Asymptotic behavior of a weighted self-repelling diffusion driven by fractional Brownian motion
Yaqin Sun , Hongfei Xue , Litan Yan
Probability, Uncertainty and Quantitative Risk ›› 2024, Vol. 9 ›› Issue (4) : 575 -604.
Asymptotic behavior of a weighted self-repelling diffusion driven by fractional Brownian motion
Let ${B}^{H}$ be a fractional Brownian motion with Hurst index $\frac{1}{2}\le H<1$. In this paper, we consider the self-repelling diffusion ${X}_{t}^{H}={B}_{t}^{H}+\underset{0}{\overset{t}{{\displaystyle \int }}}\underset{0}{\overset{s}{{\displaystyle \int }}}g(u)\text{d}{X}_{u}^{H}\text{d}s+\nu t$,where $\nu \in ℝ$, and $g$ is a nonnegative Borel function. The process is an analogue of linear self-interacting diffusion (M. Cranston and Y. Le Jan Math. Ann. 303 (1995), 87-93.). Based on the asymptotic behavior of the weight function $g$ at infinity, we establish the large time behavior of the recursive convergence of the solution ${X}^{H}$. For example, when $g\in {C}^{\infty }({ℝ}_{+})$ and $0<g(t) \rightarrow+\infty(t \rightarrow+\infty)$, we demonstrate that there is a sequence $\left\{{\lambda }_{n}\right\}$ of positive real numbers such that $J_{t}^{H}(0 ; g):=g(t) e^{-G(t)} X_{t}^{H} \rightarrow \nu+\xi_{\infty}^{H}$ and $J_{t}^{H}(n ; g):=G(t)\left(J_{t}^{H}(n-1 ; g)-\lambda_{n-1}\left(\xi_{\infty}^{H}+\nu\right)\right) \longrightarrow \lambda_{n}\left(\xi_{\infty}^{H}+\nu\right) \quad(t \rightarrow+\infty)$ in ${L}^{2}$ and almost surely for every $n\in \{1,2,\dots \}$, where $G(t)=\underset{0}{\overset{t}{{\displaystyle \int }}}g(s)\text{d}s$ and $\xi_{\infty}^{H}:=\int_{0}^{\infty} g(r) e^{-G(r)} \mathrm{d} B_{r}^{H}$.
Fractional brownian motion / Self-repelling diffusion / Malliavin calculus / Recursive convergence
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
/
| 〈 |
|
〉 |