A Comprehensive Review and Analysis of Shear Strengthening of RC Beams with External Prestressing Bars

Komarizadehas Seyedmilad , Zhouhui Shen , Ye Xia , Al-Amin , Jose Turmo

Prestress Technology ›› 2025, Vol. 3 ›› Issue (3) : 1 -19.

PDF (1771KB)
Prestress Technology ›› 2025, Vol. 3 ›› Issue (3) : 1 -19. DOI: 10.59238/j.pt.2025.03.001
Review
research-article

A Comprehensive Review and Analysis of Shear Strengthening of RC Beams with External Prestressing Bars

Author information +
History +
PDF (1771KB)

Abstract

Shear failure in reinforced concrete (RC) structures, characterized by their sudden and brittle nature, often results from inadequate shear reinforcement or degradation due to aging or increased loading demands. To enhance shear capacity, various retrofitting techniques have been developed, with external prestressing bars recognized as an effective solution. These bars apply an active clamping force to improve shear resistance and delay the formation and propagation of diagonal cracks. This review presents a comprehensive analysis of experimental investigations and numerical models, such as strut-and-tie and damage-plasticity approaches, to evaluate shear strengthening with external prestressing bars. In this review, early exploratory studies, the evolution of experimental programs, and the development of analytical and finite element models for predicting the behavior of strengthened beams are examined. Particular attention is given to validating numerical models against experimental data, focusing on load-sharing mechanisms, ductility, failure modes, and serviceability. Practical design implications are evaluated, research gaps are identified, and recommendations for future studies are proposed to advance the implementation of this technique. Findings from authoritative sources are integrated to provide a definitive reference for researchers and engineers seeking sustainable and efficient shear retrofit solutions.

Keywords

shear strengthening / external prestressing bars / lifecycle assessment / structural durability / bridge technology

Cite this article

Download citation ▾
Komarizadehas Seyedmilad, Zhouhui Shen, Ye Xia, Al-Amin, Jose Turmo. A Comprehensive Review and Analysis of Shear Strengthening of RC Beams with External Prestressing Bars. Prestress Technology, 2025, 3(3): 1-19 DOI:10.59238/j.pt.2025.03.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Afzal, M.; Liu, Y.; Cheng, J.C.P.; Gan, V.J.L. Reinforced Concrete Structural Design Optimization: A Critical Review. Journal of Cleaner Production 2020, 260,120623, doi:10.1016/j.jclepro.2020.120623.

[2]

Diaferio, M.; Varona, F.B. Concrete Structures: Latest Advances and Prospects for a Sustainable Future. Applied Sci-ences 2024, 14,3803, doi:10.3390/app14093803.

[3]

Al-Sadoon, Z.A.; Junaid, M.T.; Al-Sabouni, U.; Dabous, S.A.; Almaghari, H. Resilience of Code Compliant Reinforced Concrete Buildings to Progressive Collapse: A Numerical Analysis Investigation. Results in Engineering 2024, 24,102982, doi:10.1016/j.rineng.2024.102982.

[4]

Zhao, X.-L.; Zhang, L. State-of-the-Art Review on FRP Strengthened Steel Structures. Engineering Structures 2007, 29,1808-1823, doi:10.1016/j.engstruct.2006.10.006.

[5]

Zhang, Y. FRP-Coated Steel Rebars for Durable Concrete Structures: Development and Performance. 2024.

[6]

Hassan, A.; Woloszyk, K.; Krata, P. FRP-Based Reinforcement Coatings of Steel with Application Prospects in Ships and Offshore Structures: A Review. Ships and Offshore Structures 2024, 1-15.

[7]

Wong, P.M. Thermal, Mechanical and Structural Performance of Fibre Reinforced Polymer (FRP) Composite Structures at Ambient and Elevated Temperatures; The University of Manchester (United Kingdom), 2004; ISBN 0-438-68657-8.

[8]

Saljoughian, A.; Nasrollahi, M.; Hafizi-Esfahani, A.; Mostofinejad, D. Use of Grooving Method for Shear Strengthen-ing of RC Beams with UHPFRC Panels. Case Studies in Construction Materials 2024, 21,e03725, doi:10.1016/j.cscm.2024.e03725.

