PDF
(986KB)
Abstract
Invariance times are stopping times $ \tau $ such that local martingales with respect to some reduced filtration and an equivalently changed probability measure, stopped before $ \tau $, are local martingales with respect to the original model filtration and probability measure. They arise naturally for modeling the default time of a dealer bank, in the mathematical finance context of counterparty credit risk. Assuming an invariance time endowed with an intensity and a positive Azéma supermartingale, this work establishes a dictionary relating the semimartingale calculi in the original and reduced stochastic bases, regarding conditional expectations, martingales, stochastic integrals, random measure stochastic integrals, martingale representation properties, semimartingale characteristics, Markov properties, transition semigroups and infinitesimal generators, and solutions of backward stochastic differential equations.
Keywords
Progressive enlargement of filtration
/
Invariance time
/
Semimartingale calculus
/
Markov process
/
Backward stochastic differential equation
/
Counterparty risk
/
Credit risk
Cite this article
Download citation ▾
Stéphane Crépey.
Invariance times transfer properties.
Probability, Uncertainty and Quantitative Risk, 2024, 9(4): 431-452 DOI:10.3934/puqr.2024019
Acknowledgements
This research has benefited from the support of the Chair Capital Markets Tomorrow: Modeling and Computational Issues under the aegis of the Institut Europlace de Finance, a joint initiative of Laboratoire de Probabilités, Statistique et Modélisation (LPSM)/Université Paris Cité and Crédit Agricole CIB. The author is grateful to Shiqi Song for his contributions to a preliminary version of this work and to Martin Schweizer and Monique Jeanblanc for precious comments.
| [1] |
Aksamit, A., Li, L. and Rutkowski, M., Generalized BSDEs with random time horizon in a progressively enlarged filtration, arXiv: 2105.06654, 2021.
|
| [2] |
Alsheyab, S. and Choulli, T., Reflected backward stochastic differential equations under stopping with an arbitrary random time, arXiv: 2107.11896, 2021.
|
| [3] |
Bielecki, T. and Rutkowski, M., Credit risk modelling:Intensity based approach, In: JouiniE., CvitanicJ. and MusielaM.(eds.), Handbook in Mathematical Finance:Option Pricing, Interest Rates and Risk Management, Cambridge University Press, 2001: 399-457.
|
| [4] |
Bielecki, T. R., Jeanblanc, M. and Rutkowski, M., Credit Risk Modeling, Osaka University CSFI Lecture Notes Series 2, Osaka University Press, 2009.
|
| [5] |
Blumenthal, R. and Getoor, R., Markov Processes and Potential Theory, Republication of the Original 1968 Academic Press Edition, Dover, 2007.
|
| [6] |
Bouchard, B., Possamaï D., Tan, X. and Zhou, C., A unified approach to a priori estimates for supersolutions of BSDEs in general filtrations, Annales de l’Institut Henri Poincaré Probabilités et Statistiques, 2018, 54(1): 154-172.
|
| [7] |
Choulli, T. and Alharbi, F., Representation for martingales living after a random time with applications, Frontiers of Mathematical Finance, 2023, 2(2): 170-201.
|
| [8] |
Choulli, T., Daveloose, C. and Vanmaele, M., A martingale representation theorem and valuation of defaultable securities, Mathematical Finance, 2020, 30(4): 1527-1564.
|
| [9] |
Collin-Dufresne, P., Goldstein, R. and Hugonnier, J., A general formula for valuing defaultable securities, Econometrica, 2004, 72(5): 1377-1407.
|
| [10] |
Crépey, S., Positive XVAs, Frontiers of Mathematical Finance, 2022, 1(3): 425-465.
|
| [11] |
Crépey, S., Sabbagh, W. and Song, S., When capital is a funding source: The anticipated backward stochastic differential equations of X-Value Adjustments, SIAM Journal on Financial Mathematics, 2020, 11(1): 99-130.
|
| [12] |
Crépey, S. and Song, S., BSDEs of counterparty risk, Stochastic Processes and their Applications, 2015, 125(8): 3023-3052.
|
| [13] |
Crépey, S. and Song, S., Counterparty risk and funding: Immersion and beyond, Finance and Stochastics, 2016, 20(4): 901-930.
