Analysis of the High-Speed Impact Effect of Raindrops on Prestressed Wind Turbine Blades and the Equivalent Load Construction Method

Xiufeng Xu , Yichao Xu , Aiguo Zhou , Zhengzhao Lai

Prestress Technology ›› 2024, Vol. 2 ›› Issue (2) : 1 -18.

PDF (1773KB)
Prestress Technology ›› 2024, Vol. 2 ›› Issue (2) :1 -18. DOI: 10.59238/j.pt.2024.02.001
Scientific Research
research-article

Analysis of the High-Speed Impact Effect of Raindrops on Prestressed Wind Turbine Blades and the Equivalent Load Construction Method

Author information +
History +
PDF (1773KB)

Abstract

The finite element method and smoothed particle hydrodynamics (SPH) method are used to simulate the high-speed impact of a single raindrop on a prestressed wind turbine blade, and the factors affecting impact pressure and stress in a single raindrop impact, such as impact speed and raindrop diameter, are analyzed. In addition, the coupling generated by the simultaneous high-speed impact of dual raindrops is analyzed, and the effect of the distance between raindrop centers is analyzed. To address the difficulty in calculation due to the large number of impacting raindrops during the rainfall process, based on the calculation results of single raindrop impacts, the method of applying equivalent loads of raindrop impacts is proposed and validated by the stress distribution and the stress at each time point, thus ensuring the simulation accuracy of using the equivalent load of raindrop impact for the actual raindrop impact.

Keywords

prestressed wind turbine blade / raindrop impact / smoothed particle hydrodynamics

Cite this article

Download citation ▾
Xiufeng Xu, Yichao Xu, Aiguo Zhou, Zhengzhao Lai. Analysis of the High-Speed Impact Effect of Raindrops on Prestressed Wind Turbine Blades and the Equivalent Load Construction Method. Prestress Technology, 2024, 2(2): 1-18 DOI:10.59238/j.pt.2024.02.001

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hernandez-Estrada, E.; Lastres-Danguillecourt, O.; Robles-Ocampo, J.B.; Lopez-Lopez, A.; Sevilla-Camacho, P.Y.; Perez-Sariñana, B.Y.; Dorrego-Portela, J.R. Considerations for the Structural Analysis and Design of Wind Turbine Towers: A Review. Renew Sust Energ Rev 2021, 137, doi:10.1016/j.rser.2020.110447.

[2]

Zhang, C. Research on the Technology of Loads and Fatigue for Critical Components of Wind Turbine Drivetrain. Master, Zhejiang University, 2013.

[3]

Zhao, Z.Y.; Wu, P.H.; Xia, B.; Skitmore, M. Development Route of the Wind Power Industry in China. Renew Sust Energ Rev 2014, 34,1-7, doi:10.1016/j.rser.2014.01.071.

[4]

Bartolomé L.; Teuwen, J. Prospective Challenges in the Experimentation of the Rain Erosion on the Leading Edge of Wind Turbine Blades. Wind Energy 2019, 22,140-151, doi:10.1002/we.2272.

[5]

Slot, H.M.; Gelinck, E.R.M.; Rentrop, C.; van der Heide, E. Leading Edge Erosion of Coated Wind Turbine Blades: Review of Coating Life Models. Renew Energ 2015, 80,837-848, doi:10.1016/j.renene.2015.02.036.

[6]

Gui, Y. The Rain Erosion Effects on Polyurethane Coating for Wind Blade. Master, Wuhan University of Technology, 2019.

[7]

Verma, A.S.; Vedvik, N.P.; Haselbach, P.U.; Gao, Z.; Jiang, Z.Y. Comparison of Numerical Modelling Techniques for Impact Investigation on a Wind Turbine Blade. Composite Structures 2019, 209,856-878, doi:10.1016/j.compstruct.2018.11.001.

[8]

Hu, W.F.; Chen, W.Y.; Wang, X.B.; Liu, Z.Y.; Tan, J.R.; Wang, Y.Q. Wind Turbine Blade Coating Fatigue Induced by Raindrop Impact. Proceedings of the Asme 2020 Power Conference (Power2020) 2020.

[9]

Littell, J.D.; Ruggeri, C.R.; Goldberg, R.K.; Roberts, G.D.; Arnold, W.A.; Binienda, W.K. Measurement of Epoxy Resin Tension, Compression, and Shear Stress-Strain Curves Over a Wide Range of Strain Rates Using Small Test Specimens. J Aerospace Eng 2008, 21,162-173, doi:10.1061/(Asce)0893-1321(2008)21:3(162).

[10]

Amirzadeh, B.; Louhghalam, A.; Raessi, M.; Tootkaboni, M. A Computational Framework for the Analysis of Rain-Induced Erosion in Wind Turbine Blades, Part I: Stochastic Rain Texture Model and Drop Impact Simulations. J Wind Eng Ind Aerod 2017, 163,33-43, doi:10.1016/j.jweia.2016.12.006.

[11]

Best, A.C. The Size Distribution of Raindrops. Quarterly Journal of the Royal Meteorological Society 2010, 76.

[12]

Meteorologic Disaster Prevention and Mitigation. GB/T 28592—2012 Grade of Precipitation. Standards Press of China: Beijing, 2011.

[13]

Amirzadeh, B.; Louhghalam, A.; Raessi, M.; Tootkaboni, M. A Computational Framework for the Analysis of Rain-Induced Erosion in Wind Turbine Blades, Part II: Drop Impact-Induced Stresses and Blade Coating Fatigue Life. J Wind Eng Ind Aerod 2017, 163,44-54, doi:10.1016/j.jweia.2016.12.007.

AI Summary AI Mindmap
PDF (1773KB)

295

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/