Task-Specific Modulation of Cognitive Control: Electrophysiological Evidence From Bivalency Effect in Task Switching

Yunfei Cao , Jianxiao Wu , Gege Liu , Fen Sun , Fuhong Li

Psych Journal ›› 2025, Vol. 14 ›› Issue (3) : 417 -427.

PDF
Psych Journal ›› 2025, Vol. 14 ›› Issue (3) : 417 -427. DOI: 10.1002/pchj.70011
ORIGINAL ARTICLE

Task-Specific Modulation of Cognitive Control: Electrophysiological Evidence From Bivalency Effect in Task Switching

Author information +
History +
PDF

Abstract

An occasional presence of bivalent stimuli in a block of univalent trials can elicit a slowing of the response on all subsequent univalent trials. This type of modulation of cognitive control is termed the bivalency effect. To explore whether this modulation is task specific, this study used a triplet task switching paradigm, with three following tasks that were presented concussively: a shape color judgment (red vs. blue), a number parity judgment (odd vs. even), and a letter case judgment (lowercase vs. uppercase). The event-related potential (ERP) results showed that (1) the bivalency effect was reflected by the decreased amplitude of N2 and P3a over the frontal region for both the color and letter tasks; (2) the bivalency effect occurred earlier for the color task compared with that for the letter task; (3) for the number parity task, the bivalency effect was observed in the increased N1 and the decreased P2p over the parietal region. These findings indicate that the modulation of cognitive control is task-specific after the presentation of bivalent stimuli in task switching.

Keywords

bivalency effect / bivalent stimuli / conflict inhibition / ERP / task switching

Cite this article

Download citation ▾
Yunfei Cao, Jianxiao Wu, Gege Liu, Fen Sun, Fuhong Li. Task-Specific Modulation of Cognitive Control: Electrophysiological Evidence From Bivalency Effect in Task Switching. Psych Journal, 2025, 14(3): 417-427 DOI:10.1002/pchj.70011

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allport, A., and G. Wylie. 2000. “Task Switching, Stimulus-Response Bindings, and Negative Priming.” Attention and Performance 18: 33-70. https://doi.org/10.7551/mitpress/1481.003.0008.

[2]

Botvinick, M. M., T. S. Braver, C. S. Carter, D. M. Barch, and J. D. Cohen. 2001. “Evaluating the Demand for Control: Anterior Cingulate Cortex and Crosstalk Monitoring.” Psychological Review 108: 624-652.

[3]

Cai, W., S. L. Warren, K. Duberg, A. Yu, S. P. Hinshaw, and V. Menon. 2023. “Both Reactive and Proactive Control Are Deficient in Children With ADHD and Predictive of Clinical Symptoms.” Translational Psychiatry 13, no. 1: 179. https://doi.org/10.1038/s41398-023-02471-w.

[4]

Cao, C., W. Wen, A. Chen, et al. 2023. “Neuropsychological Alterations of Prolactinomas' Cognitive Flexibility in Task Switching.” Brain Sciences 13, no. 1: 82. https://doi.org/10.3390/brainsci13010082.

[5]

Chen, J., S. Wu, and F. Li. 2022. “Cognitive Neural Mechanism of Backward Inhibition and Deinhibition: A Review.” Frontiers in Behavioral Neuroscience 16: 846369. https://doi.org/10.3389/fnbeh.2022.846369.

[6]

Clayson, P. E., and M. J. Larson. 2013. “Psychometric Properties of Conflict Monitoring and Conflict Adaptation Indices: Response Time and Conflict N2 Event-Related Potentials.” Psychophysiology 50: 1209-1219. https://doi.org/10.1111/psyp.12138.

[7]

Dann, K. M., A. Veldre, S. Miles, P. Sumner, P. Hay, and S. Touyz. 2023. “Measuring Cognitive Flexibility in Anorexia Nervosa: Wisconsin Card Sorting Test Versus Cued Task-Switching.” Eating and Weight Disorders: EWD 28, no. 1: 60. https://doi.org/10.1007/s40519-023-01589-6.

[8]

Du, W. W., and F. H. Li. 2018. “Bivalency Effect and Its Cognitive Mechanism.” Advances in Psychological Science 26, no. 11: 1969. https://doi.org/10.3724/SP.J.1042.2018.01969.

