Mapping network connection and direction among symptoms of depression and anxiety in patients with chronic gastritis

Qihui Tang , Rui Wang , Haiqun Niu , Yifang Li , Yuting Li , Zichao Hu , Xiangping Liu , Yanqiang Tao

Psych Journal ›› 2024, Vol. 13 ›› Issue (5) : 824 -834.

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (5) : 824 -834. DOI: 10.1002/pchj.757
ORIGINAL ARTICLE

Mapping network connection and direction among symptoms of depression and anxiety in patients with chronic gastritis

Author information +
History +
PDF

Abstract

Regarding neurophysiological and developmental findings, anxiety and depression are usual comorbidities of gastritis patients. However, research related to anxiety and depression among chronic gastritis patients was conducted on the disease level while ignoring symptoms. Hence, we rendered the network approach to reveal the symptoms of anxiety and depression among chronic gastritis patients. Three hundred and sixty-nine chronic gastritis patients (female = 139, Mage = 55.87 years) were asked to complete the Self-Rating Anxiety Scale and Self-Rating Depression Scale. Three symptom networks and one directed acyclic graph (DAG) network were formed. First, in the anxiety network of chronic gastritis patients, dizziness was the most influential symptom. In the depression network of chronic gastritis patients, depressed affect and psychomotor retardation were the influential symptoms. Second, panic, easy fatiguability, weakness, palpitation, depressed affect, tachycardia, fatigue, and psychomotor agitation bridged the anxiety–depression network of chronic gastritis patients. Third, DAG networks showed that anxiousness and hopelessness could trigger other symptoms in the anxiety–depression networks of chronic gastritis patients. The current study provided insightful information on patients with chronic gastritis by examining the structures of symptoms.

Keywords

anxiety / chronic gastritis / depression / network analysis

Cite this article

Download citation ▾
Qihui Tang, Rui Wang, Haiqun Niu, Yifang Li, Yuting Li, Zichao Hu, Xiangping Liu, Yanqiang Tao. Mapping network connection and direction among symptoms of depression and anxiety in patients with chronic gastritis. Psych Journal, 2024, 13(5): 824-834 DOI:10.1002/pchj.757

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramson, L. Y., Metalsky, G. I., & Alloy, L. B. (1989). Hopelessness depression: A theory-based subtype of depression. Psychological Review, 96(2), 358–372.

[2]

Addolorato, G., Mirijello, A., D’Angelo, C., Leggio, L., Ferrulli, A., Abenavoli, L., Vonghia, L., Cardone, S., Leso, V., Cossari, A., Capristo, E., & Gasbarrini, G. (2008). State and trait anxiety and depression in patients affected by gastrointestinal diseases: Psychometric evaluation of 1641 patients referred to an internal medicine outpatient setting. International Journal of Clinical Practice, 62(7), 1063–1069.

[3]

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). American Psychiatric Publishing, Inc.

[4]

Arneth, B. M. (2018). Gut–brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: Gut dysbiosis and altered brain function. Postgraduate Medical Journal, 94(1114), 446–452.

[5]

Banks, M., Graham, D., Jansen, M., Gotoda, T., Coda, S., di Pietro, M., Uedo, N., Bhandari, P., Pritchard, D. M., Kuipers, E. J., Rodriguez-Justo, M., Novelli, M. R., Ragunath, K., Shepherd, N., & Dinis-Ribeiro, M. (2019). British Society of Gastroenterology guidelines on the diagnosis and management of patients at risk of gastric adenocarcinoma. Gut, 68(9), 1545–1575.

[6]

Beard, C., Millner, A. J., Forgeard, M. J., Fried, E. I., Hsu, K. J., Treadway, M. T., Leonard, C. V., Kertz, S. J., & Björgvinsson, T. (2016). Network analysis of depression and anxiety symptom relationships in a psychiatric sample. Psychological Medicine, 46(16), 3359–3369.

[7]

Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 5–13.

[8]

Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121.

[9]

Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., Wigman, J. T. W., & Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892–903.

[10]

Carleton, R. N. (2012). The intolerance of uncertainty construct in the context of anxiety disorders: Theoretical and practical perspectives. Expert Review of Neurotherapeutics, 12(8), 937–947.

