Neural basis underlying the association between thought control ability and happiness: The moderating role of the amygdala

Min Li , Yuchi Yan , Hui Jia , Yixin Gao , Jiang Qiu , Wenjing Yang

Psych Journal ›› 2024, Vol. 13 ›› Issue (4) : 625 -638.

PDF
Psych Journal ›› 2024, Vol. 13 ›› Issue (4) : 625 -638. DOI: 10.1002/pchj.741
ORIGINAL ARTICLE

Neural basis underlying the association between thought control ability and happiness: The moderating role of the amygdala

Author information +
History +
PDF

Abstract

Thought control ability (TCA) plays an important role in individuals’ health and happiness. Previous studies demonstrated that TCA was closely conceptually associated with happiness. However, empirical research supporting this relationship was limited. In addition, the neural basis underlying TCA and how this neural basis influences the relationship between TCA and happiness remain unexplored. In the present study, the voxel-based morphometry (VBM) method was adopted to investigate the neuroanatomical basis of TCA in 314 healthy subjects. The behavioral results revealed a significant positive association between TCA and happiness. On the neural level, there was a significant negative correlation between TCA and the gray matter density (GMD) of the bilateral amygdala. Split-half validation analysis revealed similar results, further confirming the stability of the VBM analysis findings. Furthermore, gray matter covariance network and graph theoretical analyses showed positive association between TCA and both the node degree and node strength of the amygdala. Moderation analysis revealed that the GMD of the amygdala moderated the relationship between TCA and happiness. Specifically, the positive association between TCA and self-perceived happiness was stronger in subjects with a lower GMD of the amygdala. The present study indicated the neural basis underlying the association between TCA and happiness and offered a method of improving individual well-being.

Keywords

amygdala / gray matter density / happiness / structural covariance network / thought control ability

Cite this article

Download citation ▾
Min Li, Yuchi Yan, Hui Jia, Yixin Gao, Jiang Qiu, Wenjing Yang. Neural basis underlying the association between thought control ability and happiness: The moderating role of the amygdala. Psych Journal, 2024, 13(4): 625-638 DOI:10.1002/pchj.741

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Afzal, A., Malik, N. I., & Atta, M. (2014). The moderating role of positive and negative emotions in relationship between positive psychological capital and subjective well-being among adolescents. International Journal of Research Studies in Psychology, 3(3), 29–42.

[2]

Aguirre-Urreta, M. I., & Hu, J. (2019). Detecting common method bias: Performance of the Harman’s single-factor test. ACM SIGMIS Database: The DATABASE for Advances in Information Systems, 50(2), 45–70.

[3]

Anderson, M. C. (2005). The role of inhibitory control in forgetting unwanted memories: A consideration of three methods. In C. MacLeod & B. Uttl (Eds.), Dynamic cognitive processes. Tokyo: Springer-Verlag, 159–190.

[4]

Anderson, M. C., Bunce, J. G., & Barbas, H. (2016). Prefrontal–hippocampal pathways underlying inhibitory control over memory. Neurobiology of Learning and Memory, 134, 145–161.

[5]

Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410(6826), 366–369.

[6]

Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms of motivated forgetting. Trends in Cognitive Sciences, 18(6), 279–292.

[7]

Anderson, M. C., & Hulbert, J. C. (2021). Active forgetting: Adaptation of memory by prefrontal control. Annual Review of Psychology, 72, 1–36.

[8]

Andrewes, D. G., & Jenkins, L. M. (2019). The role of the amygdala and the ventromedial prefrontal cortex in emotional regulation: Implications for post-traumatic stress disorder. Neuropsychology Review, 29, 220–243.

[9]

Arnáez, S., García-Soriano, G., López-Santiago, J., & Belloch, A. (2021). Illness-related intrusive thoughts and illness anxiety disorder. Psychology and Psychotherapy: Theory, Research and Practice, 94(1), 63–80.

[10]

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

[11]

Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6), 805–821.

[12]

Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303–312.

[13]

Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173–1182.

[14]

Beadel, J. R., Green, J. S., Hosseinbor, S., & Teachman, B. A. (2013). Influence of age, thought content, and anxiety on suppression of intrusive thoughts. Journal of Anxiety Disorders, 27(6), 598–607.

[15]

Berkman, E. T., & Lieberman, M. D. (2009). Using neuroscience to broaden emotion regulation: Theoretical and methodological considerations. Social and Personality Psychology Compass, 3(4), 475–493.

[16]

Bieda, A., Hirschfeld, G., Schönfeld, P., Brailovskaia, J., Lin, M., & Margraf, J. (2019). Happiness, life satisfaction and positive mental health: Investigating reciprocal effects over four years in a Chinese student sample. Journal of Research in Personality, 78, 198–209.

[17]

Blumen, H. M., & Verghese, J. (2019). Gray matter volume covariance networks associated with social networks in older adults. Social Neuroscience, 14(5), 559–570.

