Research Status of Structural Optimization Design, Materials, and Prestressing Techniques for PC Small Box Beams: A Review of Research Progress

Fangyuan Li , Luda Li

Prestress Technology ›› 2025, Vol. 3 ›› Issue (1) : 14 -34.

PDF (1027KB)
Prestress Technology ›› 2025, Vol. 3 ›› Issue (1) : 14 -34. DOI: 10.59238/j.pt.2025.01.002
Review
research-article

Research Status of Structural Optimization Design, Materials, and Prestressing Techniques for PC Small Box Beams: A Review of Research Progress

Author information +
History +
PDF (1027KB)

Abstract

Based on recent research findings and an analysis of the literature on Precast concrete (PC) small box girders, this paper presents a systematic discussion of the optimization design, materials, and prestressing techniques for PC small box girder structures. The study analyzes and summarizes the optimization design of PC small box girders in terms of diaphragms, prestressing tendons, cross-sectional dimensions, and materials. It synthesizes the impact of these optimization methods on the mechanical performance of PC small box girders. Furthermore, the current research status of retard-bonded and external prestressing technologies is discussed in detail, along with a summary of the mechanical properties of small box girders utilizing these techniques. Finally, several future research directions are proposed on the basis of the current state of research.

Keywords

PC small box girders / optimization designs / prestressing technology / mechanical performance

Cite this article

Download citation ▾
Fangyuan Li, Luda Li. Research Status of Structural Optimization Design, Materials, and Prestressing Techniques for PC Small Box Beams: A Review of Research Progress. Prestress Technology, 2025, 3(1): 14-34 DOI:10.59238/j.pt.2025.01.002

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yang, H.; Jiang, L.; et al. Safety Evaluation for Fabricated Small Box Girder Bridges Based on Fuzzy Analytic Hierarchy Process and Monitoring Data. Sensors (Basel, Switzerland) 2024, Vol.24, 4592, doi:10.3390/s24144592.

[2]

Qi, H.; Liu, Y.; et al. Evaluation and Study of Long Term Performance of the Prestressed Concrete Small Box-Girder. Highway 2021, Vol. 66, 154-158.

[3]

Liu, J.-t.; Zhu, W.-q.; et al. Temperature Characteristics of Prestressed Concrete Small Box-Girder with EPS Internal Formwork. Journal of China & Foreign Highway 2020, Vol. 40, 124-130, doi:10.14048/j.issn.1671-2579.2020.04.026.

[4]

Huang, X.; Bu, Z.; et al. Experiment Design of Precast Small Box Girder and CIP Hidden Bent Cap Structural System. Journal of Physics: Conference Series 2023, Vol. 2476, 012012, doi:10.1088/1742-6596/2476/1/012012.

[5]

Li, K.; Zheng, Y.; et al. Mechanism Analysis of Small Box Girder Diseases and Summary of Reinforcement Treatment Strategies. Journal of Physics: Conference Series 2020, Vol. 1578, 012184, doi:10.1088/1742-6596/1578/1/012184.

[6]

Wang, C.; Zhang, Y. Influence of geometric characteristics on distortion effect of thin-walled box girders. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition) 2020, Vol. 50, 89-95, doi:10.3969/j.issn.1001-0505.2020.01.012.

[7]

Wang, C.; Zhang, Y. Transverse internal force analysis on box girder based on external load correction. Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition) 2021, Vol. 51, 23-29, doi:10.3969/j.issn.1001-0505.2021.01.004.

[8]

Zhang, Y.; Long, J.; et al. Research on Influence of Mid-span Diaphragm on Distortion Effect of Box Girders. Journal of the China Railway Society 2022, Vol. 44, 150-156.

[9]

Huang, J. On Effect of Middle Diaphragm in Precast Concrete Small-box Girder Structure. Urban Roads Bridges & Flood Control 2022, 77-79, doi:10.16799/j.cnki.csdqyfh.2022.03.019.

[10]

Guan, L.; Jia, P.; et al. Study on the Influencing Factors of Transverse Distribution Coefficients in Composite Small Box Girders. Fujian Building Materials 2020, 10-13.

