The developmental cognitive mechanism of learning algebraic rules from the dual-process theory perspective

Feng Xiao , Kun Liang , Tie Sun , Fengqi He

Psych Journal ›› 2024, Vol. 13 ›› Issue (4) : 517 -526.

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (4) : 517 -526. DOI: 10.1002/pchj.749
REVIEW ARTICLE

The developmental cognitive mechanism of learning algebraic rules from the dual-process theory perspective

Author information +
History +
PDF

Abstract

Rule learning is an important ability that enables human beings to adapt to nature and develop civilizations. There have been many discussions on the mechanism and characteristics of algebraic rule learning, but there are still controversies due to the lack of theoretical guidance. Based on the dual-process theory, this study discussed the following arguments for algebraic rule learning across human and animal studies: whether algebraic rule learning is simply Type 1 processing, whether algebraic rule learning is a domain-general ability, whether algebraic rule learning is shared by humans and animals, and whether an algebraic rule is learned consciously. Moreover, we propose that algebraic rule learning is possibly a cognitive process that combines both Type 1 and Type 2 processing. Further exploration is required to establish the essence and neural basis of algebraic rule learning.

Keywords

algebraic rule learning / dual-process theory / Type 1 processing / Type 2 processing

Cite this article

Download citation ▾
Feng Xiao, Kun Liang, Tie Sun, Fengqi He. The developmental cognitive mechanism of learning algebraic rules from the dual-process theory perspective. Psych Journal, 2024, 13(4): 517-526 DOI:10.1002/pchj.749

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alhama, R. G., & Zuidema, W. (2019). A review of computational models of basic rule learning: The neural-symbolic debate and beyond. Psychonomic Bulletin & Review, 26(4), 1174–1194.

[2]

Aslin, R. N., & Newport, E. L. (2012). Statistical learning: From acquiring specific items to forming general rules. Current Directions in Psychological Science, 21(3), 170–176.

[3]

Astikainen, P., Mällo, T., Ruusuvirta, T., & Näätänen, R. (2014). Electrophysiological evidence for change detection in speech sound patterns by anesthetized rats. Frontiers in Neuroscience, 8, 374.

[4]

Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. Journal of Cognitive Neuroscience, 19(12), 2082–2099.

[5]

Bekinschtein, T. A., Dehaene, S., Rohaut, B., Tadel, F., Cohen, L., & Naccache, L. (2009). Neural signature of the conscious processing of auditory re-gularities. Proceedings of the National Academy of Sciences, 106(5), 1672–1677.

[6]

Berent, I., Bat-El, O., Brentari, D., Andan, Q., & Vaknin-Nusbaum, V. (2020). Amodal phonology. Journal of Linguistics, 57(3), 499–529.

[7]

Bettoni, R., Addabbo, M., Ghidina, C., Pezzana, C., Vagni, D., Turati, C., & B-ulf, H. (2023). Learning and generalization of repetition-based rules in autism. Psychological Research, 87(5), 1429–1438.

[8]

Bouchon, C., Nazzi, T., & Gervain, J. (2015). Hemispheric asymmetries in rep-etition enhancement and suppression effects in the newborn brain. PLoS ONE, 10(10), e0140160.

[9]

Bulf, H., Brenna, V., Valenza, E., Johnson, S. P., & Turati, C. (2015). Many f-aces, one rule: The role of perceptual expertise in infants’ sequential rule learning. Frontiers in Psychology, 6, 1595.

[10]

Bulf, H., Capparini, C., Nava, E., de Hevia, M. D., & Cassia, V. M. (2022). Space modulates cross-domain transfer of abstract rules in infants. Journal of Experimental Child Psychology, 213, 105270.

[11]

Bulf, H., Quadrelli, E., Brady, S., Nguyen, B., Cassia, V. M., & Johnson, S. P. (2021). Rule learning transfer across linguistic and visual modalities in 7-month-old infants. Infancy, 26(3), 442–454.

[12]

Buss, D. M. (2015). In Y. Zhang & K. Jiang (Eds.), Evolutionary psychology: The new science of the mind. Pearson. (Original work published 1999).

[13]

Chen, J. N., Van Rossum, D., & Ten Cate, C. (2015). Artificial grammar learn-ing in zebra finches and human adults: XYX versus XXY. Animal Cognition, 18(1), 151–164.

[14]

Chen, Y., Su, Y., Sun, R., & Yih, W. T. (2021). Integrating AI planning with natural language processing: A combination of explicit and tacit knowledge. arXiv preprint. arXiv:2109.11760.

