On electrostatic interactions of adenosine triphosphate–insulin‐degrading enzyme revealed by quantum mechanics/molecular mechanics and molecular dynamics

Sarawoot Somin , Don Kulasiri , Sandhya Samarasinghe

Quant. Biol. ›› 2024, Vol. 12 ›› Issue (4) : 414 -432.

PDF (3684KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (4) : 414 -432. DOI: 10.1002/qub2.61
RESEARCH ARTICLE

On electrostatic interactions of adenosine triphosphate–insulin‐degrading enzyme revealed by quantum mechanics/molecular mechanics and molecular dynamics

Author information +
History +
PDF (3684KB)

Abstract

The insulin‐degrading enzyme (IDE) plays a significant role in the degradation of the amyloid beta (Aβ), a peptide found in the brain regions of the patients with early Alzheimer’s disease. Adenosine triphosphate (ATP) allosterically regulates the Aβ‐degrading activity of IDE. The present study investigates the electrostatic interactions between ATP‐IDE at the allosteric site of IDE, including thermostabilities/flexibilities of IDE residues, which have not yet been explored systematically. This study applies the quantum mechanics/molecular mechanics (QM/MM) to the proposed computational model for exploring electrostatic interactions between ATP and IDE. Molecular dynamic (MD) simulations are performed at different temperatures for identifying flexible and thermostable residues of IDE. The proposed computational model predicts QM/MM energy‐minimised structures providing the IDE residues (Lys530 and Asp385) with high binding affinities. Considering root mean square fluctuation values during the MD simulations at 300.00 K including heat‐shock temperatures (321.15 K and 315.15 K) indicates that Lys530 and Asp385 are also the thermostable residues of IDE, whereas Ser576 and Lys858 have high flexibilities with compromised thermostabilities. The present study sheds light on the phenomenon of biological recognition and interactions at the ATP‐binding domain, which may have important implications for pharmacological drug design. The proposed computational model may facilitate the development of allosteric IDE activators/inhibitors, which mimic ATP interactions.

Keywords

electrostatic interactions / molecular dynamic simulation / QM/MM calculation method / thermostability/flexibility

Cite this article

Download citation ▾
Sarawoot Somin, Don Kulasiri, Sandhya Samarasinghe. On electrostatic interactions of adenosine triphosphate–insulin‐degrading enzyme revealed by quantum mechanics/molecular mechanics and molecular dynamics. Quant. Biol., 2024, 12(4): 414-432 DOI:10.1002/qub2.61

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Harvey R, Skelton-Robinson M, Rossor M. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatr. 2003; 74 (9): 1206- 9.

[2]

Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol. 2011; 70 (6): 871- 80.

[3]

Pinho CM, Teixeira PF, Glaser E. Mitochondrial import and degradation of amyloid-β peptide. Biochim Biophys Acta. 2014; 1837: 1069- 74.

[4]

Bates KA, Verdile G, Li QX, Ames D, Hudson P, Masters CL, et al. Clearance mechanisms of Alzheimer's amyloid-beta peptide: implications for therapeutic design and diagnostic tests. Mol Psychiatr. 2009; 14 (5): 469- 86.

[5]

Farris W, Mansourian S, Chang Y, Lindsley L, Eckman EA, Frosch MP, et al. Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci USA. 2003; 100: 4162- 7.

[6]

Shen Y, Joachimiak A, Rich Rosner M, Tang WJ. Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism. Nature. 2006; 443 (7113): 870- 4.

[7]

Durham TB, Toth JL, Klimkowski VJ, Cao JX, Siesky AM, Alexander-Chacko J, et al. Dual exosite-binding inhibitors of insulin-degrading enzyme challenge its role as the primary mediator of insulin clearance in vivo. J Biol Chem. 2015; 290 (33): 20044- 59.

[8]

McCord , LA , Liang , WG , Dowdell , E , Kalas , V , Hoey , RJ , Koide , A , et al. Conformational states and recognition of amyloidogenic peptides of human insulin-degrading enzyme. Proc Natl Acad Sci. 2013; 110: 13827- 32.

[9]

Noinaj N, Song ES, Bhasin S, Alper BJ, Schmidt WK, Hersh LB, et al. Anion activation site of insulin-degrading enzyme. J Biol Chem. 2012; 287 (1): 48- 57.