[11]

Zhu, W. Analysis on the Influence of the Number of Cross-Middle Diaphragms of Prefabricated Small Box Girder on the Overall Stress of Structure. Northern Communications 2020, 19-21,25, doi:10.15996/j.cnki.bfjt.2020.09.005.

[12]

Xie, J.; Zhang, H.; et al. Influence of diaphragm on mechanical properties of fabricated small box girder. Engineering Construction 2021, Vol. 53, 45-48,78, doi:10.13402/j.gcjs.2021.03.040.

[13]

Xu, C.; Li, X.; et al. Experimental Research on Lateral Stress of Multi-box Small Box Girder Mode. Northern Communi-cations 2024, 13-16.

[14]

Mai, X. Study on optimal layout of cross-diaphragm in oblique small box girder. Journal of China & Foreign Highway 2023, Vol. 43, 150-154.

[15]

Deng, Q.; Xiao, K.; et al. Influence of Diaphragm Parameters on Wide Bridge of Fabricated Box Girder. Journal of Shenyang University:Natural Science 2019, Vol.31, 62-65,72, doi:10.16103/j.cnki.21-1583/n.2019.01.012.

[16]

Miao, W. Research on the setting method of transverse diaphragms for 30m prefabricated small box girders. Engineer-ing and Construction 2023, Vol. 37, 977-981.

[17]

Zhou, J.; Zhang, H.; et al. Study on Load Transverse Distribution Rule of New Small Box Girder before and after Hinge Joint Damage. Journal of Chongqing Jiaotong University(Natural Science) 2019, Vol. 38, 34-40, doi:10.3969/j.issn.1674-0696.2019.11.06.

[18]

Rafieizonooz, M.; Jang, H.; et al. Performances and properties of steel and composite prestressed tendons - A review. Heliyon 2024, Vol. 10, e31720, doi:10.1016/j.heliyon.2024.e31720.

[19]

Ding, Z.; Cao, Q. A state-of-the-art review of flexural behaviors of PC beams with corroded prestressing tendons. Structures 2024, Vol. 63, 106430, doi:10.1016/j.istruc.2024.106430.

[20]

Zhang, H.; Liu, X.; et al. Design of prestressed tendons in prestressed concrete small box girder based on topology optimization of asymptotic evolutionary algorithms. Engineering Journal of Wuhan University 2022, Vol. 55, 1135-1140, doi:10.14188/j.1671-8844.2022-11-007.

[21]

Zhang, H.; Liu, X.; et al. A topological optimization design method for prestressed steel strands of prestressed small box girder bridges. 202110217734.5, 2021.

[22]

Luis Bernardo Fargier Gabaldón, A.M.A.; Chacón-Valero, E. Sizing Continuity Tendons in Segmental Cantilever Bridges. Practice Periodical on Structural Design and Construction 2024, Vol. 29, 06023002, doi:10.1061/ppscfx.Sceng-1351.

[23]

Xiao, Y. Adaptability Analysis of Transverse Distribution Coefficients and Steel Tendons in Variable-Width Small Box Girders. Engineering and Technological Research 2021, Vol. 6, 33-34, doi:10.19537/j.cnki.2096-2789.2021.14.014.

[24]

Kou, Y. Optimal Design of Prefabricated Prestressed Concrete Box Girder Bridges. Communications Science and Tech-nology Heilongjiang 2018, Vol. 41, 90-91,93, doi:10.16402/j.cnki.issn1008-3383.2018.03.050.

[25]

Chen, H. Analysis of Optimization Measures of Longitudinal Prestress Tensioning Process on Long-span PC Beam Bridge. Highway Engineering 2019, Vol. 44, 131-137, doi:10.19782/j.cnki.1674-0610.2019.02.024.

[26]

Liu, M.; Zeng, H.; et al. Reasonable Construction Sequence and Anti-cracking Measures of Long-span Prestressed Concrete Small Box Girder Bridge. Journal of Wuhan University of Technology(Transportation Science & Engineering) 2021, Vol. 45, 1123-1127, doi:10.3963/j.issn.2095-3844.2021.06.022.

[27]

Sheng, X.; Sun, Q.; et al. Refinement research on mechanical behaviors of prestressed anchorage area of new-type standard concrete box girder. Journal of Railway Science and Engineering 2023, Vol. 20, 2572-2581, doi:10.19713/j.cnki.43-1423/u.T20221355.