[15]

Christiansen, M. H., Allen, J., & Seidenberg, M. S. (1998). Learning to segme-nt speech using multiple cues: A connectionist model. Language and Cognitive Processes, 13(2–3), 221–268.

[16]

Christiansen, M. H., Conway, C. M., & Curtin, S. (2000). A conne-ctionist single-mechanism account of rule-like behavior in infancy. In [proceedings of the twenty-second annual conference of the cognitive science society]. 22nd annual conference of the cognitive-science-society, Univ Pennsylvania, Instrescognitsci. Lawrence Erlbaum Associates Inc.

[17]

Christiansen, M. H., & Curtin, S. L. (1999). The power of statistical learning: No need for algebraic rules. In Proceedings of the twenty first annual conference of the cognitive science society. 21st Annual Conference of the Cognitive-Science-Society. Lawrence Erlbaum Associates Inc.

[18]

Daniela, M., & Toro, J. M. (2013). Rule learning over consonants and vowels in a non-human animal. Cognition, 126(2), 307–312.

[19]

d’Avila Garcez, A. S., Broda, K., & Gabbay, D. M. (2001). Symbolic knowled-ge extraction from trained neural networks: A sound approach. Artificial Intelligence, 125(1–2), 155–207.

[20]

Dawson, C., & Gerken, L. (2009). From domain-generality to domain-sensitivit-y:4-month-olds learn an abstract repetition rule in music that 7-month-olds do not. Cognition, 111(3), 378–382.

[21]

de la Cruz-Pavía, I., & Gervain, J. (2021). Infants’ perception of repetition-base-d regularities in speech: A look from the perspective of the same/differe-nt distinction. Current Opinion in Behavioral Sciences, 37, 125–132.

[22]

de la Cruz-Pavía, I., & Gervain, J. (2023). Six-month-old infants’ perception of structural regularities in speech. Cognition, 238, 105526.

[23]

de la Cruz-Pavía, I., Westphal-Fitch, G., Fitch, W. T., & Gervain, J. (2022). Seven-month-old infants detect symmetrical structures in multi-featured abs-tract visual patterns. PLoS ONE, 17(5), e0266938.

[24]

Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. P., & Pallier, C. (2015). The neural representation of sequences: From transition probabilities to algebraic patterns and linguistic trees. Neuron, 88(1), 2–19.

[25]

Deng, C., & Rogers, L. J. (1998). Bilaterally projecting neurons in the two visual pathways of chicks. Brain Research, 794(2), 281–290.

[26]

Ellis, K., Solar-Lezama, A., & Tenenbaum, J. B. (2020). Learning to infer grap-hics programs from hand-drawn images. Advances in Neural Information Processing Systems, 33, 6062–6074.

[27]

Endress, A. D., Scholl, B. J., & Mehler, J. (2005). The role of salience in the extraction of algebraic rules. Journal of Experimental Psychology-General, 134(3), 406–419.

[28]

Evans, J. St. B. T. (2003). In two minds: Dual-process accounts of reasoning [review]. Trends in Cognitive Sciences, 7(10), 454–459.

[29]

Evans, J. St. B. T. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology., 59, 255–278.

[30]

Evans, J. St. B. T. (2010). Intuition and reasoning: A dual-process perspective. Psychological Inquiry, 21(4), 313–326.

[31]

Evans, J. St. B. T. (2011). Dual-process theories of reasoning: Contemporary issues and developmental applications. Developmental Review, 31(2–3), 86–102.

[32]

Ferguson, B., Franconeri, S. L., & Waxman, S. R. (2018). Very young infants learn abstract rules in the visual modality. PLoS ONE, 13(1), e0190185.

[33]

Ferguson, B., & Lew-Williams, C. (2016). Communicative signals support abstr-act rule learning by 7-month-old infants. Scientific Reports, 6(1), 1–7.

[34]

Fishbein, A. R. (2022). Auditory pattern discrimination in budgerigars (Melopsit-tacus undulatus). Behavioural Processes, 202, 104742.

[35]

Fodor, J. A. (1983). The moduarity of mind. Philosophical Review, 94(1), 101.

[36]

Forgács, B., Tauzin, T., Gergely, G., & Gervain, J. (2022). The newborn brain is sensitive to the communicative function of language. Scientific Reports, 12(1), 1–6.

[37]

Frank, M. C., Slemmer, J. A., Marcus, G. F., & Johnson, S. P. (2009). Inform-ation from multiple modalities helps 5-month-olds learn abstract rules. Developmental Science, 12(4), 504–509.

