2025, 13(3): e86 DOI:10.1002/qub2.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Duan J . An introduction to stochastic dynamics. Cambridge University Press. 2015.

[2]

Gao T , Duan J . Stochastic dynamics and data science. Stochast Dynam. 2023; 23 (08): 2340002.

[3]

Wei W , Gao T , Chen X , Duan J . An optimal control method to compute the most likely transition path for stochastic dynamical systems with jumps. Chaos: Interdiscipl J Nonlinear Sci. 2022; 32 (5).

[4]

Chen J , Gao T , Li Y , Duan J . Detecting the most probable high dimensional transition pathway based on optimal control theory. 2023. Preprint at arXiv:2303.00385.

[5]

Guo J , Gao T , Zhang P , Han J , Duan J . Deep reinforcement learning in finite-horizon to explore the most probable transition pathway. Phys Nonlinear Phenom. 2024; 458: 133955.

[6]

Huang Y , Chao Y , Wei W , Duan J . Estimating the most probable transition time for stochastic dynamical systems. Nonlinearity. 2021; 34 (7): 4543- 69.

[7]

Schrödinger E . Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique. Annales de l'institut Henri Poincaré. 1932: 269- 310.

[8]

Sanov IN . On the probability of large deviations of random variables. Sel Transl Math Stat Probab. 1961; 1: 213- 44.

[9]

Dembo A , Large deviations techniques and applications, Springer 2019.

[10]

Carlier G , Duval V , Peyré G , Schmitzer B . Convergence of entropic schemes for optimal transport and gradient flows. SIAM J Math Anal. 2017; 49 (2): 1385- 418.

[11]

Marino SD , Gerolin A . An optimal transport approach for the Schrödinger Bridge problem and convergence of Sinkhorn algorithm. J Sci Comput. 2020; 85 (2): 27.

[12]

Léonard C . From the schrödinger problem to the monge-kantorovich problem. J Funct Anal. 2012; 262 (4): 1879- 920.

[13]

Léonard C , A survey of the schr/" odinger problem and some of its connections with optimal transport. 2013. Preprint at arXiv: 1308.0215(2013).

[14]

Mikami T , Thieullen M . Optimal transportation problem by stochastic optimal control. SIAM J Control Optim. 2008; 47 (3): 1127- 39.

[15]

Benamou J-D , Brenier Y . A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer Math. 2000; 84 (3): 375- 93.

[16]

Angenent S , Haker S , Tannenbaum A . Minimizing flows for the Monge--Kantorovich problem. SIAM J Math Anal. 2003; 35 (1): 61- 97.

[17]

Gushchin N , Kolesov A , Mokrov P , Karpikova P , Spiridonov A , Burnaev E , et al. Building the bridge of Schrödinger: a continuous entropic optimal transport benchmark. Adv Neural Inf Process Syst. 2023; 36: 18932- 63.

[18]

Pavon M , Trigila G , Tabak EG . The data-driven schrödinger bridge. Commun Pure Appl Math. 2021; 74 (7): 1545- 73.

[19]

Bernton E , Heng J , Doucet A , Jacob PE . Schrödinger bridge samplers. 2019. Preprint at arXiv:1912.13170.

[20]

Deming WE , Stephan FF . On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann Math Stat. 1940; 11 (4): 427- 44.

[21]

Fortet R . Résolution d'un système d'équations de M. Schrödinger. J Math Pure Appl. 1940; 19 (1-4): 83- 105.

[22]

Sinkhorn R . A relationship between arbitrary positive matrices and doubly stochastic matrices. Ann Math Stat. 1964; 35 (2): 876- 9.

[23]

Arjovsky M , Chintala S , Bottou L . Wasserstein generative adversarial networks. International conference on machine learning. PMLR; 2017. p. 214- 23.

[24]

Neyshabur B , Sedghi H , Zhang C . What is being transferred in transfer learning? Adv Neural Inf Process Syst. 2020; 33: 512- 23.

[25]

Schiebinger G , Shu J , Tabaka M , Cleary B , Subramanian V , Solomon A , et al. Optimal-transport analysis of single-cell gene expression identifies developmental trajectories in reprogramming. Cell. 2019; 176 (4): 928- 943.e22.

[26]

Wang G , Jiao Y , Xu Q , Wang Y , Yang C . Deep generative learning via Schrödinger bridge, International conference on machine learning. PMLR; 2021. p. 10794- 804.

[27]

De Bortoli V , Thornton J , Heng J , Doucet A . Diffusion Schrödinger Bridge with applications to score-based generative modeling. Adv Neural Inf Process Syst. 2021; 34: 17695- 709.

[28]

Chen Z , He G , Zheng K , Tan X , Zhu J . Schrodinger bridges beat diffusion models on text-to-speech synthesis. 2020. Preprint at arXiv:2312.03491.