[28]

Liu, Y.; Wang, H.; et al. Grouting test of prestressed duct and slurry characteristics. Journal of Shandong Jiaotong Uni-versity 2021, Vol. 29, 84-90,98, doi:10.3969/j.issn.1672-0032.2021.04.012.

[29]

Yao, Z.; Fan, L.; et al. Construction Quality Control of Prestressed Post Tensioning Method Based on Effective Pre-stressed Detection of Anchor. Journal of China & Foreign Highway 2020, Vol. 40, 179-183, doi:10.14048/j.issn.1671-2579.2020.04.039.

[30]

Qu, G.; Zhou, G.; et al. The detection of grouting compactness of pre-stressed ducts based on the impact-echo method. Geophysical and Geochemical Exploration 2019, Vol. 43, 919-924, doi:10.11720/wtyht.2019.1098.

[31]

Zhong, J.; Wei, G. Application of the Impact-Echo Method in Non-Destructive Testing of Grouting Quality in Pre-stressed Ducts. Transportation Technology and Management 2021, 146-147.

[32]

Wei, Z.; Zhang, H. Research on detection of grouting defects intendons of small box girder by impact echo method. Shanxi Architecture 2021, Vol. 47, 146-149,198, doi:10.13719/j.cnki.1009-6825.2021.07.052.

[33]

Lee, D.-I.; Choi, H.; et al. Utilization of Unsupervised Machine Learning for Detection of Duct Voids inside PSC Box Girder Bridges. Applied Sciences 2022, Vol. 12, 1270, doi:10.3390/app12031270.

[34]

Jiang, F. Key Points and Technology Process of Prefabrication Construction of 25 m Small Box Girder. Construction & Design for Engineering 2022, 146-148, doi:10.13616/j.cnki.gcjsysj.2022.05.245.

[35]

Shi, B. Discussion on the Cause of Cracks in Web of Prestressed Concrete Box Girder. Construction & Design for Engi-neering 2019, 133-134,137, doi:10.13616/j.cnki.gcjsysj.2019.04.045.

[36]

Ma, X.; Chen, B.; et al. Optimal design for a 30 m prestressed UHPC box girder. Journal of Fuzhou University(Natural Science Edition) 2019, Vol. 47, 398-404.

[37]

Ma, X.; Tang, Z.; et al. Experimental Study on Flexural Behaviors and Structural Optimization of 30 m-Long Pre-stressed UHPC Box Girder. Bridge Construction 2024, Vol. 54, 93-99, doi:10.20051/j.issn.1003-4722.2024.03.013.

[38]

Lu, Z.; Du, P.; et al. Optimal Design of Small Box Girder of Lightweight Ultra-high Performance Concrete Beam. The World of Building Materials 2022, Vol. 43, 123-126.

[39]

Guan, W.; Duan, L. Optimization design of UHPC-NC continuous box girder bridge based on response surface method. Journal of China & Foreign Highway 2023, Vol. 43, 76-82.

[40]

Wu, S.; He, H.; et al. Section optimum design of continuous structures based on full stress criterion. Journal of Vibration and Shock 2021, Vol. 40, 250-257, doi:10.13465/j.cnki.jvs.2021.18.032.

[41]

Guo, Y.; Peng, J.; et al. Disease Cause Analysis and Treatment of Local Cracks in Continuous End Web of Prestressed Concrete Small Box Girder. Northern Communications 2021, 23-26,31, doi:10.15996/j.cnki.bfjt.2021.12.006.

[42]

Zhao, S.; Li, G. Analysis on the Causes of Cracks in Curved Box Girder Bridges with Small Radius. IOP Conference Series: Earth and Environmental Science 2020, Vol. 510, 052069, doi:10.1088/1755-1315/510/5/052069.

[43]

Chen, Y.-J.; Huang, X.-C.; et al. Propagation Effect Analysis of Existing Cracks in Box Girder Bridges Based on the Criterion of Compound Crack Propagation. Buildings 2024, Vol. 14, 2958, doi:10.3390/buildings14092958.

[44]

Sun, M.; Liu, S.; et al. Analysis of Deteriorations of Precast Segmental Small Box Girder Bridge and Modification Design. World Bridges 2022, Vol. 50, 112-117.