[9]

Wu, Y.; Chen, B.; Lopes, S.M.R.; Lopes, A.V.; Lou, T. A Critical Review of Prestressed Concrete Structures with Exter-nal FRP Tendons. Structures 2025, 71,108049, doi:10.1016/j.istruc.2024.108049.

[10]

Xu, X.; Xu, Y.; Zhou, A.; Lai, Z. Analysis of the High-Speed Impact Effect of Raindrops on Prestressed Wind Turbine Blades and the Equivalent Load Construction Method. Prestress Technology 2024, 2,1-18, doi:10.59238/j.pt.2024.02.001.

[11]

Grayson-Wallace, B.; Aljasar, A.; Cheng, L.; Bolander, J.; Kunnath, S. Advances in Shear Strengthening of Concrete Bridge Girders. J. Bridge Eng. 2022, 27,03122002, doi:10.1061/(ASCE)BE.1943-5592.0001880.

[12]

Yang, J. Flexural Strengthening of Reinforced Concrete Beams Using Externally Bonded CFRP--An Innovative Method for the Application of Prestressed CFRP Laminates.

[13]

Feng, C.; Chen, S. Analysis and Practicality of a Plate Wall and Prestressed Steel Struts in the Interstage Backfill Con-struction of Deep Foundation Pits. Prestress Technology 2024, 2,56-70, doi:10.59238/j.pt.2024.01.005.

[14]

Yaqub, M.A.; Czaderski, C.; Matthys, S. Shear Strengthening of Precast Prestressed Bridge I-Girders Using Shape Memory Reinforcement. Engineering Structures 2024, 305,117743, doi:10.1016/j.engstruct.2024.117743.

[15]

Mak, M.W.T.; Lees, J.M. Arch Action in Reinforced Concrete Subjected to Shear. Engineering Structures 2023, 274,115096, doi:10.1016/j.engstruct.2022.115096.

[16]

Zararis, P.D. Shear Compression Failure in Reinforced Concrete Deep Beams. J. Struct. Eng. 2003, 129,544-553, doi:10.1061/(ASCE)0733-9445(2003)129:4(544).

[17]

Saad, A.G.; Sakr, M.A.; Khalifa, T.M.; Darwish, E.A. Shear Behavior of RC Beams with Openings under Impact Loads: Unveiling the Effects of HSC and RECC. Arch. Civ. Mech. Eng. 2024, 24,236, doi:10.1007/s43452-024-01041-1.

[18]

Elkafrawy, M.; Fayed, S.; Ramadan, B.A. Strengthening of RC Beams Defected in Shear Using External Bonded Ribs Made of Aluminum Tube Sandwich Filled with Strain Hardening Cementitious Composites. Case Studies in Construc-tion Materials 2024, 21,e03998, doi:10.1016/j.cscm.2024.e03998.

[19]

Komarizadehasl, S.; Al-Amin; Xia, Y.; Turmo, J. Advancements in Sustainable Prestressed Concrete Bridge Technolo-gies: A Comprehensive Review. Prestress Technology 2024, 2,1-25, doi:10.59238/j.pt.2024.04.001.

[20]

Canestro, E.; Strauss, A.; Sousa, H. Multiscale Modelling of the Long-Term Performance of Prestressed Concrete Struc-tures - Case Studies on T-Girder Beams. Engineering Structures 2021, 231,111761, doi:10.1016/j.engstruct.2020.111761.

[21]

Zhang, H.; Han, J. Calculation Method for Prestress Loss in Post-Tensioned Bonded Prestressed Concrete Wind Tur-bine Towers. Prestress Technology 2024, 2,34-46, doi:10.59238/j.pt.2024.03.004.

[22]

Ju, G. Implementation of Intelligent Prefabricated Construction for Pre-Stressed T-Beams on Mountainous Highways. Prestress Technology 2024, 2,41-57, doi:10.59238/j.pt.2024.02.004.

[23]

Eisa, A.S.; Kotrasova, K.; Sabol, P.; Mihaliková M.; Attia, M.G. Experimental and Numerical Study of Strengthening Prestressed Reinforced Concrete Beams Using Different Techniques. Buildings 2023, 14,29, doi:10.3390/build-ings14010029.