[18]

Brewin, C. R., Gregory, J. D., Lipton, M., & Burgess, N. (2010). Intrusive images in psychological disorders: Characteristics, neural mechanisms, and treatment implications. Psychological Review, 117(1), 210–232.

[19]

Brewin, C. R., & Smart, L. (2005). Working memory capacity and suppression of intrusive thoughts. Journal of Behavior Therapy and Experimental Psychiatry, 36(1), 61–68.

[20]

Catarino, A., Küpper, C. S., Werner-Seidler, A., Dalgleish, T., & Anderson, M. C. (2015). Failing to forget: Inhibitory-control deficits compromise memory suppression in posttraumatic stress disorder. Psychological Science, 26(5), 604–616.

[21]

Chen, Z., Deng, W., Gong, Q., Huang, C., Jiang, L., Li, M., He, Z., Wang, Q., Ma, X., & Wang, Y. (2014). Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: Morphometrical and covariation study. Psychological Medicine, 44(12), 2489–2501.

[22]

Cohn, M. A., Fredrickson, B. L., Brown, S. L., Mikels, J. A., & Conway, A. M. (2009). Happiness unpacked: Positive emotions increase life satisfaction by building resilience. Emotion, 9(3), 361–368.

[23]

Coppen, E. M., van der Grond, J., Hafkemeijer, A., Rombouts, S. A., & Roos, R. A. (2016). Early grey matter changes in structural covariance networks in Huntington’s disease. NeuroImage: Clinical, 12, 806–814.

[24]

Costanzi, M., Cianfanelli, B., Santirocchi, A., Lasaponara, S., Spataro, P., Rossi-Arnaud, C., & Cestari, V. (2021). Forgetting unwanted memories: Active forgetting and implications for the development of psychological disorders. Journal of Personalized Medicine, 11(4), 241.

[25]

Cotton, K., Verghese, J., & Blumen, H. M. (2020). Gray matter volume covariance networks, social support, and cognition in older adults. The Journals of Gerontology: Series B, 75(6), 1219–1229.

[26]

d’Arbeloff, T. C., Kim, M. J., Knodt, A. R., Radtke, S. R., Brigidi, B. D., & Hariri, A. R. (2018). Microstructural integrity of a pathway connecting the prefrontal cortex and amygdala moderates the association between cognitive reappraisal and negative emotions. Emotion, 18(6), 912–915.

[27]

Daselaar, S. M., Rice, H. J., Greenberg, D. L., Cabeza, R., LaBar, K. S., & Rubin, D. C. (2008). The spatiotemporal dynamics of autobiographical memory: Neural correlates of recall, emotional intensity, and reliving. Cerebral Cortex, 18(1), 217–229.

[28]

de Schipper, L. J., van der Grond, J., Marinus, J., Henselmans, J. M., & van Hilten, J. J. (2017). Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson’s disease. NeuroImage: Clinical, 15, 587–593.

[29]

Depue, B., & Banich, M. (2012). Increased inhibition and enhancement of memory retrieval are associated with reduced hippocampal volume. Hippocampus, 22(4), 651–655.

[30]

Depue, B. E., Banich, M. T., & Curran, T. (2006). Suppression of emotional and nonemotional content in memory: Effects of repetition on cognitive control. Psychological Science, 17(5), 441–447.

[31]

Depue, B. E., Burgess, G. C., Willcutt, E. G., Ruzic, L., & Banich, M. (2010). Inhibitory control of memory retrieval and motor processing associated with the right lateral prefrontal cortex: Evidence from deficits in individuals with ADHD. Neuropsychologia, 48(13), 3909–3917.

[32]

Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317(5835), 215–219.

[33]

Diener, E., & Seligman, M. E. (2002). Very happy people. Psychological Science, 13(1), 81–84.

[34]

Diener, E., Suh, E. M., Lucas, R. E., & Smith, H. L. (1999). Subjective well-being: Three decades of progress. Psychological Bulletin, 125(2), 276–302.

[35]

Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427(6972), 311–312.

[36]

DuPre, E., & Spreng, R. N. (2017). Structural covariance networks across the life span, from 6 to 94 years of age. Network Neuroscience, 1(3), 302–323.

[37]

Eden, A. S., Schreiber, J., Anwander, A., Keuper, K., Laeger, I., Zwanzger, P., Zwitserlood, P., Kugel, H., & Dobel, C. (2015). Emotion regulation and trait anxiety are predicted by the microstructure of fibers between amygdala and prefrontal cortex. Journal of Neuroscience, 35(15), 6020–6027.

[38]

Elahi, N. S., Abid, G., Arya, B., & Farooqi, S. (2020). Workplace behavioral antecedents of job performance: Mediating role of thriving. The Service Industries Journal, 40(11–12), 755–776.

[39]

Elliott, I., & Coker, S. (2008). Independent self-construal, self-reflection, and self-rumination: A path model for predicting happiness. Australian Journal of Psychology, 60(3), 127–134.

[40]

Elliott, M. L., Knodt, A. R., & Hariri, A. R. (2021). Striving toward translation: Strategies for reliable fMRI measurement. Trends in Cognitive Sciences, 25(9), 776–787.