[45]

Wang, Q.; Zheng, G.; et al. Local Stress Analysis and Structural Optimization of Small Box Girder Webs Based on ANSYS. Highway 2023, Vol. 68, 268-271.

[46]

Foster, S.J.; Bentz, E. Design of UHPC prestressed girders for shear. Structural Concrete 2024, Vol. 25, 1, doi:10.1002/suco.202300738.

[47]

Mohaisen, K.O.; Ahmad, S.; et al. Effect of Curing Methods on the Performance of UHPC. Arabian Journal for Science & Engineering (Springer Science & Business Media B.V. ) 2023, Vol. 48, 13791-13805, doi:10.1007/s13369-023-07982-8.

[48]

Xu, T.; Xu, Z.; et al. Linear and nonlinear tensile creep of steam-cured UHPC. Cement and Concrete Composites 2024, Vol. 145, 105323, doi:10.1016/j.cemconcomp.2023.105323.

[49]

Li, B.; Han, F. Study on Design of Transverse Prestressed System of Large-Diameter Steel Strand and its Application to Practical Bridges. Journal of China & Foreign Highway 2020, Vol. 40, 130-133, doi:10.14048/j.issn.1671-2579.2020.05.025.

[50]

Zhou, J.; Zhang, X.; et al. Investigation on flexural behavior of pretensioned prestressed steel strand high strength concrete large-diameter pipe piles. Journal of Building Structures 2022, Vol. 43, 282-292, doi:10.14006/j.jzjgxb.2021.0219.

[51]

Rao, Z.; Liu, K.; et al. Application of large diameter steel strand in jacking bridge structure. Port & Waterway Engineer-ing 2019, 51-55,77, doi:10.16233/j.cnki.issn1002-4972.20190904.005.

[52]

Zhang, D.; Qin, S.; et al. Experimental Research on Bond Properties of Large-Diameter Prestressed Steel Strands. In-dustrial Construction 2021, Vol. 51, 33-39, doi:10.13204/j.gyjzG21081711.

[53]

Liu, Z.; Dong, Z.; et al. Stress recovery behaviour of a large-diameter Fe-SMA stranded wire developed for structural prestressing loss compensation. Advances in Structural Engineering 2023, Vol. 26, 966-982, doi:10.1177/13694332221149475.

[54]

Jiang, X.; Guo, J.; et al. Experimental Study on Load Transfer Behavior of UHPC Anchorage Zone and Analysis of Strut-and-Tie Model. Railway Engineering 2023, Vol. 63, 49-53.

[55]

Feng, Z.; Li, C.; et al. Study on Local Compressive Performance for Anchorage Zone of UHPC Box-Girder with Densely Distributed Diaphragms. Engineering Mechanics 2020, Vol. 37, 94-103,119, doi:10.6052/j.issn.1000-4750.2019.06.0295.

[56]

Duan, X.; Li, F. Analysis on Simple-Supported Girder Bridge has Continuous Deck with UHPC and without Prestress-ing Method. Structural Engineers 2022, Vol. 38, 137-144, doi:10.15935/j.cnki.jggcs.2022.02.013.

[57]

Pan, Z. Application of Ultra High Performance Concrete in Negative Moment Zone of Simply Supported-Continuous Bridge. Construction & Design for Engineering 2021, 39-41, doi:10.13616/j.cnki.gcjsysj.2021.08.212.

[58]

Zhu, J.; Liu, Z.; et al. Bending performance of wet joints in negative moment zone of prefabricated small-box girder bridges: Experimental and numerical study. Structures 2024, Vol. 62, 106103, doi:10.1016/j.istruc.2024.106103.

[59]

Li, J. Study on Crack Resistance of New UHPC-NC Composite Bridge Deck in Negative Moment Region of a Contin-uous Bridge Converting from Simple-support Bridge with Small Box-Girder Section. Railway Standard Design 2024, Vol. 68, 75-81,96, doi:10.13238/j.issn.1004-2954.202210260004.

[60]

Shi, X.; Gao, Y.; et al. Experimental Study on Mechanical Behavior of UHPC Joint of Precast Bridge Deck. Journal of South China University of Technology(Natural Science Edition) 2020, Vol. 48, 82-90,124, doi:10.12141/j.issn.1000-565X.190742.

