Attention enhances short-term monocular deprivation effect

Jue Wang , Xin He , Min Bao

Psych Journal ›› 2025, Vol. 14 ›› Issue (1) : 84 -93.

PDF
Psych Journal ›› 2025, Vol. 14 ›› Issue (1) : 84 -93. DOI: 10.1002/pchj.806
ORIGINAL ARTICLE

Attention enhances short-term monocular deprivation effect

Author information +
History +
PDF

Abstract

Patching one eye of an adult human for a few hours has been found to promote the dominance of the patched eye, which is called short-term monocular deprivation effect. Interestingly, recent work has reported that prolonged eye-specific attention can also cause a shift of ocular dominance toward the unattended eye though visual inputs during adaptation are balanced across the eyes. Considering that patching blocks all input information from one eye, attention is presumably deployed to the opposite eye. Therefore, the short-term monocular deprivation effect might be, in part, mediated by eye-specific attentional modulation. Yet this question remains largely unanswered. To address this issue, here we asked participants to perform an attentive tracking task with one eye patched. During the tracking, participants were presented with both target gratings (attended stimuli) and distractor gratings (unattended stimuli) that were distinct from each other in fundamental visual features. Before and after one hour of tracking, they completed a binocular rivalry task to measure perceptual ocular dominance. A larger shift of ocular dominance toward the deprived eye was observed when the binocular rivalry testing gratings shared features with the target gratings during the tracking compared to when they shared features with the distractor gratings. This result, for the first time, suggests that attention can boost the strength of the short-term monocular deprivation effect. Therefore, the present study sheds new light on the role of attention in ocular dominance plasticity.

Keywords

attention / binocular rivalry / monocular deprivation / ocular dominance

Cite this article

Download citation ▾
Jue Wang, Xin He, Min Bao. Attention enhances short-term monocular deprivation effect. Psych Journal, 2025, 14(1): 84-93 DOI:10.1002/pchj.806

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Animali, S., Steinwurzel, C., Dardano, A., Sancho-Bornez, V., Del Prato, S., Morrone, M. C., Daniele, G., & Binda, P. (2023). Effect of fasting on short-term visual plasticity in adult humans. The European Journal of Neuroscience, 57(1), 148–162.

[2]

Anssari, N., Vosoughi, R., Mullen, K., & Mansouri, B. (2020). Selective colour vision deficits in multiple sclerosis at different temporal stages. Neuro-Ophthalmology, 44(1), 16–23.

[3]

Bai, J., Dong, X., He, S., & Bao, M. (2017). Monocular deprivation of Fourier phase information boosts the deprived eye’s dominance during interocular competition but not interocular phase combination. Neuroscience, 352, 122–130.

[4]

Baldwin, A. S., Finn, A. E., Green, H. M., Gant, N., & Hess, R. F. (2022). Exercise does not enhance short-term deprivation-induced ocular dominance plasticity: Evidence from dichoptic surround suppression. Vision Research, 201, 108123.

[5]

Bao, M., Dong, B., Liu, L., Engel, S. A., & Jiang, Y. (2018). The best of both worlds: Adaptation during natural tasks produces long-lasting plasticity in perceptual ocular dominance. Psychological Science, 29(1), 14–33.

[6]

Bavelier, D., & Green, C. S. (2019). Enhancing attentional control: Lessons from action video games. Neuron, 104(1), 147–163.

[7]

Binda, P., Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., & Morrone, M. C. (2018). Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD. eLife, 7, e40014.

[8]

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.

[9]

Chen, X., Chen, S., Kong, D., Wei, J., Mao, Y., Lin, W., … Zhou, J. (2020). Action video gaming does not influence short-term ocular dominance plasticity in visually normal adults. eNeuro, 7(3), ENEURO.0006-20.2020.

[10]

Chen, Y., Gao, Y., He, Z., Sun, Z., Mao, Y., Hess, R. F., … Zhou, J. (2023). Internal neural states influence the short-term effect of monocular deprivation in human adults. eLife, 12, e83815.

[11]

DeBruyn, E. J., Casagrande, V. A., Beck, P. D., & Bonds, A. B. (1993). Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): Correlations with cortical layers and cytochrome oxidase patterns. Journal of Neurophysiology, 69(1), 3–18.

[12]

Engel, S. A. (2005). Adaptation of oriented and unoriented color-selective neurons in human visual areas. Neuron, 45(4), 613–623.