[24]

Chen, W.; Hao, H.; Chen, S. Numerical Analysis of Prestressed Reinforced Concrete Beam Subjected to Blast Loading. Materials & Design (1980-2015) 2015, 65, 662-674, doi:10.1016/j.matdes.2014.09.033.

[25]

Omran, G.M.; Beygi, M.H.A.; Dehestani, M. Numerical Analysis of Externally Prestressed Concrete Beams and Para-metric Study of Factors Affecting Their Flexural Performance. Int J Adv Eng Sci Appl Math 2020, 12,142-157, doi:10.1007/s12572-020-00284-4.

[26]

El-Basiouny, A.M.; Askar, H.S.; El-Zoughiby, M.E. Experimental and Numerical Study on the Performance of Exter-nally Prestressed Reinforced High Strength Concrete Beams with Openings. SN Appl. Sci. 2021, 3,37, doi:10.1007/s42452-020-04023-z.

[27]

Eisa, A.S.; Kotrasova, K.; Sabol, P.; Mihaliková M.; Attia, M.G. Experimental and Numerical Study of Strengthening Prestressed Reinforced Concrete Beams Using Different Techniques. Buildings 2023, 14,29, doi:10.3390/build-ings14010029.

[28]

Pandit, P.; Nagesh, S.K. Numerical Analysis of Corrosion-Induced Cracking in Prestressed Concrete Beams Due to the Corrosion Effects on Strands. Mechanics of Advanced Materials and Structures 2025, 1-14, doi:10.1080/15376494.2024.2441985.

[29]

Erdem, I.; Akyuz, U.; Ersoy, U.; Ozcebe, G. An Experimental Study on Two Different Strengthening Techniques for RC Frames. Engineering Structures 2006, 28,1843-1851, doi:10.1016/j.engstruct.2006.03.010.

[30]

Seręga, S.; Faustmann, D.H. Flexural Strengthening of Reinforced Concrete Beams Using External Tendons. Engineer-ing Structures 2022, 252,113277, doi:10.1016/j.engstruct.2021.113277.

[31]

Afefy, H.M.; Abdel-Aziz, M.A.; Kassem, N.M.; Mahmoud, M.H. Improving Flexural Performance of Post-Tensioned Pre-Cast Pre-Stressed RC Segmental T-Beams. Structures 2020, 24,304-316, doi:10.1016/j.istruc.2020.01.027.

[32]

Wang, L. Strand Corrosion in Prestressed Concrete Structures; 1st ed.ed. 2023.; Springer Nature Singapore: Singapore, 2023; ISBN 978-981-9920-56-3.

[33]

Val, D.V.; Andrade, C.; Sykora, M.; Stewart, M.G.; Bastidas-Arteaga, E.; Mlcoch, J.; Truong, Q.C.; El Soueidy, C.-P. Probabilistic Modelling of Deterioration of Reinforced Concrete Structures. Structural Safety 2025, 113,102454, doi:10.1016/j.strusafe.2024.102454.

[34]

Gkournelos, P.D.; Triantafillou, T.C.; Bournas, D.A. Seismic Upgrading of Existing Reinforced Concrete Buildings: A State-of-the-Art Review. Engineering Structures 2021, 240,112273, doi:10.1016/j.engstruct.2021.112273.

[35]

Li, Q.; Chen, M.; Li, Y.; Zhang, M. Shear Capacity Calculation Methods for Reinforced Concrete Structure. Advances in Civil Engineering 2025, 2025,5088121, doi:10.1155/adce/5088121.

[36]

Aboutaha, R.S.; Burns, N.H. Strengthening of Prestressed Concrete Composite Beams Using External Prestressed Stir-rups. pcij 1994, 39,64-74, doi:10.15554/pcij.07011994.64.74.

[37]

Ghallab, A.H.; Khafaga, M.A.; Farouk, M.F.; Essawy, A. Shear Behavior of Concrete Beams Externally Prestressed with Parafil Ropes. Ain Shams Engineering Journal 2013, 4,1-16, doi:10.1016/j.asej.2012.05.003.

[38]

Moehle, J.P. Key Changes in the 2019 Edition of the ACI Building Code (ACI 318-19). Concrete International 2019, 41,21-27.

