Conscious vision in blindness: A new perceptual phenomenon implemented on the “wrong” side of the brain

Yan Bao , Bin Zhou , Xinchi Yu , Lihua Mao , Evgeny Gutyrchik , Marco Paolini , Nikos Logothetis , Ernst Pöppel

Psych Journal ›› 2024, Vol. 13 ›› Issue (6) : 885 -892.

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (6) : 885 -892. DOI: 10.1002/pchj.787
ORIGINAL ARTICLE

Conscious vision in blindness: A new perceptual phenomenon implemented on the “wrong” side of the brain

Author information +
History +
PDF

Abstract

Patients with lesions in the visual cortex are blind in corresponding regions of the visual field, but they still may process visual information, a phenomenon referred to as residual vision or “blindsight”. Here we report behavioral and fMRI observations with a patient who reports conscious vision across an extended area of blindness for moving, but not for stationary stimuli. This completion effect is shown to be of perceptual and not of conceptual origin, most likely mediated by spared representations of the visual field in the striate cortex. The neural output to extra-striate areas from regions of the deafferented striate cortex is apparently still intact; this is, for instance, indicated by preserved size constancy of visually completed stimuli. Neural responses as measured with fMRI reveal an activation only for moving stimuli, but importantly on the ipsilateral side of the brain. In a conceptual model this shift of activation to the “wrong” hemisphere is explained on the basis of an imbalance of excitatory and inhibitory interactions within and between the striate cortices due to the brain injury. The observed neuroplasticity indicated by this shift together with the behavioral observations provide important new insights into the functional architecture of the human visual system and provide new insight into the concept of consciousness.

Keywords

blindsight / fMRI / residual vision / visual completion / visual cortex

Cite this article

Download citation ▾
Yan Bao, Bin Zhou, Xinchi Yu, Lihua Mao, Evgeny Gutyrchik, Marco Paolini, Nikos Logothetis, Ernst Pöppel. Conscious vision in blindness: A new perceptual phenomenon implemented on the “wrong” side of the brain. Psych Journal, 2024, 13(6): 885-892 DOI:10.1002/pchj.787

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aulhorn, E., & Harms, H. (1972). Visual perimetry. In D. Jameson & L. M. Hurvich (Eds.), Handbook of sensory physiology Visual Psychophysics (Vol. VII/4). Springer.

[2]

Bao, Y., Lei, Q., Fang, Y., Tong, Y., Schill, K., Pöppel, E., & Strasburger, H. (2013). Inhibition of return in the visual field: The eccentricity effect is independent of cortical magnification. Experimental Psychology, 60(6), 425–431.

[3]

Bao, Y., & Pöppel, E. (2007). Two spatially separated attention systems in the visual field: Evidence from inhibition of return. Cognitive Processing, 8, 37–44.

[4]

Bao, Y., Zhang, D., Zhao, C., Pöppel, E., & Zabotkina, V. (2022). An aesthetic frame for three modes of knowing. PsyCh Journal, 11(5), 636–644.

[5]

Block, N. (1995). On a confusion about a function of consciousness. Behavioral and Brain Sciences, 18(2), 227–247.

[6]

Bocci, T., Caleo, M., Giorli, E., Barloscio, D., Maffei, L., Rossi, S., & Sartucci, F. (2011). Transcallosal inhibition dampens neural responses to high contrast stimuli in human visual cortex. Neuroscience, 187, 43–51.

[7]

Boring, E. G. (1933). The physical dimensions of consciousness. The Century Co.

[8]

Campion, J., Latto, R., & Smith, Y. M. (1983). Is blindsight an effect of scattered light, spared cortex, and near-threshold vision? Behavioral and Brain Sciences, 6(3), 423–448.

[9]

Celeghin, A., Diano, M., De Gelder, B., Weiskrantz, L., Marzi, C. A., & Tamietto, M. (2017). Intact hemisphere and corpus callosum compensate for visuomotor functions after early visual cortex damage. Proceedings of the National Academy of Sciences, 114(48), E10475–E10483.