[29]

Chen T , Liu G-H , Theodorou EA . Likelihood training of schr\" odinger bridge using forward-backward sdes theory. 2020. Preprint at arXiv:2110.11291.

[30]

Tylianakis JM , Coux C . Tipping points in ecological networks. Trends Plant Sci. 2014; 19 (5): 281- 3.

[31]

Ashwin P , Wieczorek S , Vitolo R , Cox P . Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system. Phil Trans Math Phys Eng Sci. 2012; 370 (1962): 1166- 84.

[32]

Kerr JT , Pindar A , Galpern P , Packer L , Potts SG , Roberts SM , et al. Climate change impacts on bumblebees converge across continents. Science. 2015; 349 (6244): 177- 80.

[33]

Gualdi S , Tarzia M , Zamponi F , Bouchaud JP . Tipping points in macroeconomic agent-based models. J Econ Dynam Control. 2015; 50: 29- 61.

[34]

Dakos V , Bascompte J . Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc Natl Acad Sci USA. 2014; 111 (49): 17546- 51.

[35]

Dai L , Vorselen D , Korolev KS , Gore J . Generic indicators for loss of resilience before a tipping point leading to population collapse. Science. 2012; 336 (6085): 1175- 7.

[36]

Gladwell M . The tipping point: how little things can make a big difference. Little. Brown 2006.

[37]

Scheffer M , Bascompte J , Brock WA , Brovkin V , Carpenter SR , Dakos V , et al. Early-warning signals for critical transitions. Nature. 2009; 461 (7260): 53- 9.

[38]

Simons M , Levin J , Dichgans M . Tipping points in neurodegeneration. Neuron. 2023; 111 (19): 2954- 68.

[39]

Jagust W . Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci. 2018; 19 (11): 687- 700.

[40]

Ridha BH , Barnes J , Bartlett JW , Godbolt A , Pepple T , Rossor MN , et al. Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study. Lancet Neurol. 2006; 5 (10): 828- 34.

[41]

Kinnunen KM , Cash DM , Poole T , Frost C , Benzinger TL , Ahsan RL , et al. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: a serial magnetic resonance imaging study. Alzheimer's Dementia. 2018; 14 (1): 43- 53.

[42]

Folke C , Carpenter S , Walker B , Scheffer M , Elmqvist T , Gunderson L , et al. Regime shifts, resilience, and biodiversity in ecosystem management. Annu Rev Ecol Evol Syst. 2004; 35 (1): 557- 81.

[43]

Scheffer M , Carpenter S , Foley JA , Folke C , Walker B . Catastrophic shifts in ecosystems. Nature. 2001; 413 (6856): 591- 6.

[44]

Maturana M , Meisel C , Dell K , Karoly P , D’Souza W , Grayden D , et al. Critical slowing down as a biomarker for seizure susceptibility. Nat Commun. 2020; 11 (1): 2172.

[45]

Boers N . Early-warning signals for Dansgaard-Oeschger events in a high-resolution ice core record. Nat Commun. 2018; 9 (1): 2556.

[46]

Wright DB , Herrington JA . Problematic standard errors and confidence intervals for skewness and kurtosis. Behav Res Methods. 2011; 43 (1): 8- 17.

[47]

Boerlijst MC , Oudman T , de Roos AM . Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models. PLoS One. 2013; 8 (4): e62033.

[48]

Boettiger C , Ross N , Hastings A . Early warning signals: the charted and uncharted territories. Theor Ecol. 2013; 6 (3): 255- 64.

[49]

Streeter R , Dugmore AJ . Anticipating land surface change. Proc Natl Acad Sci USA. 2013; 110 (15): 5779- 84.

[50]

Yang X , Wang Z-H , Wang C . Critical transitions in the hydrological system: early-warning signals and network analysis. Hydrol Earth Syst Sci. 2022; 26 (7): 1845- 56.

[51]

Van Der Mheen M , Dijkstra HA , Gozolchiani A , Den Toom M , Feng Q , Kurths J , et al. Interaction network based early warning indicators for the Atlantic MOC collapse. Geophys Res Lett. 2013; 40 (11): 2714- 9.

[52]

Godavarthi V , Unni V , Gopalakrishnan E , Sujith R . Recurrence networks to study dynamical transitions in a turbulent combustor. Chaos: Interdiscipl J Nonlinear Sci. 2017; 27 (6).

[53]

Liu R , Zhong J , Hong R , Chen E , Aihara K , Chen P , et al. Predicting local COVID-19 outbreaks and infectious disease epidemics based on landscape network entropy. Sci Bull. 2021; 66 (22): 2265- 70.

[54]

Zhong J , Han C , Wang Y , Chen P , Liu R . Identifying the critical state of complex biological systems by the directed-network rank score method. Bioinformatics. 2022; 38 (24): 5398- 405.