|
| [14] |
Crépey, S. and Song, S., Invariance properties in the dynamic Gaussian copula model, ESAIM: Proceedings and Surveys, 2017, 56: 22-41.
|
| [15] |
Crépey, S. and Song, S., Invariance times, The Annals of Probability, 2017, 45(6B): 4632-4674.
|
| [16] |
Dellacherie, C. and Meyer, P.-A., Probabilité et Potentiel, Volumes I and II, Hermann, 1975.
|
| [17] |
Dellacherie, C. and Meyer, P.-A., Probabilité et Potentiel: Processus de Markov, Volume V, Hermann, 1992.
|
| [18] |
Duffie, D., Schroder, M. and Skiadas, C., Recursive valuation of defaultable securities and the timing of resolution of uncertainty, The Annals of Applied Probability, 1996, 6(4): 1075-1090.
|
| [19] |
Ethier, H. and Kurtz, T., Markov Processes, Characterization and Convergence, Wiley, 1986.
|
| [20] |
Fontana, C., The strong predictable representation property in initially enlarged filtrations under the density hypothesis, Stochastic Processes and their Applications, 2018, 128(3): 1007-1033.
|
| [21] |
Gapeev, P. V., Jeanblanc, M. and Wu, D., Projections of martingales in enlargements of Brownian filtrations under Jacod’s equivalence hypothesis, Electronic Journal of Probability, 2021, 26: 1-24.
|
| [22] |
Gapeev, P., Jeanblanc, M. and Wu, D., Projections in enlargements of filtrations under Jacod’s equivalence hypothesis for marked point processes, HAL Id: hal-03675081, 2022.
|
| [23] |
He, S.-W., Wang, J.-G. and Yan, J.-A., Semimartingale Theory and Stochastic Calculus, Science Press and CRC Press Inc., 1992.
|
| [24] |
Jacod, J., Calcul Stochastique et Problèmes de Martingales, Lecture Notes Mathematics 714, Springer, Berlin, Heidelberg, 1979.
|
| [25] |
Jacod, J. and Shiryaev, A. N., Limit Theorems for Stochastic Processes, 2nd edn., Springer, 2003.
|
| [26] |
Jeanblanc, M. and Li, L., Characteristics and constructions of default times, SIAM Journal on Financial Mathematics, 2020, 11(3): 720-749.
|
| [27] |
Jeanblanc, M. and Song, S., Martingale representation property in progressively enlarged filtrations, Stochastic Processes and their Applications, 2015, 125(11): 4242-4271.
|
| [28] |
Jeulin, T. and Yor, M., Grossissements de filtrations et semi-martingales:Formules explicites, In: DellacherieC., MeyerP. A. and WeilM.(eds.), Séminaire de Probabilités XII, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1978, 649: 78-97.
|
| [29] |
Jiao, Y., Kharroubi, I. and Pham, H., Optimal investment under multiple defaults risk: A BSDE-decomposition approach, The Annals of Applied Probability, 2013, 23(2): 455-491.
|
| [30] |
Kharroubi, I. and Lim, T., Progressive enlargement of filtrations and Backward SDEs with jumps, Journal of Theoretical Probability, 2014, 27: 683-724.
|
| [31] |
Kruse, T. and Popier, A., BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration, Stochastics, 2016, 88(4): 491-539.
|
| [32] |
Kunita, H., Absolute continuity of Markov processes, In: MeyerP. A.(ed.) Séminaire de Probabilités X Université de Strasbourg, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1976, 511: 44-77.
|
| [33] |
Schönbucher, P., A Libor market model with default risk, Working Paper, University of Bonn, 1999.
|
| [34] |
Schönbucher, P., A measure of survival, Risk Magazine, 2004, 17(8): 79-85.
|
| [35] |
Sharpe, M., General Theory of Markov Processes, Academic Press, 1988.
|
| [36] |
Song, S., Local martingale deflators for asset processes stopped at a default time st or just before s t-, arXiv: 1405.4474v4, 2016.
|
| [37] |
Yoeurp, C., Théorème de Girsanov généralisé et grossissement d’une filtration, In: Jeulin, T. and Yor, M.(eds.), Grossissements de Filtrations:Exemples et Applications, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1985, 1118: 172-196.
|