[10]

Cowey, A. (2010). The blindsight saga. Experimental Brain Research, 200, 3–24.

[11]

Dennett, D. C. (1991). Consciousness explained. Little, Brown & Company.

[12]

Dilks, D. D., Serences, J. T., Rosenau, B. J., Yantis, S., & McCloskey, M. (2007). Human adult cortical reorganization and consequent visual distortion. Journal of Neuroscience, 27(36), 9585–9594.

[13]

Guo, K., Benson, P. J., & Blakemore, C. (2004). Pattern motion is present in V1 of awake but not anaesthetized monkeys. European Journal of Neuroscience, 19(4), 1055–1066.

[14]

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey striate cortex. The Journal of Physiology, 195(1), 215–243.

[15]

Innocenti, G. M. (2009). Dynamic interactions between the cerebral hemispheres. Experimental Brain Research, 192, 417–423.

[16]

Innocenti, G. M., Schmidt, K., Milleret, C., Fabri, M., Knyazeva, M. G., Battaglia-Mayer, A., Aboitiz, F., Ptito, M., Caleo, M., Marzi, C. A., Barakovic, M., Lepore, F., & Caminiti, R. (2022). The functional characterization of callosal connections. Progress in Neurobiology, 208, 102186.

[17]

Izadifar, M. (2021). The temporal gluing problem of the brain and the paradox of consciousness: Discretely continuous? Journal of Consciousness Exploration & Research, 12(1), 1–22.

[18]

Kennedy, H., Dehay, C., & Bullier, J. (1986). Organization of the callosal connections of visual areas V1 and V2 in the macaque monkey. Journal of Comparative Neurology, 247(3), 398–415.

[19]

Kinoshita, M., Kato, R., Isa, K., Kobayashi, K., Kobayashi, K., Onoe, H., & Isa, T. (2019). Dissecting the circuit for blindsight to reveal the critical role of pulvinar and superior colliculus. Nature Communications, 10(1), 135.

[20]

Lee, S. H., Blake, R., & Heeger, D. J. (2005). Traveling waves of activity in primary visual cortex during binocular rivalry. Nature Neuroscience, 8(1), 22–23.

[21]

Lei, Q., Bao, Y., Wang, B., & Gutyrchik, E. (2012). fMRI correlates of inhibition of return in perifoveal and peripheral visual field. Cognitive Processing, 13, 223–227.

[22]

Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453(7197), 869–878.

[23]

Payne, B. R. (1990). Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat’s cerebral cortex. Visual Neuroscience, 4(5), 445–474.

[24]

Perenin, M. T., & Jeannerod, M. (1975). Residual visual functions in cortically blind hemifields. Neuropsychologia, 13, 1–7.

[25]

Pöppel, E. (1985). Bridging a neuronal gap: Perceptual completion across a cortical scotoma is dependent on stimulus motion. Naturwissenschaften, 72(11), 599–600.

[26]

Pöppel, E. (1986). Long-range colour-generating interactions across the retina. Nature, 320(6062), 523–525.

[27]

Pöppel, E. (1988). Size constancy and oculomotor modulation of perifoveal light-difference threshold. Naturwissenschaften, 75(9), 463–465.

[28]

Pöppel, E. (1997a). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61.

[29]

Pöppel, E. (1997b). Consciousness versus states of being conscious. Behavioral and Brain Sciences, 20(1), 155–156.

[30]

Pöppel, E., & Bao, Y. (2014). Temporal windows as a bridge from objective to subjective time. In D. Lloyd & V. Arstila (Eds.), Subjective time (pp. 241–261). MIT Press.

[31]

Pöppel, E., Held, R., & Frost, D. (1973). Residual visual function after brain wounds involving the central visual pathways in man. Nature, 243(5405), 295–296.

