Attentional Rhythms Are Sensitive to Binocular Visual Pathway

Bo Dong , Guangyao Zu , Ying Zou , Jianrong Jia , Airui Chen , Ming Zhang

Psych Journal ›› 2025, Vol. 14 ›› Issue (3) : 317 -327.

PDF
Psych Journal ›› 2025, Vol. 14 ›› Issue (3) : 317 -327. DOI: 10.1002/pchj.826
ORIGINAL ARTICLE

Attentional Rhythms Are Sensitive to Binocular Visual Pathway

Author information +
History +
PDF

Abstract

Visual attention is intrinsically rhythmic and oscillates based on the discrete sampling of either single or multiple objects. Recently, studies have found that the early visual cortex (V1/V2) modulates attentional rhythms. Both monocular and binocular cells are present in the early visual cortex, which acts as a transfer station for transformation of the monocular visual pathway into the binocular visual pathway. However, whether the neural site of attentional rhythms is in the monocular or binocular visual pathway needs further study. In the current study, we leveraged the anatomical features of the monocular and binocular pathway to design a paradigm with same-eye and different-eye presentations of cues and targets. By combining this approach with EEG recordings and analysis the impulse response function (TRF), we aimed to address this question. In Experiment 1, we reset the phase of attentional rhythms in one monocular channel (left eye or right eye) by a dichoptic cue and tracked the impulse response function (TRF) of the monocular channel in the left and right eye separately. We found no significant differences in the respective TRFs and their spectra for each eye, suggesting that attention rarely switched between the two eyes, indicating that the binocular visual pathway, not the monocular visual pathway, is the neural site of attentional rhythms. These results were verified when resetting the phases of attentional rhythms by a binocular cue in Experiment 2. These results suggest that attentional rhythms may be sensitive to activities in the binocular visual pathway.

Keywords

attentional rhythms / binocular vision / impulse response function / V1

Cite this article

Download citation ▾
Bo Dong, Guangyao Zu, Ying Zou, Jianrong Jia, Airui Chen, Ming Zhang. Attentional Rhythms Are Sensitive to Binocular Visual Pathway. Psych Journal, 2025, 14(3): 317-327 DOI:10.1002/pchj.826

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anstis, S., F. A. Verstraten, and G. Mather. 1998. “The Motion Aftereffect.” Trends in Cognitive Sciences 2, no. 3: 111-117. https://doi.org/10.1016/s1364-6613(98)01142-5.

[2]

Blakemore, C., and F. W. Campbell. 1969. “On the Existence of Neurones in the Human Visual System Selectively Sensitive to the Orientation and Size of Retinal Images.” Journal of Physiology 203, no. 1: 237-260. https://doi.org/10.1113/jphysiol.1969.sp008862.

[3]

Brainard, D. H.1997. “The Psychophysics Toolbox.” Spatial Vision 10, no. 4: 433-436. https://doi.org/10.1163/156856897X00357.

[4]

Busch, N. A., and R. VanRullen. 2010. “Spontaneous EEG Oscillations Reveal Periodic Sampling of Visual Attention.” Proceedings of the National Academy of Sciences of the United States of America 107, no. 37: 16048-16053. https://doi.org/10.1073/pnas.1004801107.

[5]

Chen, A., X. Tang, A. Wang, and M. Zhang. 2017. “Experimental Paradigms for Discrete Attention in Visual Domain.” Advances in Psychological Science 25, no. 6: 923. https://doi.org/10.3724/sp.J.1042.2017.00923.

[6]

Chen, A., A. Wang, T. Wang, X. Tang, and M. Zhang. 2017. “Behavioral Oscillations in Visual Attention Modulated by Task Difficulty.” Frontiers in Psychology 8: 1630. https://doi.org/10.3389/fpsyg.2017.01630.

[7]

Chen, A., A. Wang, T. Wang, X. Tang, and M. Zhang. 2018. “The Primary Visual Cortex Modulates Attetion Oscillation.” Acta Psychologica Sinica 50, no. 2: 158-167. https://doi.org/10.3724/SP.J.1041.2018.00158.

[8]

Chen, A., G. Zu, B. Dong, and M. Zhang. 2020. “Cortical Distance but Not Physical Distance Modulates Attentional Rhythms.” Frontiers in Psychology 11: 541085. https://doi.org/10.3389/fpsyg.2020.541085.