[11]

Carleton, R. N., Fetzner, M. G., Hackl, J. L., & McEvoy, P. (2013). Intolerance of uncertainty as a contributor to fear and avoidance symptoms of panic attacks. Cognitive Behaviour Therapy, 42(4), 328–341.

[12]

Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771.

[13]

Clayton, R. B., Osborne, R. E., Miller, B. K., & Oberle, C. D. (2013). Loneliness, anxiousness, and substance use as predictors of Facebook use. Computers in Human Behavior, 29(3), 687–693.

[14]

Costenbader, E., & Valente, T. W. (2003). The stability of centrality measures when networks are sampled. Social Networks, 25(4), 283–307.

[15]

Craske, M. G., Stein, M. B., Eley, T. C., Milad, M. R., Holmes, A., Rapee, R. M., & Wittchen, H. U. (2017). Anxiety disorders. Nature Reviews Disease Primers, 3, 17024.

[16]

Dash, S., Clarke, G., Berk, M., & Jacka, F. N. (2015). The gut microbiome and diet in psychiatry: Focus on depression. Current Opinion in Psychiatry, 28(1), 1–6.

[17]

Dixon, M. F., Genta, R. M., Yardley, J. H., & Correa, P. (1996). Classification and grading of gastritis. The updated Sydney system. International workshop on the histopathology of gastritis, Houston 1994. The American Journal of Surgical Pathology, 20(10), 1161–1181.

[18]

Dymond, S., Dunsmoor, J. E., Vervliet, B., Roche, B., & Hermans, D. (2015). Fear generalization in humans: Systematic review and implications for anxiety disorder research. Behavior Therapy, 46(5), 561–582.

[19]

Engel, G. L. (1977). The need for a new medical model: A challenge for biomedicine. Science, 196(4286), 129–136.

[20]

Engel, G. L. (1980). The clinical application of the biopsychosocial model. The American Journal of Psychiatry, 137(5), 535–544.

[21]

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212.

[22]

Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 1–18.

[23]

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. Psychological Methods, 23(4), 617–634.

[24]

Fang, J. Y., Du, Y. Q., Liu, W. Z., Ren, J. L., Li, Y. Q., Chen, X. Y., Lv, N. H., Chen, Y. X., Lv, B., & Chinese Society of Gastroenterology, Chinese Medical Association. (2018). Chinese consensus on chronic gastritis (2017, Shanghai). Journal of Digestive Diseases, 19(4), 182–203.

[25]

Fried, E. I., & Nesse, R. M. (2014). The impact of individual depressive symptoms on impairment of psychosocial functioning. PLoS One, 9(2), e90311.

[26]

Fried, E. I., & Nesse, R. M. (2015). Depression sum-scores don’t add up: Why analyzing specific depression symptoms is essential. BMC Medicine, 13, 72.

[27]

Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N., & Turk, D. C. (2007). The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychological Bulletin, 133(4), 581–624.

[28]

Gong, Y., Kang, J., Wu, R., Ge, F., Zheng, Y. S., & Zeng, Q. (2022). Gastroscopic results for the asymptomatic, average-risk population in Northern China: A cross-sectional study of 60, 519 adults. Scandinavian Journal of Gastroenterology, 57(6), 748–756.

[29]

Goodwin, R. D., Cowles, R. A., Galea, S., & Jacobi, F. (2013). Gastritis and mental disorders. Journal of Psychiatric Research, 47(1), 128–132.

[30]

Haslbeck, J. M. B., & Waldorp, L. J. (2020). Mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of Statistical Software, 93(8), 1–46.

[31]

Havelka, M., Lucanin, J. D., & Lucanin, D. (2009). Biopsychosocial model – the integrated approach to health and disease. Collegium Antropologicum, 33(1), 303–310.

[32]

Huang, Y., Huang, Y., Lin, M., & Tao, Y. (2024). Seeking central hopelessness symptoms which direct link to resilience among parents of children with autism spectrum disorder in China-a network perspective. PsyCh Journal, 13(1), 102–112.

[33]

Jiang, R., Yu, X., Ma, H., He, Y., Wei, J., Bai, W., & Liu, M. (2009). The prevalence of depression and anxiety in gastrointestinal out-patients of tertiary general hospitals in Beijing. Zhonghua Nei Ke Za Zhi, 48(5), 399–401.