[32]

Pöppel, E., Stoerig, P., Logothetis, N., Fries, W., Boergen, K. P., Oertel, W., & Zihl, J. (1987). Plasticity and rigidity in the representation of the human visual field. Experimental Brain Research, 68, 445–448.

[33]

Rockland, K. S., & Knutson, T. (2001). Axon collaterals of Meynert cells diverge over large portions of area V1 in the macaque monkey. Journal of Comparative Neurology, 441(2), 134–147.

[34]

Sanders, M. D., Warrington, E., Marshall, J., & Weiskrantz, L. (1974). "Blindsight": Vision in a field defect. The Lancet, 303(7860), 707–708.

[35]

Schmidt, K. E., Lomber, S. G., & Innocenti, G. M. (2010). Specificity of neuronal responses in primary visual cortex is modulated by interhemispheric corticocortical input. Cerebral Cortex, 20(12), 2776–2786.

[36]

Smith, M. A., Majaj, N. J., & Movshon, J. A. (2005). Dynamics of motion signaling by neurons in macaque area MT. Nature Neuroscience, 8(2), 220–228.

[37]

Stoerig, P., & Cowey, A. (1997). Blindsight in man and monkey. Brain, 120(3), 535–559.

[38]

Stoerig, P., Hübner, M., & Pöppel, E. (1985). Signal detection analysis of residual vision in a field defect due to a post-geniculate lesion. Neuropsychologia, 23(5), 589–599.

[39]

Stoerig, P., Kleinschmidt, A., & Frahm, J. (1998). No visual responses in denervated V1: High-resolution functional magnetic resonance imaging of a blindsight patient. Neuroreport, 9(1), 21–25.

[40]

Tran, A., MacLean, M. W., Hadid, V., Lazzouni, L., Nguyen, D. K., Tremblay, J., Dehaes, M., & Lepore, F. (2019). Neuronal mechanisms of motion detection underlying blindsight assessed by functional magnetic resonance imaging (fMRI). Neuropsychologia, 128, 187–197.

[41]

von Holst, E. (1955). Die Beteiligung von Konvergenz und Akkommodation an der wahrgenommenen Groessenkonstanz [The contribution of convergence and accommodation on perceived size constancy]. Naturwissenschaften, 42, 444–445.

[42]

Weiskrantz, L. (1997). Consciousness lost and found: A neuropsychological exploration. Oxford University Press.

[43]

Weiskrantz, L., Warrington, E. K., Sanders, M. D., & Marshall, J. (1974). Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 97(1), 709–728.

[44]

Wilson, M. E., & Toyne, M. J. (1970). Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Research, 24(3), 395–406.

[45]

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165.

[46]

Yoshor, D., Bosking, W. H., Ghose, G. M., & Maunsell, J. H. (2007). Receptive fields in human visual cortex mapped with surface electrodes. Cerebral Cortex, 17(10), 2293–2302.

[47]

Zhao, C., Enriquez, P., Izadifar, M., Pöppel, E., Bao, Y., & Zabotkina, V. (2022). Complementarity of mental content and logistic algorithms in a taxonomy of cognitive functions. PsyCh Journal, 11(6), 973–979.

[48]

Zhou, B., Bao, Y., Sander, T., Trahms, L., & Pöppel, E. (2010). Dissociation of summation and peak latencies in visual processing: An MEG study on stimulus eccentricity. Neuroscience Letters, 483(2), 101–104.

[49]

Zhou, B., Pöppel, E., Wang, L., Yang, T., Zaytseva, Y., & Bao, Y. (2016). Seeing without knowing: Operational principles along the early visual pathway. PsyCh Journal, 5(3), 145–160.

[50]

Zihl, J., & Werth, R. (1984). Contributions to the study of “blindsight”—I. Can stray light account for saccadic localization in patients with postgeniculate field defects? Neuropsychologia, 22(1), 1–11.

RIGHTS & PERMISSIONS

2024 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/