[9]

Crosse, M. J., G. M. Di Liberto, A. Bednar, and E. C. Lalor. 2016. “The Multivariate Temporal Response Function (mTRF) Toolbox: A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.” Frontiers in Human Neuroscience 10: 1-14. https://doi.org/10.3389/fnhum.2016.00604.

[10]

Dugué, L., P. Marque, and R. VanRullen. 2015. “Theta Oscillations Modulate Attentional Search Performance Periodically.” Journal of Cognitive Neuroscience 27, no. 5: 945-958. https://doi.org/10.1162/jocn_a_00755.

[11]

Dugué, L., D. McLelland, M. Lajous, and R. VanRullen. 2015. “Attention Searches Nonuniformly in Space and in Time.” Proceedings of the National Academy of Sciences of the United States of America 112, no. 49: 15214-15219. https://doi.org/10.1073/pnas.1511331112.

[12]

Dugué, L., M. Roberts, and M. Carrasco. 2016. “Attention Reorients Periodically.” Current Biology 26, no. 12: 1595-1601. https://doi.org/10.1016/j.cub.2016.04.046.

[13]

Dugué, L., and R. Van Rullen. 2017. “Transcranial Magnetic Stimulation Reveals Intrinsic Perceptual and Attentional Rhythms.” Frontiers in Neuroscience 11: 154. https://doi.org/10.3389/fnins.2017.00154.

[14]

Dugué, L., A. M. Xue, and M. Carrasco. 2017. “Distinct Perceptual Rhythms for Feature and Conjunction Searches.” Journal of Vision 17, no. 3: 22. https://doi.org/10.1167/17.3.22.

[15]

Fiebelkorn, I. C., and S. Kastner. 2019. “A Rhythmic Theory of Attention.” Trends in Cognitive Sciences 23, no. 2: 87-101. https://doi.org/10.1016/j.tics.2018.11.009.

[16]

Fiebelkorn, I. C., Y. B. Saalmann, and S. Kastner. 2013. “Rhythmic Sampling Within and Between Objects Despite Sustained Attention at a Cue Location.” Current Biology 23, no. 24: 2553-2558. https://doi.org/10.1016/j.cub.2013.10.063.

[17]

Gilinsky, A. S., and R. Doherty. 1969. “Interocular Transfer of Orientational Effects.” Science 164, no. 3878: 454-455. https://doi.org/10.1126/science.164.3878.454.

[18]

Helfrich, R. F., I. C. Fiebelkorn, S. M. Szczepanski, et al. 2018. “Neural Mechanisms of Sustained Attention Are Rhythmic.” Neuron 99, no. 4: 854-865.e855. https://doi.org/10.1016/j.neuron.2018.07.032.

[19]

Hembrook-Short, J. R., V. L. Mock, W. Martin Usrey, and F. Briggs. 2019. “Attention Enhances the Efficacy of Communication in V1 Local Circuits.” Journal of Neuroscience 39, no. 6: 1066-1076. https://doi.org/10.1523/JNEUROSCI.2164-18.2018.

[20]

Herbst, S. K., and A. N. Landau. 2016. “Rhythms for Cognition: The Case of Temporal Processing.” Current Opinion in Behavioral Sciences 8: 85-93. https://doi.org/10.1016/j.cobeha.2016.01.014.

[21]

Hubel, D. H., and T. N. Wiesel. 1977. “Ferrier Lecture-Functional Architecture of Macaque Monkey Visual Cortex.” Proceedings of the Royal Society of London, Series B: Biological Sciences 198, no. 1130: 1-59. https://doi.org/10.1098/rspb.1977.0085.

[22]

Jensen, O., M. Bonnefond, and R. VanRullen. 2012. “An Oscillatory Mechanism for Prioritizing Salient Unattended Stimuli.” Trends in Cognitive Sciences 16, no. 4: 200-206. https://doi.org/10.1016/j.tics.2012.03.002.

[23]

Jia, J., F. Fang, and H. Luo. 2019. “Selective Spatial Attention Involves Two Alpha-Band Components Associated With Distinct Spatiotemporal and Functional Characteristics.” NeuroImage 199: 228-236. https://doi.org/10.1016/j.neuroimage.2019.05.079.

