Advances in the Study of Carbon Nanotube Fibers for Enhancing the Crack Resistance of Geopolymers

Qirun Lu , Ying Wang

Prestress Technology ›› 2025, Vol. 3 ›› Issue (4) : 1 -10.

PDF (903KB)
Prestress Technology ›› 2025, Vol. 3 ›› Issue (4) :1 -10. DOI: 10.59238/j.pt.2025.04.001
Reviews
research-article

Advances in the Study of Carbon Nanotube Fibers for Enhancing the Crack Resistance of Geopolymers

Author information +
History +
PDF (903KB)

Abstract

With increasing societal awareness of environmental protection, the production process of traditional cement has become an area in urgent need of innovation because of its significant carbon emission contributions and generation of industrial solid waste. As a new type of low-carbon cementitious material, geopolymers not only consume less energy and produce fewer carbon emissions but also effectively allow for the reutilization of industrial solid waste, demonstrating its immense potential for further development. However, the inherent brittleness and poor crack resistance of geopolymers limit their structural applications. The crack resistance of concrete can be significantly improved by utilizing self-stressing structures to generate internal stress or by taking prestressed concrete with its unique manufacturing methods. Furthermore, incorporating admixtures to enhance the material's inherent crack resistance presents another viable strategy. Owing to their excellent mechanical properties, carbon nanotube fibers offer new possibilities for addressing these limitations of geopolymers. In this review, the use of carbon nanotubes (CNTs) to enhance geopolymer performance is investigated. A comprehensive analysis of existing studies reveals that the incorporation of CNTs significantly improves the crack resistance and mitigates the brittleness of geopolymers. Optimal overall performance is frequently reported at CNT dosages between 0.12 wt.% and 0.14 wt.%. These findings provide a theoretical foundation for the practical engineering of CNT-reinforced geopolymers and contribute to the development of sustainable construction materials.

Keywords

carbon nanotube fibers / CNT / geopolymer / anti-cracking performance / crack control

Cite this article

Download citation ▾
Qirun Lu, Ying Wang. Advances in the Study of Carbon Nanotube Fibers for Enhancing the Crack Resistance of Geopolymers. Prestress Technology, 2025, 3(4): 1-10 DOI:10.59238/j.pt.2025.04.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review - Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials 2008, 22, 1305-1314, doi:10.1016/j.conbuildmat.2007.10.015.

[2]

He, J.; He, J.; Wang, Y.; Fan, Y.; Shi, H.; Cai, B.; Yan, G. Pathway of Carbon Emissions Peak for Cement Industry in China. Research of Environmental Sciences 2022, 35, 347-355, doi:10.13198/j.issn.1001-6929.2021.11.19.

[3]

Ministry of Ecology and Environment PRC. Annual Report on the Prevention and Control of Solid Waste Pollution in Large and Medium-sized Cities across China in 2020; 2020.

[4]

Wu, L. Urban Solid Waste Pollution Control and Recycling Measures. Modern Business Trade Industry 2021, 42, 166-168, doi:10.19311/j.cnki.1672-3198.2021.21.079.

[5]

Yu, C.; Zhang, L.; Zheng, D.; Yang, F.; Wang, Q.; Wu, W.; Wang, C.; Cang, D. Research Progress of Geopolymer Materials Prepared from Solid Waste and Their Applications. Scientia Sinica Technologica 2022, 52, 529-546, doi:10.1360/sst-2020-0448.

[6]

Davidovits, J. Geopolymers and Geopolymeric Materials. J Therm Anal 1989, 35, 429-441, doi: 10.1007/Bf01904446.

[7]

V. D., Glukhovsky; G. S., Rostovskaja; Rumyna, G.V. High strength slag-alkaline cements. In Proceedings of the 7th International Congress on the Chemistry of Cement, 1980; pp. 164-168.

[8]

van Jaarsveld, J.G.S.; van Deventer, J.S.J.; Lukey, G.C. The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem Eng J 2002, 89, 63-73, doi:10.1016/S1385-8947(02)00025-6.

[9]

Xu, H.; van Deventer, J.S.J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloid Surface A 2003, 216, 27-44, doi:10.1016/S0927-7757(02)00499-5.