[61]

Wang, X. Optimization of Joint Design and Study of Construction Technology for Elevated Small Box Girder Based on UHPC Material. Urban Roads Bridges & Flood Control 2020, 154-157,121, doi:10.16799/j.cnki.csdqyfh.2020.06.047.

[62]

Zhu, A.; Tian, Z.; et al. Tensile Property Test of UHPC Wet Joints Model of Precast Segmental Bridge. Journal of Civil Engineering and Management 2022, Vol. 39, 7-13, doi:10.13579/j.cnki.2095-0985.2022.20210280.

[63]

Zhu, J.; Tong, X.; et al. Research on flexural behavior and design method of formwork free UHPC wet joint in prefab-ricated small box girder bridges. Structures 2024, Vol. 69, 107333, doi:10.1016/j.istruc.2024.107333.

[64]

Huang, X.; Li, L.; et al. Experimental Study on UHPC Formwork-free Wet Joint Bending Resistance Model with Cor-rugated Steel Web. Railway Engineering 2024, Vol. 64, 7-13.

[65]

Haibo Jiang, Z.H.,Jiahui Feng, Tianlong Wang, Zhenming Xu. Flexural behavior of UHPC-filled longitudinal connec-tions with non-contacting lap-spliced reinforcements for narrow joint width. Structures 2022, Vol. 39, 620-636, doi:10.1016/j.istruc.2022.03.017.

[66]

Feng, Z.; Li, C.; et al. Direct shear test on UHPC key-wet-joints and the unified calculation formula of direct shear capacity of UHPC wet-joints. China Civil Engineering Journal 2022, Vol. 55, 79-91, doi:10.15951/j.tmgcxb.21070693.

[67]

Huang, J.; Kang, S.; et al. Experimental study on seismic performance of UHPC post-casting assembled joints. Journal of Railway Science and Engineering 2024, Vol. 21, 286-298, doi:10.19713/j.cnki.43-1423/u.T20230250.

[68]

Pan, R.; Cheng, L.; et al. Experimental research on direct shear performance of UHPC keyed epoxy joints. China Civil Engineering Journal 2022, Vol. 55, 38-49,117, doi:10.15951/j.tmgcxb.21100986.

[69]

Shao, X.; Hu, W.; et al. Experiment on Flexural Behavior of UHPC Joint in Negative Moment Area of Composite Bridges. China Journal of Highway and Transport 2021, Vol. 34, 246-260, doi:10.19721/j.cnki.1001-7372.2021.08.020.

[70]

Hussein, H.H.; Sargand, S.M.; et al. Field investigation of ultra-high performance concrete shear key in an adjacent box-girder bridge. Structure & Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance 2019, Vol. 15, 663-678, doi:10.1080/15732479.2019.1569698.

[71]

Qi, J.; Bao, Y.; et al. Flexural behavior of an innovative dovetail UHPC joint in composite bridges under negative bending moment. Engineering Structures 2019, Vol. 200, 109716, doi:10.1016/j.engstruct.2019.109716.

[72]

Zhu, Y.; Meng, D.; et al. Long-term performance of a continuous box-girder bridge constructed using precast segments with wet ultra-high-performance concrete (UHPC) joints. Case Studies in Construction Materials 2022, Vol. 17, e01285, doi:10.1016/j.cscm.2022.e01285.

[73]

Qiu, M.; Shao, X.; et al. Flexural behavior of UHPC joints for precast UHPC deck slabs. Engineering Structures 2022, Vol. 251, 113422, doi:10.1016/j.engstruct.2021.113422.

[74]

Zhu, J.; Tong, X.; et al. Research on Flexural Behavior and Design Method of Uhpc Joint Without Formwork of Pre-fabricated Small Box Girder Bridges. SSRN 2023, doi:10.2139/ssrn.4535962.

[75]

Chen, B.; Huang, Q.; et al. Design and Construction of the First UHPC Highway Box-Girder Bridge in China. Journal of China & Foreign Highway 2021, Vol. 41, 74-78, doi:10.14048/j.issn.1671-2579.2021.05.016.