[41]

Emerson, L.-M., Heapy, C., & Garcia-Soriano, G. (2018). Which facets of mindfulness protect individuals from the negative experiences of obsessive intrusive thoughts? Mindfulness, 9(4), 1170–1180.

[42]

Engen, H. G., & Anderson, M. C. (2018). Memory control: A fundamental mechanism of emotion regulation. Trends in Cognitive Sciences, 22(11), 982–995.

[43]

Erskine, J. A., Kvavilashvili, L., & Kornbrot, D. E. (2007). The predictors of thought suppression in young and old adults: Effects of rumination, anxiety, and other variables. Personality and Individual Differences, 42(6), 1047–1057.

[44]

Erskine, J. A. K. (2004). How paradoxical are the effects of thought suppression?: The nature of mental control and the factors that influence it. University of Hertfordshire.

[45]

Faridi, F., Seyedebrahimi, A., & Khosrowabadi, R. (2022). Brain structural covariance network in asperger syndrome differs from those in autism spectrum disorder and healthy controls. Basic and Clinical Neuroscience, 13(6), 815–838.

[46]

Fawcett, J. M., & Hulbert, J. C. (2020). The many faces of forgetting: Toward a constructive view of forgetting in everyday life. Journal of Applied Research in Memory and Cognition, 9(1), 1–18.

[47]

Feliu-Soler, A., Pérez-Aranda, A., Montero-Marín, J., Herrera-Mercadal, P., Andrés-Rodríguez, L., Angarita-Osorio, N., Williams, A. D., & Luciano, J. V. (2019). Fifteen years controlling unwanted thoughts: A systematic review of the thought control ability questionnaire (TCAQ). Frontiers in Psychology, 10, 1446.

[48]

Fermin, A. S., Sasaoka, T., Maekawa, T., Chan, H.-L., Machizawa, M. G., Okada, G., Okamoto, Y., & Yamawaki, S. (2023). Insula neuroanatomical networks predict interoceptive awareness. Heliyon, 9, e18307.

[49]

Fuller, C. M., Simmering, M. J., Atinc, G., Atinc, Y., & Babin, B. J. (2016). Common methods variance detection in business research. Journal of Business Research, 69(8), 3192–3198.

[50]

Gagnepain, P., Hulbert, J., & Anderson, M. C. (2017). Parallel regulation of memory and emotion supports the suppression of intrusive memories. Journal of Neuroscience, 37(27), 6423–6441.

[51]

Gootjes, L., & Rassin, E. (2014). Perceived thought control mediates positive effects of meditation experience on affective functioning. Mindfulness, 5(1), 1–9.

[52]

Granert, O., Peller, M., Gaser, C., Groppa, S., Hallett, M., Knutzen, A., Deuschl, G., Zeuner, K. E., & Siebner, H. R. (2011). Manual activity shapes structure and function in contralateral human motor hand area. NeuroImage, 54(1), 32–41.

[53]

Griffiths, K., Grieve, S., Kohn, M., Clarke, S., Williams, L., & Korgaonkar, M. (2016). Altered gray matter organization in children and adolescents with ADHD: A structural covariance connectome study. Translational Psychiatry, 6(11), e947.

[54]

Gutiérrez-Cobo, M. J., Megías-Robles, A., Gómez-Leal, R., Cabello, R., & Fernández-Berrocal, P. (2021). Is it possible to be happy during the COVID-19 lockdown? A longitudinal study of the role of emotional regulation strategies and pleasant activities in happiness. International Journal of Environmental Research and Public Health, 18(6), 3211.

[55]

Hamann, S., & Canli, T. (2004). Individual differences in emotion processing. Current Opinion in Neurobiology, 14(2), 233–238.

[56]

Harman, H. H. (1976). Modern factor analysis. University of Chicago press.

[57]

Harnett, N. G., Finegold, K. E., Lebois, L. A., van Rooij, S. J., Ely, T. D., Murty, V. P., Jovanovic, T., Bruce, S. E., House, S. L., & Beaudoin, F. L. (2022). Structural covariance of the ventral visual stream predicts posttraumatic intrusion and nightmare symptoms: A multivariate data fusion analysis. Translational Psychiatry, 12(1), 321.

[58]

Hayes, A. F. (2017). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. Guilford Publications.

[59]

Hermans, E. J., Battaglia, F. P., Atsak, P., de Voogd, L. D., Fernández, G., & Roozendaal, B. (2014). How the amygdala affects emotional memory by altering brain network properties. Neurobiology of Learning and Memory, 112, 2–16.

[60]

Hermundstad, A. M., Bassett, D. S., Brown, K. S., Aminoff, E. M., Clewett, D., Freeman, S., Frithsen, A., Johnson, A., Tipper, C. M., & Miller, M. B. (2013). Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences, 110(15), 6169–6174.

[61]

Hills, P., & Argyle, M. (2002). The Oxford happiness questionnaire: A compact scale for the measurement of psychological well-being. Personality and Individual Differences, 33(7), 1073–1082.