[39]

Ju, H.; Yerzhanov, M.; Lee, D.; Shin, H.; Kang, T. Modifications to ACI 318 Shear Design Method for Prestressed Concrete Members: Detailed Method. PCI JOURNAL 2023, 68,60-85, doi:10.15554/pcij68.1-01.

[40]

Standard, B. Eurocode 2: Design of Concrete Structures Part-1. , 2004, 1, 230.

[41]

Guo, Y.; Gong, G.; Chin, C.; Zhang, C. Structural Design of Concrete to EC2 and GB50010-2010: A Comparison.; 2018; Vol. 175.

[42]

Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB 50010—2010(2015 Edition) Code for Design of Concrete Structures. China Architecture & Building Press: 2014

[43]

Sirimontree, S.; Witchayangkoon, B.; Khaosri, N.; Teerawong, J. Shear Strength of Reinforced Concrete Beam Strength-ened by Transverse External Post-Tension. American Journal of Engineering and Applied Sciences 2011, 4.

[44]

Lee, S.-H.; Lee, H.-D.; Shin, K.-J.; Kang, T.H.-K. Shear Strengthening of Continuous Concrete Beams Using Externally Prestressed Steel Bars. pcij 2014, 59,77-92, doi:10.15554/pcij.09012014.77.92.

[45]

Mera, L.A.B. SEISMIC PERFORMANCE AND SEISMIC DESIGN OF DAMAGE-CONTROLLED PRESTRESSED CONCRETE BUILDING STRUCTURES.

[46]

Xue, X.; Wang, X.; Hua, X.; Wu, M.; Wu, L.; Ma, Z.; Zhou, J. Experimental Investigation of the Shear Behavior of a Concrete Beam without Web Reinforcements Using External Vertical Prestressing Rebars. Advances in Civil Engineer-ing 2019, 2019,3452056, doi:10.1155/2019/3452056.

[47]

Rai, P.; Phuvoravan, K. Shear Behavior of RC Deep Beam Strengthened by V-Shaped External Rods. Int. j. eng. technol. innov. 2020, 10,41-59, doi:10.46604/ijeti.2020.4174.

[48]

Nugroho, L.; Haryanto, Y.; Hu, H.-T.; Hsiao, F.-P.; Pamudji, G.; Setiadji, B.H.; Hsu, C.-N.; Weng, P.-W.; Lin, C.-C. Prestressed Concrete T-Beams Strengthened with Near-Surface Mounted Carbon-Fiber-Reinforced Polymer Rods Un-der Monotonic Loading: A Finite Element Analysis. Eng 2025, 6,36, doi:10.3390/eng6020036.

[49]

Bencardino, F.; Condello, A. 3D FE Analysis of RC Beams Externally Strengthened with SRG/SRP Systems. Fibers 2016, 4,19, doi:10.3390/fib4020019.

[50]

Fayed, S.; Ghalla, M.; Hu, J.W.; Mlybari, E.A.; Albogami, A.; Yehia, S.A. Shear Strengthening of RC Beams Using Prestressed Near-Surface Mounted Bars Reducing the Probability of Construction Failure Risk. Materials 2024, 17,5701, doi:10.3390/ma17235701.

[51]

Parametric Study on Dynamic Behavior of Post-Tensioned Beams Using Nonlinear Finite Element Modeling. SJ 2022, 119,doi:10.14359/51734658.

[52]

Gao, W.Y.; Dai, J.-G.; Teng, J.G.; Chen, G.M. Finite Element Modeling of Reinforced Concrete Beams Exposed to Fire. Engineering Structures 2013, 52,488-501, doi:10.1016/j.engstruct.2013.03.017.

[53]

Gotame, M.; Franklin, C.L.; Blomfors, M.; Yang, J.; Lundgren, K. Finite Element Analyses of FRP-Strengthened Con-crete Beams with Corroded Reinforcement. Engineering Structures 2022, 257,114007, doi:10.1016/j.eng-struct.2022.114007.

[54]

Bencardino, F.; Spadea, G. FE Modeling of RC Beams Externally Strengthened with Innovative Materials. Mechanics Research Communications 2014, 58,88-96, doi:10.1016/j.mechrescom.2014.02.006.