[55]

Tong Y , Hong R , Zhang Z , Aihara K , Chen P , Liu R , et al. Earthquake alerting based on spatial geodetic data by spatiotemporal information transformation learning. Proc Natl Acad Sci USA. 2023; 120 (37): e2302275120.

[56]

Chen P , Liu R , Aihara K , Chen L . Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation. Nat Commun. 2020; 11 (1): 4568.

[57]

Morris C , Lecar H . Voltage oscillations in the barnacle giant muscle fiber. Biophys J. 1981; 35 (1): 193- 213.

[58]

Masquelier E , Taxon E , Liang S-P , Al Sabeh Y , Sepunaru L , Gordon MJ , et al. A new electrochemical method that mimics phosphorylation of the core tau peptide K18 enables kinetic and structural analysis of intermediates and assembly. J Biol Chem. 2023; 299 (3): 103011.

[59]

Kingma DP , Welling M . Auto-encoding variational bayes. 2013. Preprint at arXiv:1312.6114.

[60]

Van der Maaten L , Hinton G . Visualizing data using t-SNE. J Mach Learn Res. 2008; 9 (11).

[61]

Brenier Y . Polar decomposition and increasing rearrangement of vector-fields. Comptes Rendus De L Academie Des Sciences Serie I-Mathematique. 1987; 305 (19): 805- 8.

[62]

Brenier Y . Polar factorization and monotone rearrangement of vector-valued functions. Commun Pure Appl Math. 1991; 44 (4): 375- 417.

[63]

An D , Guo Y , Lei N , Luo Z , Yau S-T , Gu X . AE-OT: a new generative model based on extended semi-discrete optimal transport. ICLR. 2019; 2020.

[64]

Lei N , Guo Y , An D , Qi X , Luo Z , Yau S-T , et al. Mode collapse and regularity of optimal transportation maps. 2019. Preprint at arXiv:1902.02934.

[65]

Nichol AQ , Dhariwal P . Improved denoising diffusion probabilistic models, International conference on machine learning. PMLR. 2021. p. 8162- 71.

[66]

Albergo MS , Boffi NM , Vanden-Eijnden E . Stochastic interpolants: a unifying framework for flows and diffusions; 2023. arXiv preprint arXiv:2303.08797.

[67]

Chen Y , Georgiou TT , Pavon M . Stochastic control liaisons: Richard sinkhorn meets gaspard monge on a schrodinger bridge. SIAM Rev. 2021; 63 (2): 249- 313.

[68]

Chen Y , Georgiou TT , Pavon M . On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint. J Optim Theor Appl. 2016; 169 (2): 671- 91.

[69]

Léonard C . Stochastic derivatives and generalized h-transforms of Markov processes; 2011. Preprint at arXiv:1102.3172.

[70]

Exarchos I , Theodorou EA . Stochastic optimal control via forward and backward stochastic differential equations and importance sampling. Automatica. 2018; 87: 159- 65.

[71]

Huang Y , Huang Q , Duan J . The most probable transition paths of stochastic dynamical systems: a sufficient and necessary characterisation. Nonlinearity. 2023; 37 (1): 015010.

[72]

Doob JL . Conditional Brownian motion and the boundary limits of harmonic functions. Bull Soc Math Fr. 1957; 85: 431- 58.

[73]

Feng L , Gao T , Xiao W , Duan J . Early warning indicators via latent stochastic dynamical systems. Chaos: Interdiscipl J Nonlinear Sci. 2024; 34 (3).

[74]

Zhang P , Gao T , Guo J , Duan J , Nikolenko S . Early warning prediction with automatic labeling in epilepsy patients; 2023. arXiv:2310.06059.

[75]

Hirota M , Holmgren M , Van Nes EH , Scheffer M . Global resilience of tropical forest and savanna to critical transitions. Science. 2011; 334 (6053): 232- 5.

[76]

Wang R , Dearing JA , Langdon PG , Zhang E , Yang X , Dakos V , et al. Flickering gives early warning signals of a critical transition to a eutrophic lake state. Nature. 2012; 492 (7429): 419- 22.

[77]

Quail T , Shrier A , Glass L . Predicting the onset of period-doubling bifurcations in noisy cardiac systems. Proc Natl Acad Sci USA. 2015; 112 (30): 9358- 63.

[78]

Lenton TM , Held H , Kriegler E , Hall JW , Lucht W , Rahmstorf S , et al. Tipping elements in the Earth's climate system. Proc Natl Acad Sci USA. 2008; 105 (6): 1786- 93.

[79]

Gentil I , Léonard C , Ripani L . Dynamical aspects of the generalized Schrödinger problem via Otto calculus-A heuristic point of view. Rev Matemática Iberoam. 2020; 36 (4): 1071- 112.

RIGHTS & PERMISSIONS

The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2983KB)

570

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/