[24]

Jia, J., L. Liu, F. Fang, and H. Luo. 2017. “Sequential Sampling of Visual Objects During Sustained Attention.” PLoS Biology 15, no. 6: e2001903. https://doi.org/10.1371/journal.pbio.2001903.

[25]

Kienitz, R., J. T. Schmiedt, K. A. Shapcott, K. Kouroupaki, R. C. Saunders, and M. C. Schmid. 2018. “Theta Rhythmic Neuronal Activity and Reaction Times Arising From Cortical Receptive Field Interactions During Distributed Attention.” Current Biology 28, no. 15: 2377-2387.e2375. https://doi.org/10.1016/j.cub.2018.05.086.

[26]

Klein, B. P., A. Fracasso, J. A. van Dijk, C. L. E. Paffen, S. F. te Pas, and S. O. Dumoulin. 2018. “Cortical Depth Dependent Population Receptive Field Attraction by Spatial Attention in Human V1.” NeuroImage 176: 301-312. https://doi.org/10.1016/j.neuroimage.2018.04.055.

[27]

Lalor, E. C., B. A. Pearlmutter, R. B. Reilly, G. McDarby, and J. J. Foxe. 2006. “The VESPA: A Method for the Rapid Estimation of a Visual Evoked Potential.” NeuroImage 32, no. 4: 1549-1561. https://doi.org/10.1016/j.neuroimage.2006.05.054.

[28]

Landau, A. N., and P. Fries. 2012. “Attention Samples Stimuli Rhythmically.” Current Biology 22, no. 11: 1000-1004. https://doi.org/10.1016/j.cub.2012.03.054.

[29]

Landau, A. N., H. M. Schreyer, S. Van Pelt, and P. Fries. 2015. “Distributed Attention Is Implemented Through Theta-Rhythmic Gamma Modulation.” Current Biology 25, no. 17: 2332-2337. https://doi.org/10.1016/j.cub.2015.07.048.

[30]

Livingstone, M. S., and D. H. Hubel. 1987. “Psychophysical Evidence for Separate Channels for the Perception of Form, Color, Movement, and Depth.” Journal of Neuroscience 7, no. 11: 3416-3468. https://doi.org/10.1523/JNEUROSCI.07-11-03416.1987.

[31]

Maris, E., and R. Oostenveld. 2007. “Nonparametric Statistical Testing of EEG- and MEG-Data.” Journal of Neuroscience Methods 164, no. 1: 177-190. https://doi.org/10.1016/j.jneumeth.2007.03.024.

[32]

McCollough, C.1965. “Color Adaptation of Edge-Detectors in the Human Visual System.” Science 149, no. 3688: 1115-1116. https://doi.org/10.1126/science.149.3688.1115.

[33]

Mo, C., J. Lu, B. Wu, J. Jia, H. Luo, and F. Fang. 2019. “Competing Rhythmic Neural Representations of Orientations During Concurrent Attention to Multiple Orientation Features.” Nature Communications 10, no. 1: 5264. https://doi.org/10.1038/s41467-019-13282-3.

[34]

Motter, B. C.1993. “Focal Attention Produces Spatially Selective Processing in Visual Cortical Areas V1, V2, and V4 in the Presence of Competing Stimuli.” Journal of Neurophysiology 70, no. 3: 909-919. https://doi.org/10.1152/jn.1993.70.3.909.

[35]

Paradiso, M. A., S. Shimojo, and K. Nakayama. 1989. “Subjective Contours, Tilt Aftereffects, and Visual Cortical Organization.” Vision Research 29, no. 9: 1205-1213. https://doi.org/10.1016/0042-6989(89)90066-7.

[36]

Pelli, D. G.1997. “The VideoToolbox Software for Visual Psychophysics: Transforming Numbers Into Movies.” Spatial Vision 10, no. 4: 437-442.

[37]

Re, D., M. Inbar, C. G. Richter, and A. N. Landau. 2019. “Feature-Based Attention Samples Stimuli Rhythmically.” Current Biology 29, no. 4: 693-699.e694. https://doi.org/10.1016/j.cub.2019.01.010.

[38]

Schoups, A. A., and G. A. Orban. 1996. “Interocular Transfer in Perceptual Learning of a Pop-Out Discrimination Task.” Proceedings of the National Academy of Sciences 93, no. 14: 7358-7362. https://doi.org/10.1073/pnas.93.14.7358.