[34]

Jones, P. (2018). Networktools: Tools for Identifying Important Nodes in Networks. R package version 1.3.0. https://CRAN.R-project.org/package=networktools

[35]

Jones, P. J., Mair, P., Riemann, B. C., Mugno, B. L., & McNally, R. J. (2018). A network perspective on comorbid depression in adolescents with obsessive-compulsive disorder. Journal of Anxiety Disorders, 53, 1–8.

[36]

Kaiser, T., Herzog, P., Voderholzer, U., & Brakemeier, E. (2021). Unraveling the comorbidity of depression and anxiety in a large inpatient sample: Network analysis to examine bridge symptoms. Depression and Anxiety, 38(3), 307–317.

[37]

Lin, C.-Y., Lopes, A. R., & Nihei, O. K. (2021). Depression, anxiety and stress symptoms in Brazilian university students during the COVID-19 pandemic: Predictors and association with life satisfaction, psychological wellbeing and coping strategies. PLoS One, 16(10), e0258493.

[38]

Liu, Z., Yin, R., Fan, Z., Fan, H., Wu, H., Shen, B., Wu, S., & Kuang, F. (2020). Gender differences in associated and predictive factors of anxiety and depression in people with epilepsy. Frontiers in Psychiatry, 11, 670.

[39]

Macke, L., Schulz, C., & Malfertheiner, P. (2022). The fear of gastric cancer in patients with dyspepsia: Challenge in specialist care gastroenterology. Digestive Diseases (Basel, Switzerland), 40(4), 409–416.

[40]

Marchetti, I. (2019). Hopelessness: A network analysis. Cognitive Therapy and Research, 43(3), 611–619.

[41]

Marchetti, I., Loeys, T., Alloy, L. B., & Koster, E. H. (2016). Unveiling the structure of cognitive vulnerability for depression: Specificity and overlap. PLoS One, 11(12), e0168612.

[42]

Margolis, K. G., Cryan, J. F., & Mayer, E. A. (2021). The microbiota-gut-brain Axis: From motility to mood. Gastroenterology, 160(5), 1486–1501.

[43]

Mayer, E. A. (2011). Gut feelings: The emerging biology of gut-brain communication. Nature Reviews. Neuroscience, 12(8), 453–466.

[44]

McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and Therapy, 86, 95–104.

[45]

Meulders, A. (2020). Fear in the context of pain: Lessons learned from 100 years of fear conditioning research. Behaviour Research and Therapy, 131, 103635.

[46]

Ning, X., Yu, F., Huang, Q., Li, X., Luo, Y., Huang, Q., & Chen, C. (2020). The mental health of neurological doctors and nurses in Hunan Province, China during the initial stages of the COVID-19 outbreak. BMC Psychiatry, 20(1), 436.

[47]

Özyurt, G., Çağan-Appak, Y., Karakoyun, M., & Baran, M. (2019). Evaluation of emotional, behavioral problems and family functioning in adolescents with chronic gastritis. Evaluación de problemas emocionales y conductuales, y del funcionamiento familiar en adolescentes con gastritis crónica. Archivos Argentinos de Pediatria, 117(2), e110–e114.

[48]

Pilotto, A., & Malfertheiner, P. (2002). Review article: An approach to helicobacter pylori infection in the elderly. Alimentary Pharmacology & Therapeutics, 16(4), 683–691.

[49]

Polydorides, A. D. (2014). Pathology and differential diagnosis of chronic, noninfectious gastritis. Seminars in Diagnostic Pathology, 31(2), 114–123.

[50]

Ren, K., & Russell, K. (2016). formattable: Create “Formattable” data structures. R Package Version 0.2. 0.1. https://renkun-ken.github.io/formattable/

[51]

Scutari Marco, D. J.-B. (2021). Bayesian networks: With examples in R. Chapman and Hall/CRC.

[52]

Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: Links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34(5), 721–733.

[53]

Shah, S. C., Piazuelo, M. B., Kuipers, E. J., & Li, D. (2021). AGA clinical practice update on the diagnosis and management of atrophic gastritis: Expert review. Gastroenterology, 161(4), 1325–1332.

[54]

Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167(4), 915–932.

[55]

Sibelli, A., Chalder, T., Everitt, H., Workman, P., Windgassen, S., & Moss-Morris, R. (2016). A systematic review with meta-analysis of the role of anxiety and depression in irritable bowel syndrome onset. Psychological Medicine, 46(15), 3065–3080.