[10]

Granizo ML. Activation Alcalina de Metacaolin: Desarrolllo de Nuevos Materials Cementantes. University Au-tonoma of Madrid, 1998.

[11]

Jiao, X.; Luo, X.; Yuan, C.; Chen, Q.; Ouyang, Z.; Kuang, J. Preparation of Scheelite Tailing-Metakaolin Based Geo-polymer with Different Aggregate Content & Gradation and Its Early Strength. Bulletin of the Chinese Ceramic Soci-ety 2015, 34, 3418-3424.

[12]

Zaidi, F.H.A.; Ahmad, R.; Abdullah, M.M.A.; Abd Rahim, S.Z.; Yahya, Z.; Li, L.Y.; Ediati, R. Geopolymer as under-water concreting material: A review. Construction and Building Materials 2021, 291, doi:10.1016/j.conbuildmat.2021.123276.

[13]

Zhao, J.; Cui, C.; Ge, Y.; Xiao, B.; Peng, H.; Zhang, J. Recent Development of Research on Durability of Geopoly-mer for Civil Structural Applications. Bulletin of the Chinese Ceramic Society 2016, 35, 2832-2840,2846.

[14]

Luo, A.; Zhang, B.; Zhao, Y.; Chen, S. Research Status and Development Trend on Durability of Geopolymer Con-crete. Guangdong Architecture Civil Engineering 2023, 30, 102-106, doi:10.19731/j.gdtmyjz.2023.11.028.

[15]

DAVIDOVITS, J. Environmentally Driven Geopolymer Cement Applications. In Proceedings of the Geopolymer 2002 Conference, Melbourne, 2002.

[16]

Ni, W.; Wang, E.; Zhou, J. Geopolymer - Green Cementitious Material of the 21st Century. Advanced Materials Industry 2003, 24-28.

[17]

Wang, Y.; Jie, Y.; Zhu, M.; Fang, C. Experimental Study on Performances of Fly Ash-based Geopolymer Cementi-tious Material with Low Admixtures Content. Journal of Shanghai Normal University(Natural Sciences) 2022, 51, 550-555, doi:10.3969/j.Issn.1000-5137.2022.04.022.

[18]

Xie, X.; Wang, Y.; Chen, J. Test and Performance Study on Metakaolin-fly Ash Base Geopolymer Lightweight Concrete. New Building Materials 2023, 50, 27-29,35, doi:10.3969/j.issn.1001-702X.2023.10.006.

[19]

Sonal, T.; Urmil, D.; Darshan, B. Behaviour of ambient cured prestressed and non-prestressed geopolymer concrete beams. Case Stud Constr Mat 2022, 16, doi:10.1016/j.cscm.2021.e00798.

[20]

Ismail, I.; Bernal, S.A.; Provis, J.L.; Hamdan, S.; van Deventer, J.S.J. Drying-induced changes in the structure of al-kali-activated pastes. Journal of Materials Science 2013, 48, 3566-3577, doi:10.1007/s10853-013-7152-9.

[21]

Gu, Y.; Fang, Y. Shrinkage,Cracking,Shrinkage-Reducing and Toughening of Alkali-Activated Slag Cement—A Short Review. Journal of The Chinese Ceramic Society 2012, 40, 76-84.

[22]

Wen, H. Discussion on the Cracking Problem of Self-stressing Sulfoaluminate Cement. Concrete Engineering 1999.

[23]

Bakar, M.B.C.; Rashid, R.S.M.; Amran, M.; Jaafar, M.S.; Vatin, N.I.; Fediuk, R. Flexural Strength of Concrete Beam Reinforced with CFRP Bars: A Review. Materials 2022, 15, doi:10.3390/ma15031144.

[24]

Yang, G.; Cheng, F.; Zuo, S.; Zhang, J.; Xu, Y.; Hu, Y.; Hu, X. Growing Carbon Nanotubes In Situ Surrounding Carbon Fiber Surface via Chemical Vapor Deposition to Reinforce Flexural Strength of Carbon Fiber Composites. Polymers 2023, 15, doi:10.3390/polym15102309.

[25]

Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58, doi: 10.1038/354056a0.