[55]

Barour, S.; Zergua, A.; Bouziadi, F.; Kaloop, M.R.; El-Demerdash, W.E. Nonlinear Numerical and Analytical Assess-ment of the Shear Strength of RC and SFRC Beams Externally Strengthened with CFRP Sheets. Advances in Civil Engi-neering 2022, 2022,8741158, doi:10.1155/2022/8741158.

[56]

Demir, A.; Ercan, E.; Demir, D.D. Strengthening of Reinforced Concrete Beams Using External Steel Members. Steel and Composite Structures 2018, 27,453-464, doi:10.12989/SCS.2018.27.4.453.

[57]

Fiset, M.; Bastien, J.; Mitchell, D. Shear Strengthening of Concrete Members with Unbonded Transverse Reinforcement. Engineering Structures 2019, 180,40-49, doi:10.1016/j.engstruct.2018.11.008.

[58]

Calò M.; Ruggieri, S.; Buitrago, M.; Nettis, A.; Adam, J.M.; Uva, G. An ML-Based Framework for Predicting Prestress-ing Force Reduction in Reinforced Concrete Box-Girder Bridges with Unbonded Tendons. Engineering Structures 2025, 325,119400, doi:10.1016/j.engstruct.2024.119400.

[59]

Lee, Y.-H.; Sung, W.-J.; Lee, T.-H.; Seong, K.-W. Finite Element Formulation of a Composite Double T-Beam Subjected to Torsion. Engineering Structures 2007, 29,2935-2945, doi:10.1016/j.engstruct.2007.02.002.

[60]

Seręga, S.; Faustmann, D.H. Flexural Strengthening of Reinforced Concrete Beams Using External Tendons. Engineer-ing Structures 2022, 252,113277, doi:10.1016/j.engstruct.2021.113277.

[61]

Yan, L. The Numerical Analysis on Bending Behavior of External Prestressing Reinforced Simply Supported Bridge. 2008.

[62]

Ajith, K.; Mathew, A. Experimental and Analytical Study on Strengthening of Reinforced Concrete T-Beams Using External Prestressing.; Dasgupta, K., Sajith, A., Kartha, G., Joseph, A., Kavitha, P., Praseeda, K., Eds.; 2020; Vol. 46, pp. 465-474.

[63]

Adhikary, B.B.; Mutsuyoshi, H. Shear Strengthening of Reinforced Concrete Beams Using Various Techniques. Con-struction and Building Materials 2006, 20,366-373, doi:10.1016/j.conbuildmat.2005.01.024.

[64]

Xue, X.; Wu, M.; Zhou, P.; Zhou, J. Theoretical Formula of Ultimate Shear Strength for RC Beams without Transverse Reinforcement by Using External Vertical Prestressing Rebars. KSCE Journal of Civil Engineering 2021, 25,2522-2533, doi:10.1007/s12205-021-0911-2.

[65]

Ferreira, D.; Bairán, J.M.; Marí A. Shear Strengthening of Reinforced Concrete Beams by Means of Vertical Prestressed Reinforcement. Structure and Infrastructure Engineering 2016, 12,394-410, doi:10.1080/15732479.2015.1019893.

[66]

Junlong, Z.; Dongsheng, L. Shear-Flexural Cracking Strength of RC Beams with External Vertical Prestressing Rebars: Theoretical Investigation and Numerical Simulation. Advances in Structural Engineering 2022, 25,593-610, doi:10.1177/13694332211060634.

[67]

Oukaili, N.; Peera, I. Behavioral Nonlinear Modeling of Prestressed Concrete Flexural Members with Internally Un-bonded Steel Strands. Results in Engineering 2022, 14,100411, doi:10.1016/j.rineng.2022.100411.

[68]

Abtahi, S.; Li, Y. Efficient Modeling of Steel Bar Slippage Effect in Reinforced Concrete Structures Using a Newly Implemented Nonlinear Element. Computers & Structures 2023, 279,106958, doi:10.1016/j.compstruc.2022.106958.

[69]

Jiang, H.; Chorzepa, M.G. An Effective Numerical Simulation Methodology to Predict the Impact Response of Pre-Stressed Concrete Members. Engineering Failure Analysis 2015, 55,63-78, doi:10.1016/j.engfailanal.2015.05.006.