[56]

Sipponen, P., & Maaroos, H. I. (2015). Chronic gastritis. Scandinavian Journal of Gastroenterology, 50(6), 657–667.

[57]

Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychological Bulletin, 140(3), 774–815.

[58]

Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G., & Bishayee, A. (2020). Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: A novel therapeutic target. Pharmacology & Therapeutics, 207, 107464.

[59]

Tao, Y., Chen, Y., Zhou, W., Lai, L., & Liu, T. (2022). The effectiveness of the moving to emptiness technique on clients who need help during the COVID-19 pandemic: A real-world study. Frontiers in Public Health, 10, 890960.

[60]

Tao, Y., Hou, W., Zhang, L., & Liu, X. (2023). Mapping network connection of comorbidity of depression and anxiety symptoms among firefighters exposed to traumatic events: Insights from a network analysis. Psychological Trauma: Theory, Research, Practice, and Policy. Advance online publication.

[61]

Tao, Y., Niu, H., Li, Y., Liu, X., Wang, S., Ma, Z., Hou, W., & Liu, X. (2023). Effects of personal relative deprivation on the relationship between anger rumination and aggression during and after the COVID-19 pandemic lockdown: A longitudinal moderated network approach. Journal of Adolescence, 95(3), 596–608.

[62]

Tao, Y., Tang, Q., Zou, X., Wang, S., Ma, Z., Zhang, L., & Liu, X. (2023). Effects of attention to negative information on the bidirectional relationship between fear of missing out (FoMO), depression and smartphone addiction among secondary school students: Evidence from a two-wave moderation network analysis. Computers in Human Behavior, 148, 107920.

[63]

Thabane, M., Kottachchi, D. T., & Marshall, J. K. (2007). Systematic review and meta-analysis: The incidence and prognosis of post-infectious irritable bowel syndrome. Alimentary Pharmacology & Therapeutics, 26(4), 535–544.

[64]

Triolo, F., Belvederi Murri, M., Calderón-Larrañaga, A., Vetrano, D. L., Sjöberg, L., Fratiglioni, L., & Dekhtyar, S. (2021). Bridging late-life depression and chronic somatic diseases: A network analysis. Translational Psychiatry, 11(1), 557.

[65]

Valente, T. W. (2012). Network interventions. Science, 337(6090), 49–53.

[66]

van Agteren, J., Iasiello, M., Lo, L., Bartholomaeus, J., Kopsaftis, Z., Carey, M., & Kyrios, M. (2021). A systematic review and meta-analysis of psychological interventions to improve mental wellbeing. Nature Human Behaviour, 5(5), 631–652.

[67]

Wang, Y., & Kasper, L. H. (2014). The role of microbiome in central nervous system disorders. Brain Behavior and Immunity, 38, 1–12.

[68]

Wiltink, J., Tschan, R., Michal, M., Subic-Wrana, C., Eckhardt-Henn, A., Dieterich, M., & Beutel, M. E. (2009). Dizziness: Anxiety, health care utilization and health behavior – results from a representative German community survey. Journal of Psychosomatic Research, 66(5), 417–424.

[69]

Wu, H., Liang, G., Kong, M., Zhang, Y., Zhou, Y., Han, J., Hu, X., Li, Y., Li, Y., Zhan, Q., Chen, S., Du, Y., & Chen, W. (2022). The status and risk factors for anxiety/depression in patients with atrophic chronic gastritis: A cross-sectional study. Annals of Palliative Medicine, 11(10), 3147–3159.

[70]

Yang, H., Yang, W. J., & Hu, B. (2022). Gastric epithelial histology and precancerous conditions. World Journal of Gastrointestinal Oncology, 14(2), 396–412.

[71]

Yin, Y., Liang, H., Wei, N., & Zheng, Z. (2022). Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: An updated systematic review and meta-analysis. Annals of Palliative Medicine, 11(12), 3697–3703.

[72]

Zung, W. W. (1965). A self-rating depression scale. Archives of General Psychiatry, 12(1), 63–70.

[73]

Zung, W. W. (1971). A rating instrument for anxiety disorders. Psychosomatics: Journal of Consultation and Liaison Psychiatry, 12(6), 371–379.

RIGHTS & PERMISSIONS

2024 The Authors. PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

522

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/