[26]

Chen, J. Study on Preparation and Freeze Resistance of Multi-walled Carbon Nanotube Modified Geopolymer Concrete. Master, Shanghai Normal University, 2025.

[27]

Li, G.; Wang, P. Microstructure and Mechanical Properties of Carbon Nanotubes - Cement Matrix Composites. Journal of the Chinese Ceramic Society 2005, 33, 105-108, doi:10.3321/j.issn:0454-5648.2005.01.021.

[28]

Li, X.; Ming, T.; Liu, Z.; Ren, Z.; Jiang, W. Research on Durability and Mechanical Properties of Carbon Nanotube Cement Matrix Composites. Bulletin of the Chinese Ceramic Society 2018, 37, 1497-1502.

[29]

Shi, T.; Li, Z.; Li, S. Autogenous Shrinkage and Crack Resistance of Carbon Nanotubes Reinforced Cement Based Composites. Acta Materiae Compositae Sinica 2019, 36, 1528-1535, doi:10.13801/j.cnki.fhclxb.20181210.002.

[30]

Xie, H. Crack Resistance of Carbon Nanotube/Polyacrylonitrile Fiber-Reinforced Concrete. Synthetic Fiber in China 2024, 53, 67-70.

[31]

Tao, H. Study on Crack Resistance of Multi-walled Carbon Nanotube/Polyacrylonitrile Composite Fiber Rein-forced Concrete. Journal of China & Foreign Highway 2013, 33, 304-306, doi:10.3969/j.issn.1671-2579.2013.04.075.

[32]

Szeląg, M.; Rajczakowska, M.; Rumiński, P.; Cwirzen, A. Thermally induced cracking patterns of the MWCNTs modified cement paste. Construction and Building Materials 2023, 408, doi:10.1016/j.conbuildmat.2023.133687.

[33]

Bashiri Rezaie, A.; Liebscher, M.; Airom, G.; Mohammadi, M.; Machata, P.; Mičušík, M.; Mechtcherine, V. Crack formation and crack width monitoring in cementitious composites with extremely high sensory responses through incorporation of smart PE fibers coated with single-walled carbon nanotubes. Cement and Concrete Compo-sites 2025, 160, doi:10.1016/j.cemconcomp.2025.106017.

[34]

Zhang, Y.; Li, S.; Liu, Z.; Hao, H. Atomistic investigation of surface modification effect on interfacial properties of CNTs reinforced AAS geopolymer. Journal of Building Engineering 2024, 84, 108630, doi:10.1016/j.jobe.2024.108630.

[35]

Sarker, P.K.; Haque, R.; Ramgolam, K.V. Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater Design 2013, 44, 580-586, doi:10.1016/j.matdes.2012.08.005.

[36]

Ren, J. Study on the Mechanical Properties of Fly Ash Geopolymer Concrete. Master, Ningxia University, 2016.

[37]

Nguyen, K.T.; Ahn, N.; Le, T.A.; Lee, K. Theoretical and experimental study on mechanical properties and flexural strength of fly ash-geopolymer concrete. Construction and Building Materials 2016, 106, 65-77, doi:10.1016/j.conbuildmat.2015.12.033.

[38]

Yang, T.; Zhu, H.J.; Zhang, Z.H. Influence of fly ash on the pore structure and shrinkage characteristics of me-takaolin-based geopolymer pastes and mortars. Construction and Building Materials 2017, 153, 284-293, doi:10.1016/j.conbuildmat.2017.05.067.

[39]

Pires, E.F.C.; de Azevedo, C.M.C.; Pimenta, A.R.; da Silva, F.J.; Darwish, F.A.I. Fracture Properties of Geopolymer Concrete Based on Metakaolin, Fly Ash and Rice Rusk Ash. Mater Res-Ibero-Am J 2017, 20, 630-636, doi:10.1590/1980-5373-Mr-2016-0974.

[40]

Zargaleh, M.R.A.; Mazloom, M.; Samimi, M.J.; Ramesht, M.H. The effect of replacing fly ash with GGBFS on the fracture parameters of geopolymer concrete. Mater Lett 2025, 390, doi:10.1016/j.matlet.2025.138394.

