Optimal stopping under model uncertainty in a general setting

Ihsan Arharas , Siham Bouhadou , Astrid Hilbert , Youssef Ouknine

Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (3) : 421 -442.

PDF (860KB)
Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (3) : 421 -442. DOI: 10.3934/puqr.2025019
research-article

Optimal stopping under model uncertainty in a general setting

Author information +
History +
PDF (860KB)

Abstract

We consider the optimal stopping time problem under model uncertainty, $R(v)=\underset{\mathbb{P}\in \mathcal{P}}{\text{ess sup}}\underset{\tau \in {\mathcal{S}}_{v}}{\text{ess sup}}{E}^{\mathbb{P}}[Y(\tau )|{\mathcal{F}}_{v}]$, for every stopping time $v$, within the framework of families of random variables indexed by stopping times. This setting is more general than the classical setup of stochastic processes, notably allowing for general payoff processes that are not necessarily right-continuous. Under weaker integrability, with regularity assumptions for the reward family $Y=(Y(v),v\in S)$, the existence of an optimal stopping time is demonstrated. Sufficient conditions for the existence of an optimal model are then determined. For this purpose, we present a universal optional decomposition for the generalized Snell envelope family associated with $Y$. This decomposition is then employed to prove the existence of an optimal probability model and to study its properties.

Keywords

Optimal stopping / Supermartingale / Uncertainty / American options

Cite this article

Download citation ▾
Ihsan Arharas, Siham Bouhadou, Astrid Hilbert, Youssef Ouknine. Optimal stopping under model uncertainty in a general setting. Probability, Uncertainty and Quantitative Risk, 2025, 10(3): 421-442 DOI:10.3934/puqr.2025019

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions, which have greatly contributed to the present version of the paper.

References

[1]

Ait Sahalia, F., Imhof, L. and Lai, T. L., Pricing and hedging of American knock-in options, The Journal of Derivatives, 2004, 11(3): 44-50.

[2]

Bayraktar, E., Karatzas, I. and Yao, S., Optimal stopping for dynamic convex risk measures, Illinois Journal of Mathematics, 2010, 54(3): 1025-1067.

[3]

Bayraktar, E. and Yao, S., On the robust optimal stopping problem, SIAM Journal on Control and Optimization, 2014, 52(5): 3135-3175.

[4]

Bayraktar, E. and Yao, S., Optimal stopping for non-linear expectations—Part I, Stochastic Processes and their Applications, 2011, 121: 185-211.

[5]

Bayraktar, E. and Yao, S., Optimal stopping for non-linear expectations—Part II, Stochastic Processes and their Applications, 2011, 121: 212-264.

[6]

Bayraktar, E. and Yao, S., Optimal stopping with random maturity under nonlinear expectation, Stochastic Processes and their Applications, 2017, 127(8): 2586-2629.

[7]

Belomestny, D. and Krätschmer, V., Optimal stopping under model uncertainty: Randomized stopping times approach, The Annals of Applied Probability, 2016, 26(2): 1260-1295.

[8]

Bouchard, B., Possamaï D. and Tan, X., A general Doob-Meyer-Mertens decomposition for g-supermartingale systems, Electronic Journal of Probability, 2016, 21: 1-21.

[9]

Carmona, R., Indifference Pricing:Theory and Applications, Princeton University Press, Princeton, 2009.

[10]

Cheng, X. and Riedel, F., Optimal stopping under ambiguity in continuous time, Mathematics and Financial Economics, 2013, 7: 29-68.

[11]

Cheridito, P., Delbaen, F. and Kupper, M., Dynamic monetary risk measures for bounded discrete-time processes, Electronic Journal of Probability, 2006, 11(3): 57-106.

[12]

Delbaen, F., The structure of m-stable sets and in particular of the set of risk neutral measures, In:Émery, M. and Yor, M.(eds), In memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX, Lecture Notes in Mathematics, Springer, Berlin, 2006, 1874: 215-258.