[39]

Song, K., M. Meng, L. Chen, K. Zhou, and H. Luo. 2014. “Behavioral Oscillations in Attention: Rhythmic α Pulses Mediated Through θ Band.” Journal of Neuroscience 34, no. 14: 4837-4844. https://doi.org/10.1523/JNEUROSCI.4856-13.2014.

[40]

Spyropoulos, G., C. A. Bosman, and P. Fries. 2018. “A Theta Rhythm in Macaque Visual Cortex and Its Attentional Modulation.” Proceedings of the National Academy of Sciences of the United States of America 115, no. 24: E5614-E5623. https://doi.org/10.1073/pnas.1719433115.

[41]

Su, Z., L. Wang, G. Kang, and X. Zhou. 2021. “Reward Makes the Rhythmic Sampling of Spatial Attention Emerge Earlier.” Attention, Perception, & Psychophysics 83, no. 4: 1522-1537. https://doi.org/10.3758/s13414-020-02226-5.

[42]

VanRullen, R.2013. “Visual Attention: A Rhythmic Process?” Current Biology 23, no. 24: R1110-R1112. https://doi.org/10.1016/j.cub.2013.11.006.

[43]

VanRullen, R.2016. “Perceptual cycles.” Trends in Cognitive Sciences 20, no. 10: 723-735. https://doi.org/10.1016/j.tics.2016.07.006.

[44]

VanRullen, R.2018. “Attention cycles.” Neuron 99, no. 4: 632-634. https://doi.org/10.1016/j.neuron.2018.08.006.

[45]

VanRullen, R., T. Carlson, and P. Cavanagh. 2007. “The Blinking Spotlight of Attention.” Proceedings of the National Academy of Sciences of the United States of America 104, no. 49: 19204-19209. https://doi.org/10.1073/pnas.0707316104.

[46]

VanRullen, R., and J. S. P. MacDonald. 2012. “Perceptual Echoes at 10 Hz in the Human Brain.” Current Biology 22, no. 11: 995-999. https://doi.org/10.1016/j.cub.2012.03.050.

[47]

VanRullen, R., L. Reddy, and C. Koch. 2005. “Attention-Driven Discrete Sampling of Motion Perception.” Proceedings of the National Academy of Sciences of the United States of America 102, no. 14: 5291-5296. https://doi.org/10.1073/pnas.0409172102.

[48]

Wandell, B. A.1995. Fundation of Vision. Sunderland, Massachusetts, USA: Sinauer Associates.

[49]

Wassermann, E. M., C. M. Epstein, U. Ziemann, V. Walsh, T. Paus, and S. H. Lisanby. 2008. The Oxford Handbook of Transcranial Stimulation. New York, USA: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198568926.001.0001.

[50]

Zhang, H., M. C. Morrone, and D. Alais. 2019. “Behavioural Oscillations in Visual Orientation Discrimination Reveal Distinct Modulation Rates for Both Sensitivity and Response Bias.” Scientific Reports 9, no. 1: 1-11. https://doi.org/10.1038/s41598-018-37918-4.

[51]

Zhaoping, L.2008. “Attention Capture by Eye of Origin Singletons Even Without Awareness—A Hallmark of a Bottom-Up Saliency Map in the Primary Visual Cortex.” Journal of Vision 8, no. 5: 1. https://doi.org/10.1167/8.5.1.

[52]

Zhaoping, L.2017. “Feedback From Higher to Lower Visual Areas for Visual Recognition May Be Weaker in the Periphery: Glimpses From the Perception of Brief Dichoptic Stimuli.” Vision Research 136: 32-49. https://doi.org/10.1016/j.visres.2017.05.002.

[53]

Zhaoping, L.2021. “Contrast-Reversed Binocular Dot-Pairs in Random-Dot Stereograms for Depth Perception in Central Visual Field: Probing the Dynamics of Feedforward-Feedback Processes in Visual Inference.” Vision Research 186: 124-139. https://doi.org/10.1016/j.visres.2021.03.005.

[54]

Zhaoping, L.2022. “Central-Peripheral Dichotomy (CPD) in Feedforward and Feedback Processes Explored by Depth Perception in Random-Dot Stereograms (RDSs).” Journal of Vision 22: 28. https://doi.org/10.1167/jov.22.3.28.

RIGHTS & PERMISSIONS

2025 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/