[70]

Valiukas, D.; Kaklauskas, G.; Sokolov, A.; Jakubovskis, R. Features of Bond-Slip Relations: 3D Finite Element Analysis Based on Tests of Short RC Ties. Case Studies in Construction Materials 2024, 20,e03387, doi:10.1016/j.cscm.2024.e03387.

[71]

André D.; Iordanoff, I.; Charles, J.; Néauport, J. Discrete Element Method to Simulate Continuous Material by Using the Cohesive Beam Model. Computer Methods in Applied Mechanics and Engineering 2012, 213-216,113-125, doi:10.1016/j.cma.2011.12.002.

[72]

Wang, Y.Z.; Zhao, Y.X.; Gong, F.Y.; Dong, J.F.; Maekawa, K. Developing a Three-Dimensional Finite Element Analysis Approach to Simulate Corrosion-Induced Concrete Cracking in Reinforced Concrete Beams. Engineering Structures 2022, 257,114072, doi:10.1016/j.engstruct.2022.114072.

[73]

Song, W.; Liu, Y.; Shang, F. Deformation Monitoring and Numerical Simulation of Prestressed Concrete Beam with Local Corrosion and Fracture of Prestressed Steel. LHB 2023, 109,2236992, doi:10.1080/27678490.2023.2236992.

[74]

Sun, X.; Gong, F.; Zhao, Y.; Zeng, B.; Maekawa, K. An Integrated Material-Structural Analysis of Prestress Concrete Affected by Corrosion of Non-Prestressed Reinforcement. Advances in Structural Engineering 2024, 27,1580-1598, doi:10.1177/13694332241255742.

[75]

Wang, L. Strand Corrosion in Prestressed Concrete Structures; Springer Nature: Singapore, 2023; ISBN 978-981-9920-54-9.

[76]

Aliasghar-Mamaghani, M.; Koutromanos, I.; Roberts-Wollmann, C.; Hebdon, M. Finite Element Analysis of Chloride Ingress in Prestressed Concrete Bridge Girders Accounting for Service-Life Ambient Conditions. J. Struct. Eng. 2023, 149,04023156, doi:10.1061/JSENDH.STENG-11686.

[77]

Gong, S.; Sun, F.; Chen, K.; Feng, X. Finite-Element Performance Degradation Behavior of a Suspension Prestressed Concrete Arch Bridge with Grouting Defects. Buildings 2024, 14,399, doi:10.3390/buildings14020399.

[78]

Ye, M.; Li, L.; Pei, B.; Yoo, D.-Y.; Li, H. Shear Behavior of Externally Prestressed Ultra-High-Performance Concrete (UHPC) T-Beams without Stirrups. Engineering Structures 2023, 288,116217, doi:10.1016/j.engstruct.2023.116217.

[79]

Tran, C.T.N.; Nguyen, X.H.; Le, A.T.; Nguyen, H.C.; Le, D.D. Shear Tests of GFRP-Reinforced Concrete Beams Strengthened in Shear by Textile Reinforced Concrete. Structures 2021, 34,4339-4349, doi:10.1016/j.istruc.2021.10.045.

[80]

Li, Z.; Chen, B.; Wang, X.; Lou, T. Assessment of Externally Prestressed Beams with FRP Rebars Considering Bond-Slip Effects. Materials 2025, 18,787, doi:10.3390/ma18040787.

[81]

Godat, A.; Labossière, P.; Neale, K.W.; Chaallal, O. Behavior of RC Members Strengthened in Shear with EB FRP: Assessment of Models and FE Simulation Approaches. Computers & Structures 2012, 92-93,269-282, doi:10.1016/j.compstruc.2011.10.018.

[82]

Xu, D.; Wang, T.; Wang, S.; Department of Bridge Engineering, Tongji University, Shanghai 200092, China A Stress Index-Based Tendon Optimization Method for Prestressed Concrete Continuous Girder Bridges. Prestress Technology 2023, 27,3-14, doi:10.59238/j.pt.2023.01.001.

[83]

Zhang, N.; Wu, Y.; Gu, Q.; Huang, S.; Sun, B.; Du, R.; Chang, R. Refined Three-Dimensional Simulation of Ribbed Bar Pull-out Tests Based on an Enhanced Peridynamic Model. Engineering Structures 2023, 278,115519, doi:10.1016/j.eng-struct.2022.115519.