[13]

Delbaen, F. and Protter., P., When is Kramkov decomposition predictable? Probability Seminar, Purdue University, 2002.

[14]

Dellacherie, C. and Meyer, P.-A., Probabilités et Potentiel: Théorie des Martingales, Chap. V-VIII, Hermann, Paris, 1980.

[15]

Ekren, I., Touzi, N. and Zhang, J., Optimal stopping under nonlinear expectation, Stochastic Processes and their Applications, 2014, 124: 3277-3311.

[16]

El Karoui, N., Les aspects probabilistes du contrôle stochastique. École d’été de Probabilités de Saint-Flour IX-1979 Lect. Notes in Math., Springer, Berlin-New York, 1981, 876: 73-238.

[17]

Föllmer, H. and Schied, A., Stochastic FinanceL: An Introduction in Discrete Time, de Gruyter Studies in Mathematics, Walter de Gruyter, Berlin, Extended ed., 2004.

[18]

Guo, T., Zhang, E., Wu, M., Yang, B., Yuan, G. and Zeng, X., On random convex analysis, Journal of Nonlinear and Convex Analysis, 2017, 18(11): 1967-1996.

[19]

Karatzas, I. and Zamfirescu, I. M., Game approach to the optimal stopping problem, Stochastics, 2005, 77: 401-435.

[20]

Kobylanski, M. and Quenez, M.-C., Optimal stopping time problem in a general framework, Electronic Journal of Probability, 2012, 17(72): 1-28.

[21]

Kobylanski, M. and Quenez, M.-C. and Rouy-Mironescu, E., Optimal multiple stopping time problem, The Annals of Applied Probability, 2011, 21(4): 1365-1399.

[22]

Krätschmer, V., Ladkau, M., Laeven, R. J. A., Schoenmakers, J. G. M. and Stadje, M., Optimal stopping under uncertainty in drift and jump intensity, Mathematics of Operations Research, 2018, 43: 1177-1209.

[23]

Kunita, H. and Watanabe, S., On square integrable martingales, Nagoya Mathematical Journal, 1967, 30: 209-245.

[24]

Laeven, R. J. A., Schoenmakers, J. G. M., Schweizer, N. F. F. and Stadje, M., Robust multiple stopping: A pathwise duality approach, arXiv: 2006.01802, 2021.

[25]

Le Gall, J.-F., Mouvement Brownien, Martingales et Calcul Stochastique, Mathématiques et Applications 71, Springer, Berlin, Heidelberg, 2012.

[26]

Maingueneau, M.-A., Temps d’arrêt optimaux et théorie générale, In: DellacherieC., MeyerP. A. and WeilM.(eds.), Séminaire de probabilités, XII, Lecture Notes in Math., Springer, Berlin, 1978, 649: 457-467.

[27]

Morlais, M., Reflected backward stochastic differential equations and nonlinear dynamic pricing rule, Stochastics: An International Journal of Probability and Stochastic Processes, 2013, 85: 1-26.

[28]

Neveu, J., Martingales à Temps Discret, Paris, Masson, 1972.

[29]

Nutz, M. and Van Handel, R., Constructing sublinear expectations on path space, Stochastic Processes and their Applications, 2013, 123(8): 3100-3121.

[30]

Nutz, M. and Zhang, J., Optimal stopping under adverse nonlinear expectation and related games, The Annals of Applied Probability, 2015, 25: 2503-2534.

[31]

Riedel, F., Optimal stopping with multiple priors, Econometrica, 2009, 77: 857-908.

[32]

Treviño-Aguilar, E., Optimal stopping under model uncertainty and the regularity of lower Snell envelopes, Quantitative Finance, 2012, 12(6): 865-871.

[33]

Zamfirescu, I.-M., Optimal stopping under model uncertainty, Ph.D. thesis, Columbia University, 2003.

AI Summary AI Mindmap
PDF (860KB)

369

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/