[62]

Holland, A. C., & Kensinger, E. A. (2010). Emotion and autobiographical memory. Physics of Life Reviews, 7(1), 88–131.

[63]

Holmbeck, G. N. (2002). Post-hoc probing of significant moderational and mediational effects in studies of pediatric populations. Journal of Pediatric Psychology, 27(1), 87–96.

[64]

Hölzel, B. K., Carmody, J., Evans, K. C., Hoge, E. A., Dusek, J. A., Morgan, L., Pitman, R. K., & Lazar, S. W. (2010). Stress reduction correlates with structural changes in the amygdala. Social Cognitive and Affective Neuroscience, 5(1), 11–17.

[65]

Hrybouski, S., Aghamohammadi-Sereshki, A., Madan, C. R., Shafer, A. T., Baron, C. A., Seres, P., Beaulieu, C., Olsen, F., & Malykhin, N. V. (2016). Amygdala subnuclei response and connectivity during emotional processing. NeuroImage, 133, 98–110.

[66]

Hu, X., Bergström, Z. M., Bodenhausen, G. V., & Rosenfeld, J. P. (2015). Suppressing unwanted autobiographical memories reduces their automatic influences: Evidence from electrophysiology and an implicit autobiographical memory test. Psychological Science, 26(7), 1098–1106.

[67]

Hu, X., Bergström, Z. M., Gagnepain, P., & Anderson, M. C. (2017). Suppressing unwanted memories reduces their unintended influences. Current Directions in Psychological Science, 26(2), 197–206.

[68]

Humphrey, A., Szoka, R., & Bastian, B. (2021). When the pursuit of happiness backfires: The role of negative emotion valuation. The Journal of Positive Psychology, 1-9, 611–619.

[69]

Ilg, R., Wohlschläger, A. M., Gaser, C., Liebau, Y., Dauner, R., Wöller, A., Zimmer, C., Zihl, J., & Mühlau, M. (2008). Gray matter increase induced by practice correlates with task-specific activation: A combined functional and morphometric magnetic resonance imaging study. Journal of Neuroscience, 28(16), 4210–4215.

[70]

Kaller, C. P., Heinze, K., Mader, I., Unterrainer, J. M., Rahm, B., Weiller, C., & Köstering, L. (2012). Linking planning performance and gray matter density in mid-dorsolateral prefrontal cortex: Moderating effects of age and sex. NeuroImage, 63(3), 1454–1463.

[71]

Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231–242.

[72]

Kashdan, T. B. (2004). The assessment of subjective well-being (issues raised by the Oxford happiness questionnaire). Personality and Individual Differences, 36(5), 1225–1232.

[73]

Kim, M. J., Farber, M. J., Knodt, A. R., & Hariri, A. R. (2019). Corticolimbic circuit structure moderates an association between early life stress and later trait anxiety. NeuroImage: Clinical, 24, 102050.

[74]

Kim, S., Kim, Y.-W., Jeon, H., Im, C.-H., & Lee, S.-H. (2020). Altered cortical thickness-based individualized structural covariance networks in patients with schizophrenia and bipolar disorder. Journal of Clinical Medicine, 9(6), 1846.

[75]

Kovacevic, M., Macuzic, I. Z., Milosavljevic, J., Lukovic, T., Aleksic, D., Gavrilovic, J., Milosavljevic, M., Jankovic, S., & Pejcic, A. (2021). Amygdala volumes in autism spectrum disorders: Meta-analysis of magnetic resonance imaging studies. Review Journal of Autism and Developmental Disorders, 10, 169–183.

[76]

Kral, T. R., Davis, K., Korponay, C., Hirshberg, M. J., Hoel, R., Tello, L. Y., Goldman, R. I., Rosenkranz, M. A., Lutz, A., & Davidson, R. J. (2022). Absence of structural brain changes from mindfulness-based stress reduction: Two combined randomized controlled trials. Science Advances, 8(20), eabk3316.

[77]

Kulynych, J. J., Vladar, K., Jones, D. W., & Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4(2), 107–118.

[78]

Küpper, C. S., Benoit, R. G., Dalgleish, T., & Anderson, M. C. (2014). Direct suppression as a mechanism for controlling unpleasant memories in daily life. Journal of Experimental Psychology: General, 143(4), 1443–1449.

[79]

Li, Y., Hou, X., Wei, D., Du, X., Zhang, Q., Liu, G., & Qiu, J. (2017). Long-term effects of acute stress on the prefrontal-limbic system in the healthy adult. PLoS One, 12(1), e0168315.

[80]

Liu, Y., Lin, W., Liu, C., Luo, Y., Wu, J., Bayley, P. J., & Qin, S. (2016). Memory consolidation reconfigures neural pathways involved in the suppression of emotional memories. Nature Communications, 7(1), 13375.