[38]

Geambasu, A., Spit, S., van Renswoude, D., Blom, E., Fikkert, P. J. P. M., Hu-nnius, S., Junge, C. C. M. M., Verhagen, J., Visser, I., Wijnen, F., & Levelt, C. C. (2022). Robustness of the rule learning effect in 7-month-ol-d infants: A close, multicenter replication of Marcus et al. (1999). Developmental Science, 26, e13244.

[39]

Gemignani, J., de la Cruz-Pavía, I., Martinez, A., Nallet, C., Pasquini, A., Luc-arini, G., Cavicchiolo, F., & Gervain, J. (2023). Reproducibility of infant fNIRS studies: A meta-analytic approach. Neurophotonics, 10(2), 023518.

[40]

Gerken, L. (2006). Decisions, decisions: Infant language learning when multiple generalizations are possible. Cognition, 98(3), B67–B74.

[41]

Gervain, J., Berent, I., & Werker, J. F. (2012). Binding at birth: The newborn brain detects identity relations and sequential position in speech. Journal of Cognitive Neuroscience, 24(3), 564–574.

[42]

Gervain, J., Macagno, F., Cogoi, S., Peña, M., & Mehler, J. (2008). The neonate brain detects speech structure. Proceedings of the National Academy of Sciences, 105(37), 14222–14227.

[43]

Gow, D., Jr., Avcu, E., Schoenhaut, A., Sorensen, D. O., & Ahlfors, S. P. (2023). Abstract representations in temporal cortex support generative linguistic processing. Language Cognition and Neuroscience, 38(6), 765–778.

[44]

Hauser, M. D., & Glynn, D. (2009). Can free-ranging rhesus monkeys (Macaca mulatta) extract artificially created rules comprised of natural vocalizations? Journal of Comparative Psychology, 123(2), 161–167.

[45]

He, C., Hotson, L., & Trainor, L. J. (2007). Mismatch responses to pitch changes in early infancy. Journal of Cognitive Neuroscience, 19(5), 878–892.

[46]

Jiang, Q., Li, P., Li, F. H., Wang, Q., Cao, B. H., & Li, H. (2016). The neural basis of desire reasoning for self and others: An event-related potential study. Neuroreport, 27(2), 85–89.

[47]

Jiang, X. J., Long, T. H., Cao, W. C., Li, J. R., Dehaene, S., & Wang, L. P. (2018). Production of supra-regular spatial sequences by macaque monkeys. Current Biology, 28(12), 1851–1859.e1854.

[48]

Johnson, S. P., Fernandas, K. J., Frank, M. C., Kirkham, N., Marcus, G., Raba-gliati, H., & Slemmer, J. A. (2009). Abstract rule learning for visual sequences in 8-and 11-month-Olds. Infancy, 14(1), 2–18.

[49]

Kahneman, D. (2011). Thinking, fast and slow. macmillan.

[50]

Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reas-oning [review]. Journal of Experimental Psychology-General, 133(2), 189–217.

[51]

Kimura, M. (2012). Visual mismatch negativity and unintentional temporal-context-based prediction in vision. International Journal of Psychophysiology, 83(2), 144–155.

[52]

Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83(2), B35–B42.

[53]

Kovács, A. M., & Endress, A. D. (2014). Hierarchical processing in seven-month-old infants. Infancy, 19(4), 409–425.

[54]

Liaukovich, K., Ukraintseva, Y., & Martynova, O. (2022). Implicit auditory perception of local and global irregularities in passive listening condition. Neuropsychologia, 165, 108129.

[55]

Lorenz, K. Z. (1937). The companion in the bird’s world. The Auk, 54(3), 245–273.

[56]

Lu, H. S., & Mintz, T. H. (2021). Learning non-adjacent rules and non-adjacent dependencies from human actions in 9-month-old infants. PLoS ONE, 16(6), e0252959.

[57]

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., & Wu, J. (2019). The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. arXiv preprint arXiv:1904.12584.

[58]

Marcus, G. F., Fernandes, K. J., & Johnson, S. P. (2007). Infant rule learning facilitated by speech. Psychological Science, 18(5), 387–391.

[59]

Marcus, G. F., Vijayan, S., Bandi Rao, S., & Vishton, P. M. (1999). Rule learning by seven-month-old infants. Science, 283(5398), 77–80.

[60]

Martin, L., Marie, J., Brun, M., de Hevia, M., Streri, A., & Izard, V. (2022). Abstract representations of small sets in newborns. Cognition, 226, 105184.

[61]

Monte-Ordoño, J., & Toro, J. M. (2017). Different ERP profiles for learning rules over consonants and vowels. Neuropsychologia, 97, 104–111.

