PDF
(1475KB)
Abstract
Let $B^H=\{B_t^H, t \geq 0\}$ be a fractional Brownian motion with Hurst index $0<H<1$, and let $B=\{B_t, t \geq 0\}$ be an independent Brownian motion. In this study, we investigate the parameter estimation of a mixed fractional Black-Scholes model $ S_t^H=S_0^H+\mu\displaystyle \int_0^tS_s^H{\mathrm{d}}s+\sigma\displaystyle \int_{0}^{t}S_s^H{\mathrm{d}}(B_s+B_s^H)$,where $\sigma>0$, $\mu\in {\mathbb R}$ are two unknown parameters. Using quasi-likelihood estimation, when the system is observed at some discrete time instants $\{t_i=ih,i=0,1,2,\ldots,n\}$, we give estimations of the parameters $\mu$ and $\sigma$ provided $h=h(n)\to 0$, $nh\to \infty$ and $h^{1+\gamma}n\to 1$ for some $\gamma>0$, as $n\to \infty$. We present the asymptotic normality of the estimators based on the velocity of $nh^{1+\gamma}-1$ tending to zero as $n$ tends to infinity. Finally, we perform numerical calculus and simulations using factual data from the stock market to verify the effectiveness of the established estimators.
Keywords
Quasi-likelihood estimation
/
Fractional Brownian motion
/
Mixed fractional Black-Scholes model
/
Fractional Itô integral
/
Asymptotic distribution
Cite this article
Download citation ▾
Litan Yan, Wenhan Lu, Junjie Xia.
Quasi-likelihood estimation in a mixed fractional Black-Scholes model.
Probability, Uncertainty and Quantitative Risk, 2025, 10(4): 523-558 DOI:10.3934/puqr.2025022
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11971101 and 12171081) and Shanghai Natural Science Foundation (Grant No. 24ZR1402900).
| [1] |
Alós, E., Mazet, O. and Nualart, D., Stochastic calculus with respect to Gaussian processes, The Annals of Probability, 2001, 29(2): 766-801.
|
| [2] |
Androshchuk, T. and Mishura, Y., Mixed Brownian-fractional Brownian model: Absence of arbitrage and related topics, Stochastics, 2006, 78(5): 281-300.
|
| [3] |
Azmoodeh, E., Sottinen, T. and Viitasaari, L., Asymptotic normality of randomized periodogram for estimating quadratic variation in mixed Brownian-fractional Brownian model, Modern Stochastics: Theory and Applications, 2015, 2(1): 29-49.
|
| [4] |
Bender, C., An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Processes and their Applications, 2003, 104(1): 81-106.
|
| [5] |
Bender, C. and Elliott, R. J., Arbitrage in a discrete version of the Wick-fractional Black-Scholes market, Mathematics of Operations Research, 2004, 29(4): 935-945.
|
| [6] |
Bender, C., Sottinen, T. and Valkeila, E., Arbitrage with fractional Brownian motion? Theory of stochastic Processes, 2007, 13(1): 23-34.
|
| [7] |
Biagini, F., Hu, Y., Øksendal, B. and Zhang, T., Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, London, 2008.
|
| [8] |
Björk, T. and Hult, H., A note on Wick products and the fractional Black-Scholes model, Finance and Stochastics, 2005, 9: 197-209.
|
| [9] |
Breuer, P. and Major, P., Central limit theorems for non-linear functionals of Gaussian fields, Journal of Multivariate Analysis, 1983, 13(3): 425-441.
|
| [10] |
Cheridito, P., Mixed fractional Brownian motion, Bernoulli, 2001, 7(6): 913-934.
|
| [11] |
Cheridito, P., Arbitrage in fractional Brownian motion models, Finance and Stochastics, 2003, 7(4): 533-553.
|
| [12] |
Cheridito, P. and Nualart, D., Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter H∈(0, 1/2), Annales de l’IHP Probabilités et Statistiques, 2005, 41(6): 1049-1081.
|
| [13] |
Dobrushin, R. L. and Major, P., Non-central limit theorems for non-linear functional of Gaussian fields, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1979, 50: 27-52.
|
| [14] |
Elliott, R. J. and Van Der Hoek, J., A general fractional white noise theory and applications to finance, Mathematical Finance, 2003, 13(2): 301-330.
|
| [15] |
Elliott, R. J. and Chan, L., Perpetual American options with fractional Brownian motion, Quantitative Finance, 2003, 4(2): 123-128.
|
| [16] |
Etemadi, N., On the laws of large numbers for nonnegative random variables, Journal of Multivariate Analysis, 1983, 13(1): 187-193.
|
| [17] |
Greene, M. T. and Fielitz, B. D., Long-term dependence in common stock returns, Journal of Financial Economics, 1977, 4(3): 339-349.
|
| [18] |
Gradinaru, M., Nourdin, I., Russo, F. and Vallois, P., m-order integrals and generalized Itô’s formula: The case of a fractional Brownian motion with any Hurst index, Annales de l’IHP Probabilités et Statistiques, 2005, 41(4): 781-806.
|
| [19] |
Giraitis, L. and Surgailis, D., CLT and other limit theorems for functionals of Gaussian processes, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 1985, 70(2): 191-212.
|
| [20] |
Hu, Y., Integral Transformations and Anticipative Calculus for Fractional Brownian Motions, American Mathematical Society, 2005.
|
| [21] |
Hu, Y. and Øksendal, B., Fractional white noise calculus and applications to finance, Infinite dimensional analysis, Quantum Probability and Related Topics, 2003, 6(1): 1-32.
|
| [22] |
Lo, A. W., Long-term memory in stock market prices, Econometrica: Journal of the Econometric Society, 1991, 59(5): 1279-1313.
|
| [23] |
Mishura, Y., Stochastic Calculus for Fractional Brownian Motion and Related Processes, Springer, Berlin, Heidelberg, 2008.
|
| [24] |
Necula, C.,Option pricing in a fractional Brownian motion environment, Available at SSRN 1286833, 2002.
|
| [25] |
Nourdin, I., Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, The Annals of Probability, 2008, 36(6): 2159-2175.
|
| [26] |
Nourdin, I., Selected Aspects of Fractional Brownian Motion, Springer, Milan, 2012.
|
| [27] |
Nourdin, I. and Réveillac, A., Asymptotic behavior of weighted quadratic variations of fractional Brownian motion: The critical case H=1/4, The Annals of Probability, 2009, 37(6): 2200-2230.
|
| [28] |
Nualart, D., The Malliavin Calculus and Related Topics, Springer, Berlin, Heidelberg, 2006.
|
| [29] |
Rogers, L. C. G., Arbitrage with fractional Brownian motion, Mathematical Finance, 1997, 7(1): 95-105.
|
| [30] |
Tudor, C., Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach, Springer, Cham, 2013.
|
| [31] |
Yan, L., Chen, C.and Liu, J., The generalized quadratic covariation for fractional Brownian motion with Hurst index less than 1/2, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 2014, 17(4): 1450030.
|