[81]

Liu, Z., Palaniyappan, L., Wu, X., Zhang, K., Du, J., Zhao, Q., Xie, C., Tang, Y., Su, W., & Wei, Y. (2021). Resolving heterogeneity in schizophrenia through a novel systems approach to brain structure: Individualized structural covariance network analysis. Molecular Psychiatry, 26(12), 7719–7731.

[82]

López-Navarro, E., Del Canto, C., Mayol, A., Fernández-Alonso, O., Reig, J., & Munar, E. (2020). Does mindfulness improve inhibitory control in psychotic disorders? A randomized controlled clinical trial. International Journal of Clinical and Health Psychology, 20(3), 192–199.

[83]

Lu, F. Y., Yang, W. J., Zhang, Q. L., & Qiu, J. (2021). The ability to control One’s thoughts alleviates the adverse effects of negative life events on depression. Journal of Cognitive Psychotherapy, 35, 183–194.

[84]

Luciano, J. V., Algarabel, S., Tomás, J. M., & Martínez, J. L. (2005). Development and validation of the thought control ability questionnaire. Personality and Individual Differences, 38(5), 997–1008.

[85]

Lyubomirsky, S., King, L., & Diener, E. (2005). The benefits of frequent positive affect: Does happiness lead to success? Psychological Bulletin, 131(6), 803–855.

[86]

Ma, T. W., Bryant, F. B., & Hou, W. K. (2020). Associations of trait positive emotion regulation with everyday emotions: An experience sampling approach. International Journal of Psychology, 55(5), 871–881.

[87]

Machado-de-Sousa, J. P., Osorio, F. d. L., Jackowski, A. P., Bressan, R. A., Chagas, M. H., Torro-Alves, N., DePaula, A. L., Crippa, J. A., & Hallak, J. E. (2014). Increased amygdalar and hippocampal volumes in young adults with social anxiety. PLoS One, 9(2), e88523.

[88]

Maier, A., Gieling, C., Heinen-Ludwig, L., Stefan, V., Schultz, J., Güntürkün, O., Becker, B., Hurlemann, R., & Scheele, D. (2020). Association of childhood maltreatment with interpersonal distance and social touch preferences in adulthood. American Journal of Psychiatry, 177(1), 37–46.

[89]

Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239.

[90]

Mander, B. A., Zhu, A. H., Lindquist, J. R., Villeneuve, S., Rao, V., Lu, B., Saletin, J. M., Ancoli-Israel, S., Jagust, W. J., & Walker, M. P. (2017). White matter structure in older adults moderates the benefit of sleep spindles on motor memory consolidation. Journal of Neuroscience, 37(48), 11675–11687.

[91]

Marchewka, A., Jednoróg, K., Nowicka, A., Brechmann, A., & Grabowska, A. (2009). Grey-matter differences related to true and false recognition of emotionally charged stimuli–a voxel based morphometry study. Neurobiology of Learning and Memory, 92(1), 99–105.

[92]

Mareckova, K., Miles, A., Liao, Z., Andryskova, L., Brazdil, M., Paus, T., & Nikolova, Y. S. (2022). Prenatal stress and its association with amygdala-related structural covariance patterns in youth. NeuroImage: Clinical, 34, 102976.

[93]

Massar, K., Bělostíková P., & Sui, X. (2020). It’s the thought that counts: Trait self-control is positively associated with well-being and coping via thought control ability. Current Psychology, 1-10, 2372–2381.

[94]

McGaugh, J. L. (2018). Emotional arousal regulation of memory consolidation. Current Opinion in Behavioral Sciences, 19, 55–60.

[95]

Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging, 1(2), 105–113.

[96]

Montembeault, M., Joubert, S., Doyon, J., Carrier, J., Gagnon, J.-F., Monchi, O., Lungu, O., Belleville, S., & Brambati, S. M. (2012). The impact of aging on gray matter structural covariance networks. NeuroImage, 63(2), 754–759.

[97]

Montembeault, M., Rouleau, I., Provost, J.-S., & Brambati, S. M. (2016). Altered gray matter structural covariance networks in early stages of Alzheimer’s disease. Cerebral Cortex, 26(6), 2650–2662.

[98]

Morillo, C., Belloch, A., & García-Soriano, G. (2007). Clinical obsessions in obsessive–compulsive patients and obsession-relevant intrusive thoughts in non-clinical, depressed and anxious subjects: Where are the differences? Behaviour Research and Therapy, 45(6), 1319–1333.

[99]

Moulding, R., & Kyrios, M. (2006). Anxiety disorders and control related beliefs: The exemplar of obsessive–compulsive disorder (OCD). Clinical Psychology Review, 26(5), 573–583.

[100]

Murty, V. P., Ritchey, M., Adcock, R. A., & LaBar, K. S. (2011). Reprint of: fMRI studies of successful emotional memory encoding: A quantitative meta-analysis. Neuropsychologia, 49(4), 695–705.

[101]

Ng, W. (2016). Use of positive interventions: Does neuroticism moderate the sustainability of their effects on happiness? The Journal of Positive Psychology, 11(1), 51–61.