[62]

Monte-Ordoño, J., & Toro, J. M. (2019). Differences in relative frequency facilitate learning abstract rules. Psychological Research, 83(2), 384–394.

[63]

Mori, C., & Okanoya, K. (2022). Mismatch responses evoked by sound pattern violation in the songbird forebrain suggest common auditory processing with human. Frontiers in Physiology, 13, 822098.

[64]

Mueller, J. L., Friederici, A. D., & Männel, C. (2012). Auditory perception at the root of language learning. Proceedings of the National Academy of Sciences, 109(39), 15953–15958.

[65]

Murphy, R. A., Mondragón, E., & Murphy, V. A. (2008). Rule learning by rats. Science, 319(5871), 1849–1851.

[66]

Näätänen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clinical Neurophysiology, 118(12), 2544–2590.

[67]

Neiworth, J. J., London, J. M., Flynn, M. J., Rupert, D. D., Alldritt, O., & Hyde, C. (2017). Artificial grammar learning in tamarins (Saguinus oedipus) in varying stimulus contexts. Journal of Comparative Psychology, 131(2), 128–138.

[68]

Nieder, A. (2012). Supramodal numerosity selectivity of neurons in primate pre-frontal and posterior parietal cortices. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11860–11865.

[69]

Partanen, E., Pakarinen, S., Kujala, T., & Huotilainen, M. (2013). Infants’ brain responses for speech sound changes in fast multifeature MMN paradigm. Clinical Neurophysiology, 124(8), 1578–1585.

[70]

Pazo-Alvarez, P., Cadaveira, F., & Amenedo, E. (2003). MMN in the visual modality: A review. Biological Psychology, 63(3), 199–236.

[71]

Quadrelli, E., Brenna, V., Monacò S., Turati, C., & Bulf, H. (2020). Emotional facial expressions affect visual rule learning in 7–8-month-old infan-ts. Infant Behavior and Development, 61, 101501.

[72]

Rabagliati, H., Ferguson, B., & Lew-Williams, C. (2019). The profile of abstract rule learning in infancy: Meta-analytic and experimental evidence. Developmental Science, 22(1), e12704.

[73]

Rabagliati, H., Senghas, A., Johnson, S., & Marcus, G. F. (2012). Infant rule learning: Advantage language, or advantage speech? PLoS ONE, 7(7), e40517.

[74]

Ravignani, A., & Sonnweber, R. (2017). Chimpanzees process structural isomorphisms across sensory modalities. Cognition, 161, 74–79.

[75]

Reber, S. A., Šlipogor, V., Oh, J., Ravignani, A., Hoeschele, M., Bugnyar, T., & Fitch, W. T. (2019). Common marmosets are sensitive to simple depe-ndencies at variable distances in an artificial grammar. Evolution and Human Behavior, 40(2), 214–221.

[76]

Reinert, J. (1965). Takt-und Rhythmusunterscheidung bei Dohlen. Zeitschrift für-Tierpsychologie, 22(6), 623–671.

[77]

Romberg, A. R., & Saffran, J. R. (2010). Statistical learning and language acq-uisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906–914.

[78]

Saffran, J. R., Pollak, S. D., Seibel, R. L., & Shkolnik, A. (2007). Dog is a dog is a dog: Infant rule learning is not specific to language. Cognition, 105(3), 669–680.

[79]

Santolin, C., Rosa-Salva, O., Regolin, L., & Vallortigara, G. (2016). Generalization of visual regularities in newly hatched chicks (Gallus gallus). Animal Cognition, 19(5), 1007–1017.

[80]

Santolin, C., & Saffran, J. R. (2018). Constraints on statistical learning across species. Trends in Cognitive Sciences, 22(1), 52–63.

[81]

Schonberg, C., Marcus, G. F., & Johnson, S. P. (2018). The roles of item repetition and position in infants’ abstract rule learning. Infant Behavior and Development, 53, 64–80.

[82]

Seki, Y., Suzuki, K., Osawa, A. M., & Okanoya, K. (2013). Songbirds and humans apply different strategies in a sound sequence discrimination task. Frontiers in Psychology, 4, 447.

[83]

Selsam, D., Liang, P., & Dill, D. L. (2017, July). Developing bug-free machine learning systems with formal mathematics. In International conference on machine learning (pp. 3047–3056). PMLR.

[84]

Sheth, A., Roy, K., & Gaur, M. (2023). Neurosymbolic artificial intelligence (why, what, and how). IEEE Intelligent Systems, 38(3), 56–62.

