Numerical Study on Cross-Frame Detailing Methods for Curved-Girder Bridges

Yuhao Li , Haiying Ma , Chivorn Sao , Bin Yan , Qiang Liu , Komarizadehasl Seyedmilad

Prestress Technology ›› 2025, Vol. 3 ›› Issue (4) : 25 -39.

PDF (1597KB)
Prestress Technology ›› 2025, Vol. 3 ›› Issue (4) :25 -39. DOI: 10.59238/j.pt.2025.04.003
Scientific Research
research-article

Numerical Study on Cross-Frame Detailing Methods for Curved-Girder Bridges

Author information +
History +
PDF (1597KB)

Abstract

Curved-girder bridge systems, owing to the bending-torsion coupling effect, tend to rotate out of plane under vertical loading. Compared with straight girder bridges, curved-girder bridges face greater difficulties during construction, particularly in regard to cross-frame installation. Three types of cross-frame detailing methods are employed, where the cross-section achieves the desired fit on the basis of the load type: no load fit (NLF), steel dead load fit (SDLF), and total dead load fit (TDLF). One of these methods determines the bridge’s final shape and workability; thus, in this study, curved multiple-girder bridges with different curvatures are studied numerically to examine the effects of different cross-frame detailing methods on the internal forces, deformations, and load-bearing capacities of curved-girder bridges. This study focuses on the construction stage, so only the steel dead load and weight of the concrete slab are considered. The analysis results reveal that for bridges with small curvature radii, the use of an SDLF or a TDLF reduces bridge deformation (vertical deflection and rotation) but increases internal forces relative to the NLF. When the curvature radius increases, the influence of the SDLF and TDLF on the bridge’s response diminishes. The study findings can be helpful for choosing proper detailing methods to use in the construction of composite curved I-girder bridges with various curvature radii.

Keywords

cross-frame / composite I-girder / curved-girder bridge / numerical analysis / bridge construction

Cite this article

Download citation ▾
Yuhao Li, Haiying Ma, Chivorn Sao, Bin Yan, Qiang Liu, Komarizadehasl Seyedmilad. Numerical Study on Cross-Frame Detailing Methods for Curved-Girder Bridges. Prestress Technology, 2025, 3(4): 25-39 DOI:10.59238/j.pt.2025.04.003

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davidson, J.S. Stability research into the design of curved steel bridges. In Analysis and Design of Plated Structures, 2nd ed.; Shanmugam, N.E., Wang, C.M., Eds.; Woodhead Publishing: Cambridge, UK, 2022; pp. 635-674, doi:10.1016/B978-0-12-823570-6.00010-0

[2]

Sennah, K.M.; Marzouck, M.H.; Kennedy, J.B. Horizontal bracing systems for curved steel I-girder bridges. In Structural Engineering, Mechanics and Computation; Zingoni, A., Ed.; Elsevier Science: Oxford, UK, 2001; pp. 599-606, doi:10.1016/B978-008043948-8/50064-3

[3]

Stith, J.; Petruzzi, B.; Helwig, T.; Engelhardt, M.; Frank, K.; Williamson, E. Guidelines for design and safe handling of curved I-shaped steel girders. 2010. https://rosap.ntl.bts.gov/view/dot/18284

[4]

Sharafbayani, M.; Linzell, D.G. Effect of temporary shoring location on horizontally curved steel I-girder bridges during construction. J. Bridge Eng. 2012, 17, 537-546, doi:10.1061/(ASCE)BE.1943-5592.0000269

[5]

Coletti, D.A.; White, D.W.; Nguyen, T.V.; Chavel, B.W.; Grubb, M.A.; Boring, C.G. Reliable fit-up of steel I-girder bridges. Transp. Res. Rec. 2017, 2642, 1-8, doi:10.3141/2642-01

[6]

Fasl, J.D.; Stith, J.C.; Helwig, T.A.; Schuh, A.; Farris, J.; Engelhardt, M.D.; Williamson, E.B.; Frank, K.H. Instrumen-tation of a horizontally curved steel I-girder bridge during construction. J. Struct. Eng. 2015, 141, 1-12, doi:10.1061/(ASCE)ST.1943-541X.0001110

[7]