[10]

Guo Q, Manolopoulou M, Bian Y, Schilling AB, Tang WJ. Molecular basis for the recognition and cleavages of igf-ii, tgf-α, and amylin by human insulin-degrading enzyme. J Mol Biol. 2010; 395 (2): 430- 43.

[11]

Perlman RK, Gehm BD, Kuo WL, Rosner MR. Functional analysis of conserved residues in the active site of insulin-degrading enzyme. J Biol Chem. 1993; 268 (29): 21538- 44.

[12]

Noinaj N, Bhasin SK, Song ES, Scoggin KE, Juliano MA, Juliano L, et al. Identification of the allosteric regulatory site of insulysin. PLoS One. 2011; 6: e20864.

[13]

Manolopoulou M, Guo Q, Malito E, Schilling AB, Tang WJ. Molecular basis of catalytic chamber-assisted unfolding and cleavage of human insulin by human insulin-degrading enzyme. J Biol Chem. 2009; 284 (21): 14177- 88.

[14]

Song ES, Juliano MA, Juliano L, Fried MG, Wagner SL, Hersh LB. Atp effects on insulin-degrading enzyme are mediated primarily through its triphosphate moiety. J Biol Chem. 2004; 279 (52): 54216- 20.

[15]

Camberos MC, Pérez AA, Udrisar DP, Wanderley MI, Cresto JC. ATP inhibits insulin-degrading enzyme activity. Exp Biol Med. 2001; 226 (4): 334- 41.

[16]

Del Carmen Camberos M, Cresto JC. Insulin-degrading enzyme hydrolyzes ATP. Exp Biol Med. 2007; 232: 281- 92.

[17]

Ivancic VA, Krasinski CA, Zheng Q, Meservier RJ, Spratt DE, Lazo ND. Enzyme kinetics from circular dichroism of insulin reveals mechanistic insights into the regulation of insulin‐degrading enzyme. Biosci Rep. 2018; 38 (6).

[18]

da Cruz CHB, Seabra G. Molecular dynamics simulations reveal a novel mechanism for ATP inhibition of insulin degrading enzyme. J Chem Inf Model. 2014; 54 (5): 1380- 90.

[19]

Cornish-Bowden A. Understanding allosteric and cooperative interactions in enzymes. FEBS J. 2014; 281 (2): 621- 32.

[20]

Monod J, Wyman J, Changeux JP. On the nature of allosteric transitions: a plausible model. J Mol Biol. 1965; 12 (1): 88- 118.

[21]

Wyman J, Jr , Allen DW. The problem of the heme interactions in hemoglobin and the basis of the Bohr effect. J Polym Sci. 1951; 7 (5): 499- 518.

[22]

Kumar R, Nordberg A, Darreh-Shori T. Amyloid-β peptides act as allosteric modulators of cholinergic signalling through formation of soluble baβacs. Brain: J Neurol. 2016; 139 (1): 174- 92.

[23]

Naray-Szabo G, Ferenczy GG. Molecular electrostatics. Chem Rev. 1995; 95 (4): 829- 47.

[24]

Mladenovic M, Arnone M, Fink RF, Engels B. Environmental effects on charge densities of biologically active molecules: do molecule crystal environments indeed approximate protein surroundings? J Phys Chem B. 2009; 113 (15): 5072- 82.

[25]

Anderson AC. The process of structure-based drug design. Chem Biol. 2003; 10 (9): 787- 97.

[26]

Hu YC, Zhang XH, Li QS, Zhang YH, Li ZS. Effect of water on the structure and stability of hydrogen-bonded oxalic acid dimer. ChemPhysChem. 2017; 18 (23): 3375- 83.

[27]

Kalaiarasi C, Manjula S, Kumaradhas P. Combined quantum mechanics/molecular mechanics (QM/MM) methods to understand the charge density distribution of estrogens in the active site of estrogen receptors. RSC Adv. 2019; 9 (69): 4758- 71.

[28]

Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC. Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv. 2016; 2 (3): e1501240.

[29]

Bönisch H, Schmidt CL, Bianco P, Ladenstein R. Ultrahigh‐resolution study on Pyrococcus abyssi rubredoxin. I. 0.69 a x‐ray structure of mutant w4l/r5s. Acta Crystallogr Sect D Biol Crystallogr. 2005; 61 (7): 990- 1004.

[30]

Wang J, Dauter M, Alkire R, Joachimiak A, Dauter Z. Triclinic lysozyme at 0.65 a resolution. Acta Crystallogr Sect D Biol Crystallogr. 2007; 63 (12): 1254- 68.