[13]

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

[14]

Finn, A. E., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2019). Visual plasticity and exercise revisited: No evidence for a “cycling lane”. Journal of Vision, 19(6), 21.

[15]

He, X., Liu, W., Qin, N., Lyu, L., Dong, X., & Bao, M. (2021). Performance-dependent reward hurts performance: The non-monotonic attentional load modulation on task-irrelevant distractor processing. Psychophysiology, 58(12), e13920.

[16]

Horton, J. C., & Hocking, D. R. (1997). Timing of the critical period for plasticity of ocular dominance columns in macaque striate cortex. The Journal of Neuroscience, 17(10), 3684–3709.

[17]

Huang, C. B., Zhou, J., Zhou, Y., & Lu, Z. L. (2010). Contrast and phase combination in binocular vision. PLoS One, 5(12), e15075.

[18]

Klink, P. C., Brascamp, J. W., Blake, R., & Wezel, R. J. (2010). Experience-driven plasticity in binocular vision. Current Biology, 20(16), 1464–1469.

[19]

Kurzawski, J. W., Lunghi, C., Biagi, L., Tosetti, M., Morrone, M. C., & Binda, P. (2022). Short-term plasticity in the human visual thalamus. eLife, 11, e74565.

[20]

Levelt, W. J. (1967). Note on the distribution of dominance times in binocular rivalry. British Journal of Psychology, 58(1), 143–145.

[21]

Lunghi, C., Berchicci, M., Morrone, M. C., & di Russo, F. (2015). Short-term monocular deprivation alters early components of visual evoked potentials. The Journal of Physiology, 593(19), 4361–4372.

[22]

Lunghi, C., Burr, D. C., & Morrone, C. (2011). Brief periods of monocular deprivation disrupt ocular balance in human adult visual cortex. Current Biology, 21(14), R538–R539.

[23]

Lunghi, C., Burr, D. C., & Morrone, M. C. (2013). Long-term effects of monocular deprivation revealed with binocular rivalry gratings modulated in luminance and in color. Journal of Vision, 13(6), 1.

[24]

Lunghi, C., Emir, U. E., Morrone, M. C., & Bridge, H. (2015). Short-term monocular deprivation alters GABA in the adult human visual cortex. Current Biology, 25(11), 1496–1501.

[25]

Lunghi, C., & Sale, A. (2015). A cycling lane for brain rewiring. Current Biology, 25(23), R1122–R1123.

[26]

Lunghi, C., Sframeli, A. T., Lepri, A., Lepri, M., Lisi, D., Sale, A., & Morrone, M. C. (2019). A new counterintuitive training for adult amblyopia. Annals of Clinical Translational Neurology, 6(2), 274–284.

[27]

Lyu, L., He, S., Jiang, Y., Engel, S. A., & Bao, M. (2020). Natural-scene-based steady-state visual evoked potentials reveal effects of short-term monocular deprivation. Neuroscience, 435, 10–21.

[28]

Min, S. H., Baldwin, A. S., Reynaud, A., & Hess, R. F. (2018). The shift in ocular dominance from short-term monocular deprivation exhibits no dependence on duration of deprivation. Scientific Reports, 8(1), 17083.

[29]

Min, S. H., Wang, Z., Chen, M. T., Hu, R., Gong, L., He, Z., … Zhou, J. (2023). Metaplasticity: Dark exposure boosts local excitability and visual plasticity in adult human cortex. The Journal of Physiology, 601(18), 4105–4120.

[30]

Nguyen, B. N., Malavita, M., Carter, O. L., & McKendrick, A. M. (2021). Neuroplasticity in older adults revealed by temporary occlusion of one eye. Cortex, 143, 1–11.

[31]

Nguyen, B. N., Srinivasan, R., & McKendrick, A. M. (2023). Short-term homeostatic visual neuroplasticity in adolescents after two hours of monocular deprivation. IBRO Neuroscience Reports, 14, 419–427.

[32]

Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437–442.

[33]

Pitchaimuthu, K., Wu, Q. Z., Carter, O., Nguyen, B. N., Ahn, S., Egan, G. F., & McKendrick, A. M. (2017). Occipital GABA levels in older adults and their relationship to visual perceptual suppression. Scientific Reports, 7(1), 14231.

[34]

Ramamurthy, M., & Blaser, E. (2018). Assessing the kaleidoscope of monocular deprivation effects. Journal of Vision, 18(13), 14.

