Measuring drug similarity using drug–drug interactions

Ji Lv , Guixia Liu , Yuan Ju , Houhou Huang , Ying Sun

Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 164 -172.

PDF (731KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (2) : 164 -172. DOI: 10.1002/qub2.38
RESEARCH ARTICLE

Measuring drug similarity using drug–drug interactions

Author information +
History +
PDF (731KB)

Abstract

Combination therapy is a promising approach to address the challenge of antimicrobial resistance, and computational models have been proposed for predicting drug–drug interactions. Most existing models rely on drug similarity measures based on characteristics such as chemical structure and the mechanism of action. In this study, we focus on the network structure itself and propose a drug similarity measure based on drug–drug interaction networks. We explore the potential applications of this measure by combining it with unsupervised learning and semi-supervised learning approaches. In unsupervised learning, drugs can be grouped based on their interactions, leading to almost monochromatic group–group interactions. In addition, drugs within the same group tend to have similar mechanisms of action (MoA). In semi-supervised learning, the similarity measure can be utilized to construct affinity matrices, enabling the prediction of unknown drug–drug interactions. Our method exceeds existing approaches in terms of performance. Overall, our experiments demonstrate the effectiveness and practicability of the proposed similarity measure. On the one hand, when combined with clustering algorithms, it can be used for functional annotation of compounds with unknown MoA. On the other hand, when combined with semi-supervised graph learning, it enables the prediction of unknown drug–drug interactions.

Keywords

drug similarity / drug–drug interactions / drug combinations / synergy effect / clustering / semi-supervised learning

Cite this article

Download citation ▾
Ji Lv, Guixia Liu, Yuan Ju, Houhou Huang, Ying Sun. Measuring drug similarity using drug–drug interactions. Quant. Biol., 2024, 12(2): 164-172 DOI:10.1002/qub2.38

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lv J , Deng S , Zhang L . A review of artificial intelligence applications for antimicrobial resistance. Biosaf Health. 2021; 3 (1): 22- 31.

[2]

Murray CJL , Ikuta KS , Sharara F , Swetschinski L , Robles Aguilar G , Gray A , et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399 (10325): 629- 55.

[3]

Tyers M , Wright GD . Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019; 17 (3): 141- 55.

[4]

Lv J , Liu G , Dong W , Ju Y , Sun Y . ACDB: an antibiotic combination dataBase. Front Pharmacol. 2022; 13: 869983.

[5]

Lv J , Liu G , Ju Y , Huang H , Sun Y . AADB: a manually collected database for combinations of antibiotics with adjuvants. IEEE ACM Trans Comput Biol Bioinf. 2023; 20 (5): 2827- 36.

[6]

Lv J , Liu G , Hao J , Ju Y , Sun B , Sun Y . Computational models, databases and tools for antibiotic combinations. Briefings Bioinf. 2022; 23 (5): bbac309.

[7]

Zhang W , Jing K , Huang F , Chen Y , Li B , Li J , et al. SFLLN: a sparse feature learning ensemble method with linear neighborhood regularization for predicting drug-drug interactions. Inf Sci. 2019; 497: 189- 201.

[8]

Deng Y , Xu X , Qiu Y , Xia J , Zhang W , Liu S . A multimodal deep learning framework for predicting drug-drug interaction events. Bioinformation. 2020; 36 (15): 4316- 22.

[9]

Chen X , Ren B , Chen M , Wang QX , Zhang LX , Yan GY . NLLSS: predicting synergistic drug combinations based on semi-supervised learning. PLoS Comput Biol. 2016; 12 (7): e1004975.

[10]

Ding P , Shen C , Lai Z , Liang C , Li G , Luo J . Incorporating multisource knowledge to predict drug synergy based on graph co-regularization. J Chem Inf Model. 2020; 60 (1): 37- 46.

[11]

Lv J , Liu G , Ju Y , Sun Y , Guo W . Prediction of synergistic antibiotic combinations by graph learning. Front Pharmacol. 2022; 13: 849006.

[12]

Zhang W , Chen Y , Liu F , Luo F , Tian G , Li X . Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data. BMC Bioinf. 2017; 18 (1): 18.

[13]

Lv J , Liu G , Ju Y , Sun B , Huang H , Sun Y . Integrating multi-source drug information to cluster drug-drug interaction network. Comput Biol Med. 2023; 162: 107088.