[84]

Zhou, Y.-W.; Wu, Y.-F.; Yun, Y. Analytical Modeling of the Bond-Slip Relationship at FRP-Concrete Interfaces for Adhesively-Bonded Joints. Composites Part B: Engineering 2010, 41,423-433, doi:10.1016/j.compositesb.2010.06.004.

[85]

Salameh, A.; Hawileh, R.; Safieh, H.; Assad, M.; Abdalla, J. Elevated Temperature Effects on FRP-Concrete Bond Behavior: A Comprehensive Review and Machine Learning-Based Bond Strength Prediction. Infrastructures 2024, 9,183, doi:10.3390/infrastructures9100183.

[86]

Wang, Z.; Li, F. Stage-by-Stage Prestressing Arrangement Design in the Design of Bridges with Hybrid Internal and External Prestressing Tendons. Prestress Technology 2023, 2,11-26, doi:10.59238/j.pt.2023.02.002.

[87]

Bin, S.; Li, Z. Multi-Scale Modeling and Trans-Level Simulation from Material Meso-Damage to Structural Failure of Reinforced Concrete Frame Structures under Seismic Loading. Journal of Computational Science 2016, 12,38-50, doi:10.1016/j.jocs.2015.11.003.

[88]

Laurin, F.; Carrere, N.; Huchette, C.; Maire, J.-F. A Multiscale Hybrid Approach for Damage and Final Failure Predic-tions of Composite Structures. Journal of Composite Materials 2013, 47,2713-2747, doi:10.1177/0021998312470151.

[89]

Wang, H.; Yan, H.; Rong, C.; Yuan, Y.; Jiang, F.; Han, Z.; Sui, H.; Jin, D.; Li, Y. Multi-Scale Simulation of Complex Systems: A Perspective of Integrating Knowledge and Data. ACM Comput. Surv. 2024, 56,1-38, doi:10.1145/3654662.

[90]

Davey, M.J.; Abdouka, K.; Al-Mahaidi, R. Exterior Post-Tensioned Band Beam to Column Connections under Earth-quake Loading. Australian Journal of Structural Engineering 2016, 17,14-27, doi:10.1080/13287982.2015.1116179.

[91]

Wang, H.-T.; Zhu, C.-Y.; Tan, K.H.; Zhu, G.; Wu, Q. Enhancing Shear Behavior of RC Beams Using an Innovative Prestressed CFRP System: Concept and Experimental Studies. Engineering Structures 2025, 329,119851, doi:10.1016/j.engstruct.2025.119851.

[92]

Ramseyer, C.; Kang, T.H.-K. Post-Damage Repair of Prestressed Concrete Girders. Int J Concr Struct Mater 2012, 6,199-207, doi:10.1007/s40069-012-0019-7.

[93]

Ayensa, A.; Oller, E.; Beltrán, B.; Ibarz, E.; Marí A.; Gracia, L. Influence of the Flanges Width and Thickness on the Shear Strength of Reinforced Concrete Beams with T-Shaped Cross Section. Engineering Structures 2019, 188,506-518, doi:10.1016/j.engstruct.2019.03.057.

[94]

Deng, Y.; Ma, F.; Zhang, H.; Wong, S.H.F.; Pankaj, P.; Zhu, L.; Ding, L.; Bahadori-Jahromi, A. Experimental Study on Shear Performance of RC Beams Strengthened with NSM CFRP Prestressed Concrete Prisms. Engineering Structures 2021, 235,112004, doi:10.1016/j.engstruct.2021.112004.

[95]

Peng, H.; Zhang, J.; Shang, S.; Liu, Y.; Cai, C.S. Experimental Study of Flexural Fatigue Performance of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates. Engineering Structures 2016, 127,62-72, doi:10.1016/j.eng-struct.2016.08.026.

[96]

Motavalli, M.; Czaderski, C.; Pfyl-Lang, K. Prestressed CFRP for Strengthening of Reinforced Concrete Structures: Recent Developments at Empa, Switzerland. J. Compos. Constr. 2011, 15,194-205, doi:10.1061/(ASCE)CC.1943-5614.0000125.

