Penalization schemes for BSDEs and reflected BSDEs with generalized driver

Libo Li , Ruyi Liu , Marek Rutkowski

Probability, Uncertainty and Quantitative Risk ›› 2024, Vol. 9 ›› Issue (3) : 301 -338.

PDF (1463KB)
Probability, Uncertainty and Quantitative Risk ›› 2024, Vol. 9 ›› Issue (3) : 301 -338. DOI: 10.3934/puqr.2024014
research-article

Penalization schemes for BSDEs and reflected BSDEs with generalized driver

Author information +
History +
PDF (1463KB)

Abstract

The paper is directly motivated by the pricing of vulnerable European and American options in a general hazard process setup and a related study of the corresponding pre-default backward stochastic differential equations (BSDE) and pre-default reflected backward stochastic differential equations (RBSDE). The goal of this work is twofold. First, we aim to establish the well-posedness results and comparison theorems for a generalized BSDE and a reflected generalized BSDE with a continuous and nondecreasing driver $A$. Second, we study penalization schemes for a generalized BSDE and a reflected generalized BSDE in which we penalize against the driver in order to obtain in the limit either a constrained optimal stopping problem or a constrained Dynkin game in which the set of minimizer’s admissible exercise times is constrained to the right support of the measure generated by $A$.

Keywords

Generalized BSDEs / Reflected generalized BSDEs / Penalization scheme / Constrained optimal stopping / Constrained Dynkin game

Cite this article

Download citation ▾
Libo Li, Ruyi Liu, Marek Rutkowski. Penalization schemes for BSDEs and reflected BSDEs with generalized driver. Probability, Uncertainty and Quantitative Risk, 2024, 9(3): 301-338 DOI:10.3934/puqr.2024014

登录浏览全文

4963

注册一个新账户 忘记密码

Acknowledgements

The authors are very grateful to the anonymous reviewer for careful reading of their submission and criticism leading to an improvement of their work. The research of M. Rutkowski was supported by the Australian Research Council Discovery Project (Grant No. DP220103106).

References

[1]

Aksamit, A., Li, L. and Rutkowski, M., Generalized BSDEs and reflected BSDEs with random time horizon, Electronic Journal of Probability, 2023, 28(40): 1-41.

[2]

Blanchet-Scalliet, C., Eyraud-Loisel, A. and Royer-Carenzi, M., Modeling hedging of defaultable contingent claims with BSDE with random terminal time under progressively enlarged filtration, Bulletin Français d’Actuariat, 2010, 10(20): 85-100.

[3]

Cheridito, P. and Nam, K., BSE’s, BSDE’s and fixed-point problems, The Annals of Probability, 2017, 45(6): 3975-3828.

[4]

Crépey, S. and Song, S., Counterparty risk and funding: Immersion and beyond, Finance and Stochastics, 2016, 20: 901-930.

[5]

Dellacherie, C. and Meyer, P. A., Probabilités et Potentiel, Chapitres I à IV, Hermann, Paris, 1975.

[6]

Dellacherie, C. and Meyer, P. A., Probabilités et Potentiel, Chapitres V à VIII, Hermann, Paris, 1980.

[7]

Dumitrescu, R., Quenez, M. C. and Sulem, A., American options in an imperfect complete market with default, ESAIM: Proceedings and Surveys, 2018, 64: 93-110.

[8]

Eddahbi, M., Fakhouri, I. and Ouknine, Y., 𝐿(𝑝≥2)-solutions of generalized BSDEs with jumps and monotone generator in a general filtration, Modern Stochastics: Theory and Applications, 2017, 4: 25-63.

[9]

Essaky, E. H. and Hassani, M., General existence results for reflected BSDE and BSDE, Bulletin des Science Mathématiques, 2011, 135: 442-466.

[10]

Essaky, E. H. and Hassani, M., Generalized BSDE with 2-reflecting barriers and stochastic quadratic growth, Journal of Differential Equations, 2013, 254(3): 1500-1528.

[11]

Essaky, E. H., Hassani, M. and Ouknine, Y., Generalized Snell envelope as a minimal solution of BSDE with lower barriers, Bulletin des Science Mathématiques., 2013, 137: 498-508.

[12]

Essaky, E. H., Hassani, M. and Ouknine, Y., Stochastic quadratic BSDE with two RCLL obstacles, Stochastic Processes and their Applications, 2015, 124: 2147-2189.

[13]

El Karoui, N., Les aspects probabilistes du contrôle stochastique, In: Lecture Notes in Mathematics 876, École d’Été de Probabilités de Saint-Flour IX 1979, Springer, Berlin, 1981: 73-238.

[14]

El Karoui, N. and Huang, S.-J., A general result of existence and uniqueness of backward stochastic differential equations, In: Backward Stochastic Differential Equations (Paris, 1995-1996), Vol. 364 of Pitman Research Notes in Mathematics Series, Longman, Harlow, 1997: 27-36.

[15]

El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S. and Quenez, M. C., Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s, The Annals of Probability, 1997, 25(2): 702-737.