[41]

Maaz, M.; Ahmad Khan, R.; Sharma, R. Fatigue and fracture behaviour of geopolymer concrete. Materials Today: Proceedings 2023, 93, 163-169, doi:doi.org/10.1016/j.matpr.2023.07.113.

[42]

Li, F.P.; Liu, L.S.; Yang, Z.M.; Li, S. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste Granulated Blast Furnace Slag (GBFS) and functionalized Multi-Walled Carbon Nanotubes (MWCNTs). J Hazard Mater 2021, 401, doi:10.1016/j.jhazmat.2020.123339.

[43]

Xie, X.; Wang, Y.; Chen, J.; Xiang, X. Experiment and Performance Study of Nanofiber Modified Geopolymer Foam Concrete. Journal of Shanghai Normal University(Natural Sciences) 2024, 53, 781-788, doi:10.20192/j.cnki.JSHNU(NS).2024.06.010.

[44]

Filazi, A.; Yılmazel, R.; Pul, M. Developing Geopolymer Composites with Structural Damage Control Potential: Utilization of Blast Furnace Slag, Calcined Clay, and MWCNT. Iran J Sci Technol Trans Civ Eng 2024, 49, 1293-1315, doi:10.1007/s40996-024-01498-3.

[45]

Yin, P.; Sun, M.; Dong, Z. Influence of Carbon Nanotubes and Steel Fibers on Compressive Strength and Impact Resistance of Concrete. China Concrete and Cement Products 2021, 52-55, doi:10.19761/j.1000-4637.2021.03.052.04.

[46]

Xia, W.; Lu, S.; Xu, J.; Bai, E.; Du, Y. Influence of CNTs/CF on the Static Characteristics of Concrete and Analysis of Its Micro-Mechanism. New Chemical Materials 2022, 50, 278-281, doi:10.19817/j.cnki.issn1006-3536.2022.09.055.

[47]

Shen, D.; Lin, Z. Influence of Carbon Nanotubes and Steel Fibers on Compressive Strength and Impact Resistance of Concrete. Guizhou Science 2023, 41, 68-73, doi:10.3969/j.issn.1003-6563.2023.06.014.

[48]

Zhu, J.; Zhao, G.; Xiang, X.; Zhou, X. Electrical Resistance Tomography Detection of Concrete Cracks Based on Sensor Coatings. Nondestructive Testing 2023, 45, 8-13, doi:10.11973/wsjc202308002.

[49]

Li, F.P.; Yang, Z.M.; Chen, D.F.; Lu, Y.Y.; Li, S. Research on mechanical properties and micro-mechanism of Engi-neering Geopolymers Composites (EGCs) incorporated with modified MWCNTs. Construction and Building Materi-als 2021, 303, doi:10.1016/j.conbuildmat.2021.124516.

[50]

Li, F.; Yang, Z.; Zheng, A.; Li, S. Properties of modified engineered geopolymer composites incorporating mul-ti-walled carbon Nanotubes(MWCNTs) and granulated blast furnace Slag(GBFS). Ceramics International 2021, 47, 14244-14259, doi:10.1016/j.ceramint.2021.02.008.

[51]

Li, F.P.; Yang, Z.M.; Lu, H.F.; Li, S. Investigation on physical behavior, impermeability and micromechanism of engineering geopolymer composites modified with MWCNTs. Mater Today Commun 2023, 36, doi:10.1016/j.mtcomm.2023.106471.

[52]

Ghazouani, N.; Salmi, A.; Raza, A.; Elhag, A.B.; Shabbir, F.; Zahra, F. Mechanical strength and mineralogical prop-erties of fiber-reinforced geopolymer composites with multi-walled carbon nanotubes. Mater Lett 2025, 382, doi:10.1016/j.matlet.2024.137843.

[53]

Kanagaraj, B.; Anand, N.; Lubloy, E.; A, D.A. Influence of Multi-Walled Carbon Nanotube (MWCNT) on Flexural Behavior and Microstructure Characteristics of Geopolymer Concrete Beams. J Hazard Mater 2024, 20, e03317, doi:10.1016/j.cscm.2024.e03317.

AI Summary AI Mindmap
PDF (903KB)

30

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/