[85]

Shima, K., Isoda, M., Mushiake, H., & Tanji, J. (2007). Categorization of behavioural sequences in the prefrontal cortex. Nature, 445(7125), 315–318.

[86]

Sirois, S., Buckingham, D., & Shultz, T. R. (2000). Artificial grammer learning by infants: An auto-associator perspective. Developmental Science, 3(4), 442–456.

[87]

Sloman, S. A. (1996). The empirical case for two systems of reasoning. Psychological Bulletin, 119(1), 3–22.

[88]

Spierings, M. J., & Ten Cate, C. (2016). Budgerigars and zebra finches differ in how they generalize in an artificial grammar learning experiment. Proceedings of the National Academy of Sciences, 113(27), E3977–E3984.

[89]

Spit, S., Geambașu, A., van Renswoude, D., Blom, E., Fikkert, P., Hunnius, S., Junge, C., Verhagen, J., Visser, I., Wijnen, F., & Levelt, C. C. (2023). Robustness of the cognitive gains in 7-month-old bilingual infants: A close multi-center replication of Kovács and Mehler (2009). Developmental Science, 26(6), e13377.

[90]

Sun, F., Hoshi-Shiba, R., Abla, D., & Okanoya, K. (2012). Neural correlates of abstract rule learning: An event-related potential study. Neuropsychologia, 50(11), 2617–2624.

[91]

Sun, R. (1994). Integrating rules and connectionism for robust commonsense reasoning. John Wiley & Sons, Inc.

[92]

Teinonen, T., Fellman, V., Näätänen, R., Alku, P., & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience, 10(1), 1–8.

[93]

Ten Cate, C., Spierings, M., Hubert, J., & Honing, H. (2016). Can birds perceive rhythmic patterns? A review and experiments on a songbird and a parrot species. Frontiers in Psychology, 7, 730.

[94]

Thiessen, E. D. (2012). Effects of inter-and intra-modal redundancy on infants’ rule learning. Language Learning and Development, 8(3), 197–214.

[95]

Tsui, A. S. M., Ma, Y. K., Ho, A., Chow, H. M., & Tseng, C. H. (2016). Bi-modal emotion congruency is critical to preverbal infants’ abstract rule learning. Developmental Science, 19(3), 382–393.

[96]

Tyrrell, D. J., Stauffer, L. B., & Snowman, L. G. (1991). Perception of abstract identity/difference relationships by infants. Infant Behavior and Development, 14(1), 125–129.

[97]

Valiant, L. G. (2000). Robust logics. Artificial Intelligence, 117(2), 231–253.

[98]

van Heijningen, C. A., Chen, J. N., van Laatum, I., van der Hulst, B., & ten Cate, C. (2013). Rule learning by zebra finches in an artificial grammar learning task: Which rule? Animal Cognition, 16(2), 165–175.

[99]

van Heijningen, C. A., De Visser, J., Zuidema, W., & Ten Cate, C. (2009). Simple rules can explain discrimination of putative recursive syntactic structures by a songbird species. Proceedings of the National Academy of Sciences, 106(48), 20538–20543.

[100]

Wacongne, C., Changeux, J. P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. Journal of Neuroscience, 32(11), 3665–3678.

[101]

Wagner, J. B., Fox, S. E., Tager-Flusberg, H., & Nelson, C. A. (2011). Neural processing of repetition and non-repetition grammars in 7-and 9-month-old infants. Frontiers in Psychology, 2, 168.

[102]

Wang, L. P., Uhrig, L., Jarraya, B., & Dehaene, S. (2015). Representation of numerical and sequential patterns in macaque and human brains. Current Biology, 25(15), 1966–1974.

[103]

Yu, T., Yasunaga, M., Yang, K., Zhang, R., Wang, D., Li, Z., & Radev, D. (2021). Symbolic knowledge distillation: From general language models to commonsense models. arXiv preprint arXiv:2110.07178.

[104]

Zhang, H., Zhen, Y. F., Yu, S. J., Long, T. H., Zhang, B. Q., Jiang, X. J., Li, J. R., Fang, W., Sigman, M., & Dehaene, S. (2022). Working memory for spatial sequences: Developmental and evolutionary factors in encoding ordinal and relational structures. Journal of Neuroscience, 42(5), 850–864.

[105]

Zhang, Q., Li, L., Guo, X. Y., Zheng, L., Wu, Y. Y., & Zhou, C. (2020). Implicit learning of symmetry of human movement and gray matter density: Evidence against pure domain general and pure domain specific theories of implicit learning. International Journal of Psychophysiology, 147, 60–71.

RIGHTS & PERMISSIONS

2024 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/