[35]

Sheynin, Y., Proulx, S., & Hess, R. F. (2019). Temporary monocular occlusion facilitates binocular fusion during rivalry. Journal of Vision, 19(5), 23.

[36]

Song, F., Dong, X., Zhao, J., Wang, J., Sang, X., He, X., & Bao, M. (2024). Causal role of the frontal eye field in attention-induced ocular dominance plasticity. eLife, 12, RP93213.

[37]

Song, F., Lyu, L., & Bao, M. (2023). Adaptation of ocular opponency neurons mediates attention-induced ocular dominance plasticity. Neuroscience Bulletin, 40, 339–349.

[38]

Song, F., Lyu, L., Zhao, J., & Bao, M. (2023). The role of eye-specific attention in ocular dominance plasticity. Cerebral Cortex, 33(4), 983–996.

[39]

Song, F., Wang, J., & Bao, M. (2023). From imbalanced visual inputs to imbalanced visual attention: Seeking the neural mechanisms for short-term ocular dominance plasticity. Advances in Psychological Science, 31(10), 1873.

[40]

Steinwurzel, C., Morrone, M. C., Sandini, G., & Binda, P. (2023). Active vision gates ocular dominance plasticity in human adults. Current Biology, 33(20), R1038–R1040.

[41]

Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13(3), 283–286.

[42]

Tanaka, J. W., & Farah, M. J. (1993). Parts and wholes in face recognition. The Quarterly Journal of Experimental Psychology, 46(2), 225–245.

[43]

Tootell, R. B., Hadjikhani, N., Hall, E. K., Marrett, S., Vanduffel, W., Vaughan, J. T., & Dale, A. M. (1998). The retinotopy of visual spatial attention. Neuron, 21(6), 1409–1422.

[44]

Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews. Neuroscience, 5(2), 97–107.

[45]

van Loon, A. M., Knapen, T., Scholte, H. S., St John-Saaltink, E., Donner, T. H., & Lamme, V. A. (2013). GABA shapes the dynamics of bistable perception. Current Biology, 23(9), 823–827.

[46]

Virathone, L., Nguyen, B. N., Dobson, F., Carter, O. L., & McKendrick, A. M. (2021). Exercise alone impacts short-term adult visual neuroplasticity in a monocular deprivation paradigm. Journal of Vision, 21(11), 12.

[47]

Wang, M., McGraw, P., & Ledgeway, T. (2021). Attentional eye selection modulates sensory eye dominance. Vision Research, 188, 10–25.

[48]

Wang, Y., Yao, Z., He, Z., Zhou, J., & Hess, R. F. (2017). The cortical mechanisms underlying ocular dominance plasticity in adults are not orientationally selective. Neuroscience, 367, 121–126.

[49]

Wiesel, T. N., & Hubel, D. H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology, 26(6), 1003–1017.

[50]

Yao, Z., He, Z., Wang, Y., Lu, F., Qu, J., Zhou, J., & Hess, R. F. (2017). Absolute not relative interocular luminance modulates sensory eye dominance plasticity in adults. Neuroscience, 367, 127–133.

[51]

Zhang, P., Jiang, Y., & He, S. (2012). Voluntary attention modulates processing of eye-specific visual information. Psychological Science, 23(3), 254–260.

[52]

Zhou, J., Baker, D. H., Simard, M., Saint-Amour, D., & Hess, R. F. (2015). Short-term monocular patching boosts the patched eye’s response in visual cortex. Restorative Neurology and Neuroscience, 33(3), 381–387.

[53]

Zhou, J., He, Z., Wu, Y., Chen, Y., Chen, X., Liang, Y., … Hess, R. F. (2019). Inverse occlusion: A binocularly motivated treatment for amblyopia. Neural Plasticity, 2019, 5157628.

[54]

Zhou, J., Reynaud, A., & Hess, R. F. (2014). Real-time modulation of perceptual eye dominance in humans. Proceedings of the Biological Sciences, 281(1795), 20141717.

[55]

Zhou, J., Reynaud, A., & Hess, R. F. (2017). Aerobic exercise effects on ocular dominance plasticity with a phase combination task in human adults. Neural Plasticity, 2017, 4780876.

[56]

Zhou, J., Reynaud, A., Kim, Y. J., Mullen, K. T., & Hess, R. F. (2017). Chromatic and achromatic monocular deprivation produce separable changes of eye dominance in adults. Proceedings of the Biological Sciences, 284(1867), 20171669.

RIGHTS & PERMISSIONS

2024 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/