[102]

Nolen-Hoeksema, S. (1991). Responses to depression and their effects on the duration of depressive episodes. Journal of Abnormal Psychology, 100(4), 569–582.

[103]

Nørby, S. (2018). Forgetting and emotion regulation in mental health, anxiety and depression. Memory, 26(3), 342–363.

[104]

Ossewaarde, L., van Wingen, G. A., Rijpkema, M., Bäckström, T., Hermans, E. J., & Fernández, G. (2013). Menstrual cycle-related changes in amygdala morphology are associated with changes in stress sensitivity. Human Brain Mapping, 34(5), 1187–1193.

[105]

Overfeld, J., Entringer, S., Rasmussen, J. M., Heim, C. M., Styner, M. A., Gilmore, J. H., Wadhwa, P. D., & Buss, C. (2020). Neonatal hippocampal volume moderates the effects of early postnatal enrichment on cognitive development. Developmental Cognitive Neuroscience, 45, 100820.

[106]

Pacheco, L. B., Figueira, J. S., Pereira, M. G., Oliveira, L., & David, I. A. (2020). Controlling unpleasant thoughts: Adjustments of cognitive control based on previous-trial load in a working memory task. Frontiers in Human Neuroscience, 13, 469.

[107]

Peelle, J. E., Cusack, R., & Henson, R. N. (2012). Adjusting for global effects in voxel-based morphometry: Gray matter decline in normal aging. NeuroImage, 60(2), 1503–1516.

[108]

Peng, W., Jia, Z., Huang, X., Lui, S., Kuang, W., Sweeney, J. A., & Gong, Q. (2019). Brain structural abnormalities in emotional regulation and sensory processing regions associated with anxious depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 94, 109676.

[109]

Peterson, R. D., Klein, J., Donnelly, R., & Renk, K. (2009). Predicting psychological symptoms: The role of perceived thought control ability. Cognitive Behaviour Therapy, 38(1), 16–28.

[110]

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.

[111]

Pozuelos, J. P., Mead, B. R., Rueda, M. R., & Malinowski, P. (2019). Short-term mindful breath awareness training improves inhibitory control and response monitoring. Progress in Brain Research, 244, 137–163.

[112]

Prasad, K., Rubin, J., Mitra, A., Lewis, M., Theis, N., Muldoon, B., Iyengar, S., & Cape, J. (2022). Structural covariance networks in schizophrenia: A systematic review part II. Schizophrenia Research, 239, 176–191.

[113]

Qin, S., Young, C. B., Duan, X., Chen, T., Supekar, K., & Menon, V. (2014). Amygdala subregional structure and intrinsic functional connectivity predicts individual differences in anxiety during early childhood. Biological Psychiatry, 75(11), 892–900.

[114]

Quoidbach, J., Berry, E. V., Hansenne, M., & Mikolajczak, M. (2010). Positive emotion regulation and well-being: Comparing the impact of eight savoring and dampening strategies. Personality and Individual Differences, 49(5), 368–373.

[115]

Quoidbach, J., Mikolajczak, M., & Gross, J. J. (2015). Positive interventions: An emotion regulation perspective. Psychological Bulletin, 141(3), 655–693.

[116]

Ren, T., Li, Z., Wang, C., & Li, B.-M. (2023). Early gray matter structural covariance predicts longitudinal gain in arithmetic ability in children. Developmental Neuroscience, 1–17.

[117]

Reynolds, M., & Wells, A. (1999). The thought control questionnaire–psychometric properties in a clinical sample, and relationships with PTSD and depression. Psychological Medicine, 29(5), 1089–1099.

[118]

Richardson, M. P., Strange, B. A., & Dolan, R. J. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7(3), 278–285.

[119]

Ridgway, G. R., Omar, R., Ourselin, S., Hill, D. L., Warren, J. D., & Fox, N. C. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage, 44(1), 99–111.

[120]

Roley, M. E., Claycomb, M. A., Contractor, A. A., Dranger, P., Armour, C., & Elhai, J. D. (2015). The relationship between rumination, PTSD, and depression symptoms. Journal of Affective Disorders, 180, 116–121.

[121]

Romero-Garcia, R., Whitaker, K. J., Váša, F., Seidlitz, J., Shinn, M., Fonagy, P., Dolan, R. J., Jones, P. B., Goodyer, I. M., & Bullmore, E. T. (2018). Structural covariance networks are coupled to expression of genes enriched in supragranular layers of the human cortex. NeuroImage, 171, 256–267.

[122]

Roos, A., Fouche, J.-P., & Stein, D. J. (2017). Brain network connectivity in women exposed to intimate partner violence: A graph theory analysis study. Brain Imaging and Behavior, 11, 1629–1639.

[123]

Sacchet, M. D., Levy, B. J., Hamilton, J. P., Maksimovskiy, A., Hertel, P. T., Joormann, J., Anderson, M. C., Wagner, A. D., & Gotlib, I. H. (2017). Cognitive and neural consequences of memory suppression in major depressive disorder. Cognitive, Affective, & Behavioral Neuroscience, 17, 77–93.