[14]

Abbas K , Abbasi A , Dong S , Niu L , Yu L , Chen B , et al. Application of network link prediction in drug discovery. BMC Bioinf. 2021; 22 (1): 187.

[15]

Lv J , Liu G , Ju Y , Huang H , Li D , Sun Y . Identification of robust antibiotic subgroups by integrating multi-species drug-drug interactions. J Chem Inf Model. 2023; 63 (15): 4970- 8.

[16]

Guimerà R , Sales-Pardo M . A network inference method for large-scale unsupervised identification of novel drug-drug interactions. PLoS Comput Biol. 2013; 9 (12): e1003374.

[17]

Yeh P , Tschumi AI , Kishony R . Functional classification of drugs by properties of their pairwise interactions. Nat Genet. 2006; 38 (4): 489- 94.

[18]

Brochado AR , Telzerow A , Bobonis J , Banzhaf M , Mateus A , Selkrig J , et al. Species-specific activity of antibacterial drug combinations. Nature. 2018; 559 (7713): 259- 63.

[19]

Yilancioglu K , Weinstein ZB , Meydan C , Akhmetov A , Toprak I , Durmaz A , et al. Target-independent prediction of drug synergies using only drug lipophilicity. J Chem Inf Model. 2014; 54 (8): 2286- 93.

[20]

Duran-Frigola M , Pauls E , Guitart-Pla O , Bertoni M , Alcalde V , Amat D , et al. Extending the small-molecule similarity principle to all levels of biology with the Chemical Checker. Nat Biotechnol. 2020; 38 (9): 1087- 96.

[21]

Huang L , Luo H , Li S , Wu F.-X , Wang J . Drug-drug similarity measure and its applications. Briefings Bioinf. 2020; 22 (4): bbaa265.

[22]

Mason DJ , Stott I , Ashenden S , Weinstein ZB , Karakoc I , Meral S , et al. Prediction of antibiotic interactions using descriptors derived from molecular structure. J Med Chem. 2017; 60 (9): 3902- 12.

[23]

Cheng X , Zhao S.-G , Xiao X , Chou K.-C . iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformation. 2016; 33 (3): 341- 6.

[24]

Cokol M , Chua HN , Tasan M , Mutlu B , Weinstein ZB , Suzuki Y , et al. Systematic exploration of synergistic drug pairs. Mol Syst Biol. 2011; 7 (1): 544.

[25]

Fortunato S , Newman MEJ . 20 years of network community detection. Nat Phys. 2022; 18 (8): 848- 50.

[26]

Chandrasekaran S , Cokol-Cakmak M , Sahin N , Yilancioglu K , Kazan H , Collins JJ , et al. Chemogenomics and orthology-based design of antibiotic combination therapies. Mol Syst Biol. 2016; 12 (5): 872.

[27]

Lin J , Zhou D , Steitz TA , Polikanov YS , Gagnon MG . Ribosome-targeting antibiotics: modes of action, mechanisms of resistance, and implications for drug design. Annu Rev Biochem. 2018; 87 (1): 451- 78.

[28]

Borovinskaya MA , Pai RD , Zhang W , Schuwirth BS , Holton JM , Hirokawa G , et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nat Struct Mol Biol. 2007; 14 (8): 727- 32.

[29]

Ocampo PS , Lázár V , Papp B , Arnoldini M , Paz W , Busa-Fekete R , et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother. 2014; 58 (8): 4573- 82.

[30]

Imlay JA . The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat Rev Microbiol. 2013; 11 (7): 443- 54.

[31]

Yan C , Duan G , Zhang Y , Wu FX , Pan Y , Wang J . Predicting drug-drug interactions based on integrated similarity and semi-supervised learning. IEEE ACM Trans Comput Biol Bioinf. 2022; 19 (1): 168- 79.

[32]

Bliss CI . The toxicity of poisons applied jointly. Ann Appl Biol. 1939; 26 (3): 585- 615.

[33]

Zhuang L , Wang H , Li W , Liu T , Han S , Zhang H . MS-ADR: predicting drug-drug adverse reactions base on multi-source heterogeneous convolutional signed network. Soft Comput. 2022; 26 (21): 11795- 807.

[34]

van der Maaten L , Hinton G . Visualizing data using t-SNE. J Mach Learn Res. 2008; 9: 2579- 605.

[35]

Johnson SC . Hierarchical clustering schemes. Psychometrika. 1967; 32 (3): 241- 54.

RIGHTS & PERMISSIONS

2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (731KB)

553

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/