[76]

Chen, Z.; Guo, F.; et al. Experiment on flexural behaviors of a segmental pre-stressed UHPC-RC composite box beam. Journal of Fuzhou University(Natural Science Edition) 2020, Vol. 48, 755-761, doi:10.7631/issn.1000-2243.19631.

[77]

Peng, X.; Hu, H.; et al. Research on Whole Span Prefabricated BoxGirder with Corrugated Web in Cities. Highway 2021, Vol. 66, 90-96.

[78]

Shao, X.; Qiu, M. Research of high performance fabricated bridge structures based on UHPC. Journal of Xi'an University of Architecture & Technology(Natural Science Edition) 2019, Vol. 51, 160-167, doi:10.15986/j.1006-7930.2019.02.002.

[79]

Xiao, G.; Yang, Y.; et al. Design of Prestressed RC-UHPC Simple-supported Composite Box Girder Urban Roads Bridges & Flood Control 2023, 89-93,102,116.

[80]

Zhao, M.; He, X.; et al. Research on Design and Application of Fully Prefabricated Steel-UHPC Lightweight Composite Girder in Medium and Small Span Girder Bridge. Highway Engineering 2019, Vol. 44, 63-66, doi:10.19782/j.cnki.1674-0610.2019.05.013.

[81]

Liu, S.; Corte, W.D.; et al. Mechanical properties of curved composite box girders with corrugated steel webs. Steel and Composite Structures 2021, Vol. 41, 65-84, doi:10.12989/scs.2021.41.1.065.

[82]

YEPES, V.; PEREZ-LOPEZ, E.; et al. Optimization of high-performance concrete post-tensioned box-girder pedestrian bridges(Article). International Journal of Computational Methods and Experimental Measurements 2019, Vol. 7, 118-129, doi:10.2495/cmem-v7-n2-118-129.

[83]

Wang, J.; Li, S.; et al. Analysis on Bearing Capacity of Large-diameter High-strength Prestressed Concrete Beams. Journal of Shenyang Jianzhu University:Natural Science 2019, Vol.35, 411-419, doi:10.11717/j.issn:2095-1922.2019.03.04.

[84]

Akhnoukh, A.K. Application of large prestress strands in precast/prestressed concrete bridges. Civil Engineering Jour-nal (Iran) 2020, Vol. 6, 130-141, doi:10.28991/cej-2020-03091458.

[85]

Zhan, Y.; Wang, Z.; et al. Numerical Simulation on Reasonable Clearance of Large Diameter Strands in UHPC Girder. Railway Engineering 2021, Vol. 61, 8-12,22, doi:10.3969/j.issn.1003?1995.2021.12.02.

[86]

Zhan, Y.; Li, Z.; et al. Bond between 0.7-inch-diameter steel strands and UHPC: Pullout test, finite element simulation, and estimation of transfer length. Construction and Building Materials 2024, Vol. 417, 135217, doi:10.1016/j.conbuildmat.2024.135217.

[87]

Zhan, Y.; Li, Z.; et al. Bond behavior and anchorage length of 18-mm-diameter steel strands embedded in ultra-high-performance concrete: an experimental and analytical study. Structure and Infrastructure Engineering 2024, doi:10.1080/15732479.2024.2346583.

[88]

Fray, F. et al.Pozo-Lora, P.D., A.M.ASCE; Marc Maguire, P.D., A.M.ASCE; Benchmarking the Bond of 19-Wire-28.6-mm-Diameter Prestressing Strands to Normal-Weight Concrete. Journal of Materials in Civil Engineering 2024, Vol. 36, doi:10.1061/jmcee7.Mteng-18044.

[89]

Tamayo, C.A.; Bahram, M. Shahrooz, F.A.; et al. Performance Evaluation of Prestressed Girders with 17.8-mm (0.7-in.) Strands. Journal of Bridge Engineering 2023, Vol. 28, 04023098, doi:10.1061/jbenf2.Beeng-6300.

[90]

Alabdulkarim, A.; Kent, A. Harries, F.A.; et al. Bond Characterization of 17.8-mm (0.7-in.) Diameter Prestressing Strand. Journal of Bridge Engineering 2024, Vol. 29, 04024013, doi:10.1061/jbenf2.Beeng-6586.