[97]

Ruiz-Pinilla, J.G.; Montoya-Coronado, L.A.; Ribas, C.; Cladera, A. Finite Element Modeling of RC Beams Externally Strengthened with Iron-Based Shape Memory Alloy (Fe-SMA) Strips, Including Analytical Stress-Strain Curves for Fe-SMA. Engineering Structures 2020, 223,111152, doi:10.1016/j.engstruct.2020.111152.

[98]

Xu, D.; Wang, T.; Wang, S.; Department of Bridge Engineering, Tongji University, Shanghai 200092, China A Stress Index-Based Tendon Optimization Method for Prestressed Concrete Continuous Girder Bridges. Prestress Technology 2023, 27,3-14, doi:10.59238/j.pt.2023.01.001.

[99]

Chen, S. Experimental Study of Prestressed Steel-Concrete Composite Beams with External Tendons for Negative Moments. Journal of Constructional Steel Research 2005, 61,1613-1630, doi:10.1016/j.jcsr.2005.05.005.

[100]

Javidan, F.; Moriarty, J.M.; Ooi, E.T.; Kahandawa, G.C. Experimental and Numerical Investigations on the Ultimate Flexural Strength of Concrete Beams Reinforced with Grade 750 Steel Bars. Structures 2024, 66,106844, doi:10.1016/j.istruc.2024.106844.

[101]

Garden, H.N.; Hollaway, L.C. An Experimental Study of the Failure Modes of Reinforced Concrete Beams Strength-ened with Prestressed Carbon Composite Plates. Composites Part B: Engineering 1998, 29,411-424, doi:10.1016/S1359-8368(97)00043-7.

[102]

Cao, G.; Han, C.; Dai, Y.; Zhang, W. Long-Term Experimental Study on Prestressed Steel-Concrete Composite Con-tinuous Box Beams. J. Bridge Eng. 2018, 23,04018067, doi:10.1061/(ASCE)BE.1943-5592.0001269.

[103]

Ng, C.K.; Tan, K.H. Flexural Behaviour of Externally Prestressed Beams. Part II: Experimental Investigation. Engineer-ing Structures 2006, 28,622-633, doi:10.1016/j.engstruct.2005.09.016.

[104]

Shi, B.; Zhu, W.; Yang, H.; Liu, W.; Tao, H.; Ling, Z. Experimental and Theoretical Investigation of Prefabricated Tim-ber-Concrete Composite Beams with and without Prestress. Engineering Structures 2020, 204,109901, doi:10.1016/j.eng-struct.2019.109901.

[105]

Deng, J.; Shao, X.; Li, L.; Cai, S. Experimental Research on the Creep Behavior of Twice Prestressed Concrete Beam. Structural Engineering International 2006, 16,53-58, doi:10.2749/101686606777962684.

[106]

Saadatmanesh, H.; Albrecht, P.; Ayyub, B.M. Experimental Study of Prestressed Composite Beams. J. Struct. Eng. 1989, 115,2348-2363, doi:10.1061/(ASCE)0733-9445(1989)115:9(2348).

[107]

Lorenc, W.; Kubica, E. Behavior of Composite Beams Prestressed with External Tendons: Experimental Study. Journal of Constructional Steel Research 2006, 62,1353-1366, doi:10.1016/j.jcsr.2006.01.007.

[108]

Toyota, Y.; Hirose, T.; Ono, S.; Shidara, K. Experimental Study on Vibration Characteristics of Prestressed Concrete Beam. Procedia Engineering 2017, 171,1165-1172, doi:10.1016/j.proeng.2017.01.483.

[109]

Wu, G.; Wu, Z.S.; Jiang, J.B.; Tian, Y.; Zhang, M. Experimental Study of RC Beams Strengthened with Distributed Prestressed High-Strength Steel Wire Rope. Magazine of Concrete Research 2010, 62,253-265, doi:10.1680/macr.2010.62.4.253.

[110]

Peng, H.; Zhang, J.; Shang, S.; Liu, Y.; Cai, C.S. Experimental Study of Flexural Fatigue Performance of Reinforced Concrete Beams Strengthened with Prestressed CFRP Plates. Engineering Structures 2016, 127,62-72, doi:10.1016/j.eng-struct.2016.08.026.

AI Summary AI Mindmap
PDF (1771KB)

479

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/