[31]

Hirano Y, Takeda K, Miki K. Charge-density analysis of an iron-sulfur protein at an ultra-high resolution of 0.48 å. Nature. 2016; 534 (7606): 281- 4.

[32]

Spiegel K, Magistrato A. Modeling anticancer drug-DNA interactions via mixed QM/MM molecular dynamics simulations. Org Biomol Chem. 2006; 4 (43): 2507- 17.

[33]

Mebs S, Lüth A, Luger P. A simple procedure for the derivation of electron density based surfaces of drug-receptor complexes from a combination of X-ray data and theoretical calculations. Bioorg Med Chem. 2010; 18 (16): 5965- 74.

[34]

Egieyeh S, Egieyeh E, Malan S, Christofells A, Fielding B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-COV-2 spike protein with its target (humanace2). PLoS One. 2021; 16 (1): e0245258.

[35]

Kumar S, Deshpande PA. Structural and thermodynamic analysis of factors governing the stability and thermal folding/ unfolding of sazca. PLoS One. 2021; 16 (4): e0249866.

[36]

Pipe, SW, and Kaufman, RJ Characterization of a genetically engineered inactivation‐resistant coagulation factor viiia. Proc Natl Acad Sci. 1997; 94: 11851- 6.

[37]

Du J, Dong J, Du S, Zhang K, Yu J, Hu S, et al. Understanding thermostability factors of barley limit dextrinase by molecular dynamics simulations. Front Mol Biosci. 2020; 7: 51.

[38]

Liu F, Zhao YL, Wang X, Hu H, Peng H, Wang W, et al. Elucidation of enzymatic mechanism of phenazine biosynthetic protein PHZF using QM/MM and MD simulations. PLoS One. 2015; 10 (9): e0139081.

[39]

Gao S, Zhu S, Huang R, Li H, Wang H, Zheng G. Engineering the enantioselectivity and thermostability of a (+)‐γ‐lactamase from microbacterium hydrocarbonoxydans for kinetic resolution of vince lactam (2‐azabicyclo[2.2.1]hept‐5‐en‐3‐one). Appl Environ Microbiol. 2018; 84 (1).

[40]

Bekker GJ, Kamiya N. Thermal stability estimation of single domain antibodies using molecular dynamics simulations. Methods Mol Biol. 2023; 2552: 151- 63.

[41]

da Cruz CHB, Seabra GM. QM/MM simulations of amyloid-β 42 degradation by ide in the presence and absence of ATP. J Chem Inf Model. 2015; 55 (1): 72- 83.

[42]

Tundo GR, Sbardella D, Ciaccio C, Bianculli A, Orlandi A, Desimio MG, et al. Insulin-degrading enzyme (IDE): a novel heat shock-like protein. J Biol Chem. 2013; 288 (4): 2281- 9.

[43]

Chen CH, Patel R, Bortolami A, Sesti F. A novel assay for drug screening that utilizes the heat shock response of Caenorhabditis elegans nematodes. PLoS One. 2020; 15 (10): e0240255.

[44]

Wang R, Lai L, Wang S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J Comput Aided Mol Des. 2002; 16 (1): 11- 26.

[45]

Spackman MA, McKinnon JJ. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm. 2002; 4 (66): 378- 92.

[46]

Spackman PR, Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Jayatilaka D, et al. Crystalexplorer: a program for hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J Appl Crystallogr. 2021; 54 (3): 1006- 11.

[47]

McKinnon JJ, Mitchell AS, Spackman MA. Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem Eur J. 1998; 4 (11): 2136- 41.

[48]

Spackman MA, Byrom PG. A novel definition of a molecule in a crystal. Chem Phys Lett. 1997; 267 (3‐4): 215- 20.

[49]

Jee JE, Lim J, Ong YS, Oon J, Gao L, Choi HS, et al. An efficient strategy to enhance binding affinity and specificity of a known isozyme inhibitor. Org Biomol Chem. 2016; 14 (28): 6833- 9.

[50]

Dutta B, Purkait R, Bhunia S, Khan S, Sinha C, Mir MH. Selective detection of trinitrophenol by a cd(ii)-based coordination compound. RSC Adv. 2019; 9 (66): 38718- 23.