[16]

El Karoui, N., Peng, S., Quenez, M. C., Backward stochastic differential equations in finance, Mathematical Finance, 1997, 7(1): 1-71.

[17]

Eyraud-Loisel, A. and Royer-Carenzi, M., BSDE with random terminal time under enlarged filtration, and financial applications, Random Operators and Stochastic Equations, 2010, 18(2): 141-163.

[18]

Gal’čuk, L. I., Optional martingales, Mathematics of the USSR-Sbornik, 1981, 40(4): 435-468.

[19]

Gal’čuk, L. I., Decomposition of optional supermartingales, Mathematics of the USSR-Sbornik, 1982, 43(2): 145-158.

[20]

Gal’čuk, L. I., Stochastic integrals with respect to optional semartingales and random measure, Theory of Probability & Its Applications, 1985, 29(1): 93-108.

[21]

Grigorova, M., Imkeller, P., Offen, E., Ouknine, Y. and Quenez, M. C., Reflected BSDEs when the obstacle is not right-continuous and optimal stopping, The Annals of Applied Probability, 2017, 27: 3153-3188.

[22]

Grigorova, M., Imkeller, P., Ouknine, Y. and Quenez, M. C., Doubly reflected BSDEs and 𝐸𝑓-Dynkin games: Beyond the right-continuous case, Electronic Journal of Probability, 2018, 23(122): 1-38.

[23]

Grigorova, M., Imkeller, P., Ouknine, Y. and Quenez, M. C., Optimal stopping with f-expectations: The irregular case, Stochastic Processes and their Applications, 2020, 130: 1258-1288.

[24]

Grigorova, M., Quenez, M. C. and Sulem, A., European options in a nonlinear incomplete market model with default, SIAM Journal on Financial Mathematics, 2020, 11(3): 849-880.

[25]

Hamadène, S., Hassani, M. and Ouknine, Y., Backward SDEs with two rcll reflecting barriers without Mokobodski’s hypothesis, Bulletin des Sciences Mathématiques, 2010, 134: 874-899.

[26]

Hamadène, S. and Ouknine, Y., Reflected backward SDEs with general jumps, Theory of Probability and its Applications, 2016, 60: 263-280.

[27]

He, S. W., Wang, J. G. and Yan, J. A., Semimartingale Theory and Stochastic Calculus, Science Press and CRC Press, Beijing, 1992.

[28]

Jeanblanc, M. and Li, L., Characteristics and construction of default times, SIAM Journal on Financial Mathematics, 2020, 11(3): 720-749.

[29]

Kharroubi, I. and Lim, T., Progressive enlargement of filtrations and backward stochastic differential equations with jumps, Journal of Theoretical Probability, 2014, 27: 683-724.

[30]

Klimsiak, T., Rzymowski, M. and Słomiński, L., Reflected BSDEs with regulated trajectories, Stochastic Processes and their Applications, 2019, 129: 1153-1184.

[31]

Kobylanski, M., Quenez, M. C. and De Campagnolle, M. R., Dynkin games in a general framework, Electronic Journal of Probability, 2014, 2(86): 304-329.

[32]

Li, L., Liu, R. and Rutkowski, M., Vulnerable European and American options in a model with optional hazard process, Working paper, 2022.

[33]

Liang, G., Lyons, T. and Qiang, Z., Backward stochastic dynamics on a filtered probability space, The Annals of Probability, 2011, 39(4): 1422-1448.

[34]

Mertens, J. F., Théorie des processus stochastiques généraux applications aux surmartingales, Probability Theory and Related Fields, 1972, 22: 45-68.

[35]

Nikeghbali, A., An essay on the general theory of stochastic processes, Probability Surveys, 2006, 3: 345-412.

[36]

Papapantoleon, P., Possamaï D. and Saplaouras, A., Existence and uniqueness results for BSDE with jumps: The whole nine yards, Electronic Journal of Probability, 2018, 23(121): 1-68.

[37]

Pardoux, E. and Zhang, S., Generalized BSDEs and nonlinear Neumann boundary value problems, Probability Theory and Related Fields, 1998, 110: 535-558.

[38]

Peng, S., Nonlinear expectations, nonlinear evaluations and risk measures, In: Frittelli,M. and Runggaldier,W.(eds.), Lecture Notes in Math. 1856, Springer, Berlin, 2004: 165-253.

[39]

Peng, S., Dynamically consistent nonlinear evaluations and expectations, arXiv: 0501415v1, 2004.

[40]

Possamaï D. and Rodrigues, M., Reflections on BSDEs, arXiv: 2306.14615, 2024.

[41]

Ren, Y. and El Otmani, M., Generalized reflected BSDEs driven by a Lévy process and an obstacle problem for PDIEs with a nonlinear Neumann boundary condition, Journal of Computational and Applied Mathematics, 2010, 233: 2027-2043.

[42]

Revuz, D. and Yor, M., Continuous Martingales and Brownian Motion, 3rd ed., Springer, Berlin, 1999.

[43]

Zieba, W., A note on conditional Fatou lemma, Probability Theory and Related Fields, 1998, 78: 73-74.

AI Summary AI Mindmap
PDF (1463KB)

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/