[124]

Savic, I. (2015). Structural changes of the brain in relation to occupational stress. Cerebral Cortex, 25(6), 1554–1564.

[125]

Seidlitz, J., Váša, F., Shinn, M., Romero-Garcia, R., Whitaker, K. J., Vértes, P. E., Wagstyl, K., Reardon, P. K., Clasen, L., & Liu, S. (2018). Morphometric similarity networks detect microscale cortical organization and predict inter-individual cognitive variation. Neuron, 97(1), 231–247.

[126]

Selby, E. A., Anestis, M. D., & Joiner, T. E. (2008). Understanding the relationship between emotional and behavioral dysregulation: Emotional cascades. Behaviour Research and Therapy, 46(5), 593–611.

[127]

Selim, S. (2008). Life satisfaction and happiness in Turkey. Social Indicators Research, 88(3), 531–562.

[128]

Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: A quantitative meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 32(4), 811–830.

[129]

Serra-Blasco, M., Radua, J., Soriano-Mas, C., Gómez-Benlloch, A., Porta-Casteràs, D., Carulla-Roig, M., Albajes-Eizagirre, A., Arnone, D., Klauser, P., & Canales-Rodríguez, E. J. (2021). Structural brain correlates in major depression, anxiety disorders and post-traumatic stress disorder: A voxel-based morphometry meta-analysis. Neuroscience & Biobehavioral Reviews, 129, 269–281.

[130]

Shi, L., Ren, Z., & Qiu, J. (2021). High thought control ability, high resilience: The effect of temporal cortex and insula connectivity. Neuroscience, 472, 60–67.

[131]

Shi, Y., Cui, D., Niu, J., Zhang, X., Sun, F., Liu, H., Dou, R., Qiu, J., Jiao, Q., & Cao, W. (2023). Sex differences in structural covariance network based on MRI cortical morphometry: Effects on episodic memory. Cerebral Cortex, 33, 8645–8653.

[132]

Shipherd, J. C., & Fordiani, J. M. (2015). The application of mindfulness in coping with intrusive thoughts. Cognitive and Behavioral Practice, 22(4), 439–446.

[133]

Šimić G., Tkalčić M., Vukić V., Mulc, D., Španić E., Šagud, M., Olucha-Bordonau, F. E., Vukšić M., & Hof, P. R. (2021). Understanding emotions: Origins and roles of the amygdala. Biomolecules, 11(6), 823.

[134]

Simon, S. S., Varangis, E., & Stern, Y. (2020). Associations between personality and whole-brain functional connectivity at rest: Evidence across the adult lifespan. Brain and Behavior, 10(2), e01515.

[135]

Simpson-Kent, I. L., Fried, E. I., Akarca, D., Mareva, S., Bullmore, E. T., Team, C., & Kievit, R. A. (2021). Bridging brain and cognition: A multilayer network analysis of brain structural covariance and general intelligence in a developmental sample of struggling learners. Journal of Intelligence, 9(2), 32.

[136]

Smith, A. P., Stephan, K. E., Rugg, M. D., & Dolan, R. J. (2006). Task and content modulate amygdala-hippocampal connectivity in emotional retrieval. Neuron, 49(4), 631–638.

[137]

Snyder, H. R., & Hankin, B. L. (2016). Spiraling out of control: Stress generation and subsequent rumination mediate the link between poorer cognitive control and internalizing psychopathology. Clinical Psychological Science, 4(6), 1047–1064.

[138]

Song, Y., Lu, H., Hu, S., Xu, M., Li, X., & Liu, J. (2015). Regulating emotion to improve physical health through the amygdala. Social Cognitive and Affective Neuroscience, 10(4), 523–530.

[139]

Soriano-Mas, C., Harrison, B., Pujol, J., Lopez-Sola, M., Hernandez-Ribas, R., Alonso, P., Contreras-Rodríguez, O., Giménez, M., Blanco-Hinojo, L., & Ortiz, H. (2013). Structural covariance of the neostriatum with regional gray matter volumes. Brain Structure and Function, 218, 697–709.

[140]

Sporns, O. (2011). The human connectome: A complex network. Annals of the new York Academy of Sciences, 1224(1), 109–125.

[141]

Steptoe, A., Wardle, J., & Marmot, M. (2005). Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes. Proceedings of the National Academy of Sciences, 102(18), 6508–6512.

[142]

Streb, M., Mecklinger, A., Anderson, M. C., Lass-Hennemann, J., & Michael, T. (2016). Memory control ability modulates intrusive memories after analogue trauma. Journal of Affective Disorders, 192, 134–142.

[143]

Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., Nouchi, R., Fukushima, A., & Kawashima, R. (2012). Regional gray and white matter volume associated with stroop interference: Evidence from voxel-based morphometry. NeuroImage, 59(3), 2899–2907.

[144]

Tehseen, S., Ramayah, T., & Sajilan, S. (2017). Testing and controlling for common method variance: A review of available methods. Journal of Management Sciences, 4(2), 142–168.