Chavel, W.B.; Earls, C.J. Inconsistent detailing of cross-frame members in horizontally curved steel I-girder bridges. In Structures Congress 2005; ASCE: Reston, VA, USA, 2012; pp. 1-12, doi:10.1061/40753(171)34

[8]

Howell, T.D.; Earls, C.J. Curved steel I-girder bridge response during construction loading: Effects of web plumbness. J. Bridge Eng. 2007, 12, 485-493, doi:10.1061/(ASCE)1084-0702(2007)12:4(485)

[9]

Thrall, A.P.; Duarte, C.N.; Sun, S.Y.; Byers, D.D.; Zoli, T.P. Deployable tool to facilitate cross-frame installation in highly skewed and curved steel girder bridges. J. Bridge Eng. 2024, 29(5): 04024015, doi:10.1061/JBENF2.BEENG-6160

[10]

Feng, B.W.; Liu, Y.J.; Yang, X.; Liu, J.; Zhang, G.J.; Ma, Y.P. Experimental research on curved continuous steel-concrete composite twin I-girder bridge. Structures 2023, 54, 669-683, doi:10.1016/j.istruc.2023.05.081

[11]

Reichenbach, M C, White, J B, Park, S, et al. Field monitoring of cross frames in composite steel I-girder bridges. J. Bridge Eng. 2024, 29(8): 04024049, doi:10.1061/JBENF2.BEENG-6255

[12]

Linzell, D.; Leon, R.T.; Zureick, A.H. Experimental and analytical studies of a horizontally curved steel I-girder bridge during erection. J. Bridge Eng. 2004, 9, 521-530, doi:10.1061/(ASCE)1084-0702(2004)9:6(521)

[13]

Sanchez, T.A.; White, D.W. Stability of curved steel I-girder bridges during construction. Transp. Res. Rec. 2012,

[14]

Amani, M.; Alinia, M.M. The flexural behavior of horizontally curved steel I-girder bridge systems and sin-gle-girders. J. Constr. Steel Res. 2016, 118, 145-155, doi:10.1016/j.jcsr.2015.11.004

[15]

Chang, C.J.; White, D.W. An assessment of modeling strategies for composite curved steel I-girder bridges. Eng. Struct. 2008, 30, 2991-3002, doi:10.1016/j.engstruct.2008.04.011

[16]

Issa-El-Khoury, G.; Linzell, D.G.; Geschwindner, L.F. Computational studies of horizontally curved, longitudinal-ly stiffened, plate girder webs in flexure. J. Constr. Steel Res. 2014, 93, 97-106, doi:10.1016/j.jcsr.2013.10.018

[17]

Zureick, A.; Linzell, D.; Leon, R.T.; Burrell, J. Curved steel I-girder bridges: Experimental and analytical studies. Eng. Struct. 2000, 22, 180-190, doi:10.1016/S0141-0296(98)00107-2

[18]

Dong, J.; Sause, R. Behavior of hollow tubular-flange girder systems for curved bridges. J. Struct. Eng. 2010, 136, 174-182, doi:10.1061/(ASCE)ST.1943-541X.0000092

[19]

Dong, J.; Sause, R. Finite element analysis of curved steel girders with tubular flanges. Eng. Struct. 2010, 32, 319-327, doi:10.1016/j.engstruct.2009.09.018

[20]

Ma, H.Y.; Sause, R. Study of horizontally curved bridge girders with tubular top flanges. Struct. Infrastruct. Eng. 2016, 12, 786-800, doi:10.1080/15732479.2015.1051998

[21]

Grubb, M.A.; Yadlosky, J.M.; Duwadi, S.R. Construction issues in steel curved-girder bridges. Transp. Res. Rec. 1996, 1544, 64-70, doi:10.1177/0361198196154400108

[22]

Transportation Research Board; National Academies of Sciences, Engineering, and Medicine. Guidelines for Analysis Methods and Construction Engineering of Curved and Skewed Steel Girder Bridges, The National Academies Press: Washington, DC, USA, 2012, doi:10.17226/22729

[23]

Ma, H.Y.; Sause, R; M, Kourosh. Experimental and Analytical Investigation of System of Horizontally Curved Bridge Girders with Tubular Top Flanges. Struct. Infrastruct. Eng. 2018, 14(12):1664-1677, doi:10.1080/15732479.2018.1486438

AI Summary AI Mindmap
PDF (1597KB)

40

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/