[51]

Jayatilaka D, Wolff SK, Grimwood DJ, McKinnon JJ, Spackman MA. Crystalexplorer: a tool for displaying hirshfeld surfaces and visualising intermolecular interactions in molecular crystals. Acta Crystallogr, Sect A: Found Crystallogr. 2006; 62 (a1): s90.

[52]

Viry L, Guillot B, Guillot R, Lecomte C, Jelsch C. Refinement of proteins at subatomic resolution with mopro. J Appl Crystallogr. 2001; 34 (2): 214- 23.

[53]

Bader RFW. A bond path: a universal indicator of bonded interactions. J Phys Chem. 1998; 102 (37): 7314- 23.

[54]

Wick CR, Clark T. On bond-critical points in qtaim and weak interactions. J Mol Model. 2018; 24 (6): 142- 9.

[55]

Cossard A, Casassa S, Gatti C, Desmarais JK, Erba A. Topology of the electron density and of its Laplacian from periodic lcao calculations on f-electron materials: the case of cesium uranyl chloride. Molecules. 2021; 26 (14): 4227.

[56]

Shaik S, Danovich D, Braida B, Wu W, Hiberty PC. New landscape of electron-pair bonding: covalent, ionic, and charge-shift bonds. Chem Bond Ⅱ: 100 Years Old and Get Stronger. 2016: 169- 211.

[57]

Hilal R, Aziz SG, Alyoubi AO, Elroby S. Quantum topology of the charge density of chemical bonds. Qtaim analysis of the C‐BR and O‐BR bonds. Procedia Comput Sci. 2015; 51: 1872- 7.

[58]

Phaneuf CG, Aizikov K, Grinfeld D, Kreutzmann A, Mourad D, Lange O, et al. Experimental strategies to improve drug-target identification in mass spectrometry-based thermal stability assays. Commun Chem. 2023; 6 (1): 64.

[59]

Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. Pubchem substance and compound databases. Nucleic Acids Res. 2016; 44 (D1): D1202- 13.

[60]

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank. Nucleic Acids Res. 2000; 28 (1): 235- 42.

[61]

Lai R, Tang WJ, Li H. Catalytic mechanism of amyloid-β peptide degradation by insulin degrading enzyme: insights from quantum mechanics and molecular mechanics style Møller-Plesset second order perturbation theory calculation. J Chem Inf Model. 2018; 58 (9): 1926- 34.

[62]

Wu KY, Doan D, Medrano M, Chang CEA. Modeling structural interconversion in Alzheimer’s’ amyloid beta peptide with classical and intrinsically disordered protein force fields. J Biomol Struct Dyn. 2022; 40 (20): 10005- 22.

[63]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with alphafold. Nature. 2021; 596 (7873): 583- 9.

[64]

Biovia DS. Discovery studio visualizer v21. 1.0. 20298. San Diego: Dassault Systèmes; 2021.

[65]

Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J. Cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip Rev Comput Mol Sci. 2014; 4 (1): 15- 25.

[66]

Case D, Belfon K, Ben‐Shalom I, Brozell S, Cerutti D, Cheatham T, et al. Amber 2020. San Francisco: University of california; 2020.

[67]

Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pka values. J Chem Theor Comput. 2011; 7: 2284- 95.

[68]

Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pka values. Proteins. 2005; 61 (4): 704- 21.

[69]

O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open babel: an open chemical toolbox. J Cheminf. 2011; 3 (1): 33.

[70]

Trott O, Olson AJ. Autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010; 31 (2): 455- 61.

[71]

Mark P, Nilsson L. Structure and dynamics of the tip3p, spc, and spc/e water models at 298 k. J Phys Chem. 2001; 105 (43): 9954- 60.

[72]

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem. 2004; 25 (9): 1157- 74.

[73]

McGibbon RT, Beauchamp KA, Harrigan MP, Klein C, Swails JM, Hernández CX, et al. Mdtraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J. 2015; 109 (8): 1528- 32.

[74]

Cao L, Ryde U. On the difference between additive and subtractive QM/MM calculations. Front Chem. 2018; 6: 89.

[75]

Kühne TD, Iannuzzi M, Del Ben M, Rybkin VV, Seewald P, Stein F, et al. Cp2k: an electronic structure and molecular dynamics software package -quickstep: efficient and accurate electronic structure calculations. J Chem Phys. 2020; 152 (19): 194103.

RIGHTS & PERMISSIONS

2024 The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (3684KB)

300

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/