[145]

Uono, S., Sato, W., Kochiyama, T., Sawada, R., Kubota, Y., Yoshimura, S., & Toichi, M. (2017). Neural substrates of the ability to recognize facial expressions: A voxel-based morphometry study. Social Cognitive and Affective Neuroscience, 12(3), 487–495.

[146]

Van Vugt, M. K., van der Velde, M., & ESM-MERGE Investigators. (2018). How does rumination impact cognition? A first mechanistic model. Topics in Cognitive Science, 10(1), 175–191.

[147]

Vassilopoulou, K., Papathanasiou, M., Michopoulos, I., Boufidou, F., Oulis, P., Kelekis, N., Rizos, E., Nikolaou, C., Pantelis, C., & Velakoulis, D. (2013). A magnetic resonance imaging study of hippocampal, amygdala and subgenual prefrontal cortex volumes in major depression subtypes: Melancholic versus psychotic depression. Journal of Affective Disorders, 146(2), 197–204.

[148]

Visser, R. M. (2020). Why do certain moments haunt us? Conceptualizing intrusive memories as conditioned responses. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(4), 375–376.

[149]

Waldum, E. R., & Sahakyan, L. (2012). Putting congeniality effects into context: Investigating the role of context in attitude memory using multiple paradigms. Journal of Memory and Language, 66(4), 717–730.

[150]

Wannan, C. M., Cropley, V. L., Chakravarty, M. M., Bousman, C., Ganella, E. P., Bruggemann, J. M., Weickert, T. W., Weickert, C. S., Everall, I., & McGorry, P. (2019). Evidence for network-based cortical thickness reductions in schizophrenia. American Journal of Psychiatry, 176(7), 552–563.

[151]

Wasil, A. R., Gillespie, S., Park, S. J., Venturo-Conerly, K. E., Osborn, T. L., DeRubeis, R. J., Weisz, J. R., & Jones, P. J. (2021). Which symptoms of depression and anxiety are most strongly associated with happiness? A network analysis of Indian and Kenyan adolescents. Journal of Affective Disorders, 295, 811–821.

[152]

Weber, S., & Hagmayer, Y. (2018). Thinking about the joneses? Decreasing rumination about social comparison increases well-being. European Journal of Health Psychology, 25(3), 83–95.

[153]

Wei, D., Du, X., Li, W., Chen, Q., Li, H., Hao, X., Zhang, L., Hitchman, G., Zhang, Q., & Qiu, J. (2015). Regional gray matter volume and anxiety-related traits interact to predict somatic complaints in a non-clinical sample. Social Cognitive and Affective Neuroscience, 10(1), 122–128.

[154]

Williams, A. C., Jelsma, E., & Varner, F. (2021). The role of perceived thought control ability in the psychological functioning of black American mothers. American Journal of Orthopsychiatry, 91(2), 246–257.

[155]

Williams, A. D., Moulds, M. L., Grisham, J. R., Gay, P., Lang, T., Kandris, E., Werner-Seidler, A., & Yap, C. (2010). A psychometric evaluation of the thought control ability questionnaire (TCAQ) and the prediction of cognitive control. Journal of Psychopathology and Behavioral Assessment, 32(3), 397–405.

[156]

Yang, K., Yan, W., Jia, N., Wang, Q., & Kong, F. (2021). Longitudinal relationship between trait gratitude and subjective well-being in adolescents: Evidence from the bi-factor model. The Journal of Positive Psychology, 16(6), 802–810.

[157]

Yao, X., Yuan, S., Yang, W., Chen, Q., Wei, D., Hou, Y., Zhang, L., Qiu, J., & Yang, D. (2018). Emotional intelligence moderates the relationship between regional gray matter volume in the bilateral temporal pole and critical thinking disposition. Brain Imaging and Behavior, 12(2), 488–498.

[158]

Yun, J.-Y., Boedhoe, P. S., Vriend, C., Jahanshad, N., Abe, Y., Ameis, S. H., Anticevic, A., Arnold, P. D., Batistuzzo, M. C., & Benedetti, F. (2020). Brain structural covariance networks in obsessive-compulsive disorder: A graph analysis from the ENIGMA consortium. Brain, 143(2), 684–700.

[159]

Zhang, L., Hu, X., Hu, Y., Tang, M., Qiu, H., Zhu, Z., Gao, Y., Li, H., Kuang, W., & Ji, W. (2022). Structural covariance network of the hippocampus–amygdala complex in medication-naïve patients with first-episode major depressive disorder. Psychoradiology, 2(4), 190–198.

[160]

Zich, C., Johnstone, N., Lührs, M., Lisk, S., Haller, S. P., Lipp, A., Lau, J. Y., & Kadosh, K. C. (2020). Modulatory effects of dynamic fMRI-based neurofeedback on emotion regulation networks in adolescent females. NeuroImage, 220, 117053.

RIGHTS & PERMISSIONS

2024 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/