Quasi-likelihood estimation in a mixed fractional Black-Scholes model

Litan Yan , Wenhan Lu , Junjie Xia

Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (4) : 523 -558.

PDF (1475KB)
Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (4) :523 -558. DOI: 10.3934/puqr.2025022
research-article

Quasi-likelihood estimation in a mixed fractional Black-Scholes model

Author information +
History +
PDF (1475KB)

Abstract

Let $B^H=\{B_t^H, t \geq 0\}$ be a fractional Brownian motion with Hurst index $0<H<1$, and let $B=\{B_t, t \geq 0\}$ be an independent Brownian motion. In this study, we investigate the parameter estimation of a mixed fractional Black-Scholes model $ S_t^H=S_0^H+\mu\displaystyle \int_0^tS_s^H{\mathrm{d}}s+\sigma\displaystyle \int_{0}^{t}S_s^H{\mathrm{d}}(B_s+B_s^H)$,where $\sigma>0$, $\mu\in {\mathbb R}$ are two unknown parameters. Using quasi-likelihood estimation, when the system is observed at some discrete time instants $\{t_i=ih,i=0,1,2,\ldots,n\}$, we give estimations of the parameters $\mu$ and $\sigma$ provided $h=h(n)\to 0$, $nh\to \infty$ and $h^{1+\gamma}n\to 1$ for some $\gamma>0$, as $n\to \infty$. We present the asymptotic normality of the estimators based on the velocity of $nh^{1+\gamma}-1$ tending to zero as $n$ tends to infinity. Finally, we perform numerical calculus and simulations using factual data from the stock market to verify the effectiveness of the established estimators.

Keywords

Quasi-likelihood estimation / Fractional Brownian motion / Mixed fractional Black-Scholes model / Fractional Itô integral / Asymptotic distribution

Cite this article

Download citation ▾
Litan Yan, Wenhan Lu, Junjie Xia. Quasi-likelihood estimation in a mixed fractional Black-Scholes model. Probability, Uncertainty and Quantitative Risk, 2025, 10(4): 523-558 DOI:10.3934/puqr.2025022

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971101 and 12171081) and Shanghai Natural Science Foundation (Grant No. 24ZR1402900).

References

[1]

Alós, E., Mazet, O. and Nualart, D., Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 2001, 29(2): 766-801.

[2]

Androshchuk, T. and Mishura, Y., Mixed Brownian-fractional Brownian model: Absence of arbitrage and related topics, Stochastics, 2006, 78(5): 281-300.

[3]

Azmoodeh, E., Sottinen, T. and Viitasaari, L., Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian-fractional Brownian model, Modern Stochastics: Theory and Applications, 2015, 2(1): 29-49.

[4]

Bender, C., An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Processes and their Applications, 2003, 104(1): 81-106.

[5]

Bender, C. and Elliott, R. J., Arbitrage in a discrete version of the Wick-fractional Black-Scholes market, Mathematics of Operations Research, 2004, 29(4): 935-945.

[6]

Bender, C., Sottinen, T. and Valkeila, E., Arbitrage with fractional Brownian motion? Theory of stochastic Processes, 2007, 13(1): 23-34.

[7]

Biagini, F., Hu, Y., Øksendal, B. and Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, London, 2008.

[8]

Björk, T. and Hult, H., A note on Wick products and the fractional Black-Scholes model, Finance and Stochastics, 2005, 9: 197-209.

[9]

Breuer, P. and Major, P., Central limit theorems for non-linear functionals of Gaussian fields, Journal of Multivariate Analysis, 1983, 13(3): 425-441.

[10]

Cheridito, P., Mixed fractional Brownian motion, Bernoulli, 2001, 7(6): 913-934.

[11]

Cheridito, P., Arbitrage in fractional Brownian motion models, Finance and Stochastics, 2003, 7(4): 533-553.

[12]

Cheridito, P. and Nualart, D., Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0, 1/2), Annales de l’IHP Probabilités et Statistiques, 2005, 41(6): 1049-1081.

[13]

Dobrushin, R. L. and Major, P., Non-central limit theorems for non-linear functional of Gaussian fields, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1979, 50: 27-52.

[14]

Elliott, R. J. and Van Der Hoek, J., A general fractional white noise theory and applications to finance, Mathematical Finance, 2003, 13(2): 301-330.

[15]

Elliott, R. J. and Chan, L., Perpetual American options with fractional Brownian motion, Quantitative Finance, 2003, 4(2): 123-128.

[16]

Etemadi, N., On the laws of large numbers for nonnegative random variables, Journal of Multivariate Analysis, 1983, 13(1): 187-193.

[17]

Greene, M. T. and Fielitz, B. D., Long-term dependence in common stock returns, Journal of Financial Economics, 1977, 4(3): 339-349.

[18]

Gradinaru, M., Nourdin, I., Russo, F. and Vallois, P., m-order integrals and generalized Itô’s formula: The case of a fractional Brownian motion with any Hurst index, Annales de l’IHP Probabilités et Statistiques, 2005, 41(4): 781-806.

[19]

Giraitis, L. and Surgailis, D., CLT and other limit theorems for functionals of Gaussian processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1985, 70(2): 191-212.

[20]

Hu, Y., Integral Transformations and Anticipative Calculus for Fractional Brownian Motions, American Mathematical Society, 2005.

[21]

Hu, Y. and Øksendal, B., Fractional white noise calculus and applications to finance, Infinite dimensional analysis, Quantum Probability and Related Topics, 2003, 6(1): 1-32.

[22]

Lo, A. W., Long-term memory in stock market prices, Econometrica: Journal of the Econometric Society, 1991, 59(5): 1279-1313.

[23]

Mishura, Y., Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, Heidelberg, 2008.

[24]

Necula, C.,Option pricing in a fractional Brownian motion environment, Available at SSRN 1286833, 2002.

[25]

Nourdin, I., Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, The Annals of Probability, 2008, 36(6): 2159-2175.

[26]

Nourdin, I., Selected Aspects of Fractional Brownian Motion, Springer, Milan, 2012.

[27]

Nourdin, I. and Réveillac, A., Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case H=1/4, The Annals of Probability, 2009, 37(6): 2200-2230.

[28]

Nualart, D., The Malliavin Calculus and Related Topics, Springer, Berlin, Heidelberg, 2006.

[29]

Rogers, L. C. G., Arbitrage with fractional Brownian motion, Mathematical Finance, 1997, 7(1): 95-105.

[30]

Tudor, C., Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach, Springer, Cham, 2013.

[31]

Yan, L., Chen, C.and Liu, J., The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2014, 17(4): 1450030.

PDF (1475KB)

82

Accesses

0

Citation

Detail

Sections
Recommended

/