Mean-field stochastic differential equations driven by G-Brownian motion

Karl-Wilhelm Georg Bollweg , Thilo Meyer-Brandis

Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (2) : 241 -246.

PDF (817KB)
Probability, Uncertainty and Quantitative Risk ›› 2025, Vol. 10 ›› Issue (2) : 241 -246. DOI: 10.3934/puqr.2025011
research-article

Mean-field stochastic differential equations driven by G-Brownian motion

Author information +
History +
PDF (817KB)

Abstract

This paper introduces a novel formulation of mean-field stochastic differential equations driven by G-Brownian motion. The proposed formulation generalises existing approaches within the G-framework and enables the study of Fréchet differentiability. Under non-Lipschitz conditions on the coefficients, we establish the existence and uniqueness of a solution for square-integrable stochastic initial data.

Keywords

Mean-field stochastic differential equations / G-Brownian motion / G-framework / Fréchet differentiability / Existence and uniqueness of a solution

Cite this article

Download citation ▾
Karl-Wilhelm Georg Bollweg, Thilo Meyer-Brandis. Mean-field stochastic differential equations driven by G-Brownian motion. Probability, Uncertainty and Quantitative Risk, 2025, 10(2): 241-246 DOI:10.3934/puqr.2025011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Augustin, T., Statistics with imprecise probabilities:A short survey, In: AslettL. J. M., CoolenF. P. A. and De BockJ.(eds.), Uncertainty in Engineering:Introduction to Methods and Applications, SpringerBriefs in Statistics, Springer, Cham, 2022: 67-79.

[2]

Augustin, T. and Hable, R., On the impact of robust statistics on imprecise probability models: A Review, Structural Safety, 2010, 32(6): 358-365.

[3]

Biagini, F., Bollweg, G. and Oberpriller, K., Non-linear affine processes with jumps, Probability, Uncertainty and Quantitative Risk, 2023, 8(2): 235-266.

[4]

Bollweg, K.-W. G. and Meyer-Brandis, T., Mean-field G-SDEs and associated PDEs, Preprint.

[5]

Buckdahn, R., Li, J., Peng, S. and Rainer, C., Mean-field stochastic differential equations and associated PDEs, The Annals of Probability, 2017, 45(2): 824-878.

[6]

Caines, P. E., Huang, M. and Malhamé R. P., Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information and Systems, 2006, 6(3): 221-252.

[7]

Carmona, R., Delarue, F. and Lacker, D., Mean field games with common noise, The Annals of Probability, 2016, 44(6): 3740-3803.

[8]

Criens, D. and Ritter, M., Set-valued propagation of Chaos for controlled path-dependent McKean-Vlasov SPDEs, arXiv: 2312.08331v2, 2023.

[9]

Denis, L., Hu, M. and Peng, S., Function spaces and capacity related to a sublinear expectation: Application to G-Brownian motion paths, Potential Analysis, 2011, 34(2): 139-161.

[10]

Fadina, T., Neufeld, A. and Schmidt, T., Affine processes under parameter uncertainty, Probability, Uncertainty and Quantitative Risk, 2019, 4(1): 5.

[11]

Lasry, J.-M. and Lions, P.-L., Jeux à Champ Moyen. I-Le Cas Stationnaire, Comptes Rendus Mathematique, 2006, 343(9): 619-625.

[12]

Lasry, J.-M. and Lions, P.-L., Jeux à Champ Moyen. II-Horizon Fini Et Contrôle Optimal, Comptes Rendus Mathematique, 2006, 343(10): 679-684.

[13]

Lasry, J.-M. and Lions, P.-L., Mean field games, Japanese Journal of Mathematics, 2007, 2(1): 229-260.

[14]

Liang, Z. and Ma, M., Robust consumption-investment problem under CRRA and CARA utilities with time-varying confidence sets, Mathematical Finance, 2020, 30(3): 1035-1072.

[15]

Lions, P.-L. and Lasry, J.-M., Large investor trading impacts on volatility, Annales de l’Institut Henri Poincaré C, 2007, 24(2): 311-323.

[16]

Lütkebohmert, E., Schmidt, T. and Sester, J., Robust deep hedging, arXiv: 2106.10024v2, 2021.

[17]

McKean, H. P., A class of Markov processes associated with nonlinear parabolic equations, Proceedings of the National Academy of Sciences, 1966, 56(6): 1907-1911.

[18]

Neufeld, A. and Nutz, M., Nonlinear Lévy processes and their characteristics, Transactions of the American Mathematical Society, 2016, 369(1): 69-95.

[19]

Neufeld, A. and Nutz, M., Robust utility maximization with Lévy processes, arXiv: 1502.05920v2, 2015.

[20]

Nutz, M., Robust superhedging with jumps and diffusion, Stochastic Processes and Their Applications, 2015, 125(12): 4543-4555.

[21]

Nutz, M. and Van Handel, R., Constructing sublinear expectations on path space, Stochastic Processes and Their Applications, 2013, 123(8): 3100-3121.

[22]

Peng, S., A new central limit theorem under sublinear expectations, arXiv: 0803.2656v1, 2008.

[23]

Peng, S., Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stochastic Processes and Their Applications, 2008, 118(12): 2223-2253.

[24]

Peng, S., Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion, Probability Theory and Stochastic Modelling 95, Springer, Cham, 2019.

[25]

Pham, H., Wei, X. and Zhou, C., Portfolio diversification and model uncertainty: A robust dynamic mean-variance approach, Mathematical Finance, 2022, 32(1): 349-404.

[26]

Quaeghebeur, E., Introduction to the theory of imprecise probability, In: AslettL. J. M., CoolenF. P. A. and De BockJ.(eds.), Uncertainty in Engineering:Introduction to Methods and Applications, SpringerBriefs in Statistics, Springer, Cham, 2022: 37-50.

[27]

Sun, D., Wu, J.-L. and Wu, P., On distribution dependent stochastic differential equations driven by G-Brownian motion, arXiv: 2302.12539v1, 2023.

[28]

Sun, S., Mean-field backward stochastic differential equations driven by G-Brownian motion and related partial differential equations, Mathematical Methods in the Applied Sciences, 2020, 43(12): 7484-7505.

[29]

Vlasov, A. A., The vibrational properties of an electron gas, Soviet Physics Uspekhi, 1968, 10(6): 721.

AI Summary AI Mindmap
PDF (817KB)

372

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/