[91]

Zhan, Y.; Sun, C.; et al. Review on mechanical properties of retard-bonded prestressed concrete. Concrete 2019, 11-13, doi:10.3969/j.issn.1002-3550.2019.05.004.

[92]

Ma, K.; Xu, J. Summary of research and application of retard-bonded prestressed technology. Sichuan Building Science 2020, Vol. 46, 58-62,100, doi:10.19794/j.cnki.1008-1933.2020.0037.

[93]

Li, D.; Li, W. Experiment on Flexural Behavior of UHPC Joint in Negative Moment Area of Composite Bridges. Build-ing Science 2022, Vol. 38, 1-7, doi:10.13614/j.cnki.11-1962/tu.2022.01.001.

[94]

Zuo, Z.; Zhang, F.; et al. Research on durability of retard-bonded prestressed concrete beams. China Civil Engineering Journal 2019, Vol. 52, 69-78, doi:10.15951/j.tmgcxb.2019.09.005.

[95]

Shang, R.; Tian, J.; et al. Experimental study on cohesive property of steel strand in retard-bonded prestressed concrete beams. Building Structure 2020, Vol. 50, 56-60,66, doi:10.19701/j.jzjg.2020.02.010.

[96]

Xiong, X.; He, L.; et al. The bond-slip constitutive model of retard-bonded prestressing steel strand. Construction & Building Materials 2023, Vol. 365, 129995, doi:10.1016/j.conbuildmat.2022.129995.

[97]

Li, W.; Liu, Y.; et al. Experimental study on the behavior of bunched-retard-bonded prestressed concrete beams. Build-ing Science 2022, Vol. 38, 56-63, doi:10.13614/j.cnki.11-1962/tu.2022.03.008.

[98]

Xiong, X.; He, L.; et al. Experimental study on flexural behavior of full-scale retard-bonded prestressed UHPC variable section cantilever beams. Engineering Structures 2023, Vol. 284, 115943, doi:10.1016/j.engstruct.2023.115943.

[99]

Sui, W.-N.; Wang, Z.-Y.; et al. Failure mechanism and mechanical properties of a retard-bonded prestressed concrete girder while curing(Article). Advances in Civil Engineering 2019, Vol. 2019, 1-14, doi:10.1155/2019/7153235.

[100]

Xiao, Q.; Xiong, X. Meso-Scale Simulations of Pull-Out Tests for Retarded Bonded Tendons. Industrial Construction 2021, Vol. 51, 28-32,39, doi:10.13204/j.gyjzg21061507.

[101]

Xiong, X.; Xiao, Q. Meso-scale simulation of bond behaviour between retarded-bonded tendons and concrete. Engi-neering Structures 2021, Vol. 228, 111410, doi:10.1016/j.engstruct.2020.111410.

[102]

Changhai; Y.; Huang, S.; et al. Experimental study and finite element analysis on stress transfer mechanism of pre-stressed concrete beams with delayed bonding. Concrete 2022, 46-50.

[103]

Li, L.; Mao, J.; et al. Experimental Study on Flexural Behavior of Precast Segmental UHPC Beams with External Ten-dons. Journal of Hunan University:Natural Sciences 2022, Vol. 49, 67-76.

[104]

Jiang, H.; Hu, Z.; et al. Experimental Study on Shear Behavior of Externally Prestressed Segmental UHPC Beam with-out Stirrup. Journal of Highway and Transportation Research and Development 2024, Vol. 41, 105-115,138.

[105]

Jiang, H.; Feng, J.; et al. Experimental study on shear behavior of externally prestressed ultra-high performance con-crete beams without stirrups. Acta Materiae Compositae Sinica 2022, Vol. 39, 707-717, doi:10.13801/j.cnki.fhclxb.20210316.001.

[106]

Li, L.; Fang, Y.; et al. Experimental Study on Shear Behavior of Externally Prestressed UHPC Beams Without Stirrups. Railway Engineering 2024, Vol. 64, 67-74.

[107]

Feng, J.; Li, P.; et al. Shear behavior of externally prestressed UHPC beams without stirrups. Case Studies in Construc-tion Materials 2023, Vol. 18, e01766, doi:10.1016/j.cscm.2022.e01766.

AI Summary AI Mindmap
PDF (1027KB)

185

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/