[9]

Ebitz, R. B., E. H. Smith, G. Horga, et al. 2020. “Human Dorsal Anterior Cingulate Neurons Signal Conflict by Amplifying Task-Relevant Information.” BioRxiv. https://doi.org/10.1101/2020.03.14.991745.

[10]

Egner, T., M. Delano, and J. Hirsch. 2007. “Separate Conflict-Specific Cognitive Control Mechanisms in the Human Brain.” NeuroImage 35, no. 2: 940-948. https://doi.org/10.1016/j.neuroimage.2006.11.061.

[11]

Enger, T.2009. “Multiple Conflict-Driven Control Mechanism in the Human Brain.” Trends in Cognitive Sciences 12, no. 10: 374-380. https://doi.org/10.1016/j.tics.2008.07.001.

[12]

Gajewski, P. D., N. K. Ferdinand, J. Kray, and M. Falkenstein. 2018. “Understanding Sources of Adult Age Differences in Task Switching: Evidence From Behavioral and ERP Studies.” Neuroscience & Biobehavioral Reviews 92: 255-275. https://doi.org/10.1016/j.neubiorev.2018.05.029.

[13]

Giller, F., and C. Beste. 2019. “Effects of Aging on Sequential Cognitive Flexibility Are Associated With Fronto-Parietal Processing Deficits.” Brain Structure and Function 224: 2343-2355. https://doi.org/10.1007/s00429-019-01910-z.

[14]

Giller, F., M. Mückschel, T. Ziemssen, and C. Beste. 2020. “A Possible Role of the Norepinephrine System During Sequential Cognitive Flexibility-Evidence From EEG and Pupil Diameter Data.” Cortex 128: 22-34. https://doi.org/10.1016/j.cortex.2020.03.008.

[15]

Giordano, G. M., P. Pezzella, L. Giuliani, et al. 2023. “Resting-State Brain Activity Dysfunctions in Schizophrenia and Their Associations With Negative Symptom Domains: An fMRI Study.” Brain Sciences 13, no. 1: 83. https://doi.org/10.3390/brainsci13010083.

[16]

Gratton, G., P. Cooper, M. Fabiani, C. S. Carter, and F. Karayanidis. 2018. “Dynamics of Cognitive Control: Theoretical Bases, Paradigms, and a View for the Future.” Psychophysiology 55, no. 3: e13016. https://doi.org/10.1111/psyp.13016.

[17]

Grundy, J. G., R. M. Barker, J. A. E. Anderson, and J. M. Shedden. 2019. “The Relation Between Brain Signal Complexity and Task Difficulty on an Executive Function Task.” NeuroImage 198: 104-113. https://doi.org/10.1016/j.neuroimage.2019.05.045.

[18]

Grundy, J. G., M. F. F. Benarroch, T. S. Woodward, P. D. Metzak, J. C. Whitman, and J. M. Shedden. 2013. “The Bivalency Effect in Task Switching: Event-Related Potentials.” Human Brain Mapping 34, no. 5: 999-1012. https://doi.org/10.1002/hbm.21488.

[19]

Grundy, J. G., and J. M. Shedden. 2014a. “A Role for Recency of Response Conflict in Producing the Bivalency Effect.” Psychological Research 78, no. 5: 679-691. https://doi.org/10.1007/s00426-013-0520-x.

[20]

Grundy, J. G., and J. M. Shedden. 2014b. “Support for a History-Dependent Predictive Model of dACC Activity in Producing the Bivalency Effect: An Event-Related Potential Study.” Neuropsychologia 57: 166-178. https://doi.org/10.1016/j.neuropsychologia.2014.03.008.

[21]

Han, J., Y. Dai, L. Xie, and F. Li. 2018. “Brain Responses Associated With Different Hierarchical Effects on Cues and Targets During Rule Shifting.” Biological Psychology 134: 52-63. https://doi.org/10.1016/j.biopsycho.2018.02.010.

[22]

Jost, K., V. Hennecke, and I. Koch. 2017. “Task Dominance Determines Backward Inhibition in Task Switching.” Frontiers in Psychology 8: 755-764. https://doi.org/10.3389/fpsyg.2017.00755.

[23]

Junker, F. B., T. Schmidt-Wilcke, A. Schnitzler, and J. Lange. 2023. “Temporal Dynamics of Oscillatory Activity During Nonlexical Language Decoding: Evidence From Morse Code and Magnetoencephalography.” Human Brain Mapping 44, no. 17: 6185-6197. https://doi.org/10.1002/hbm.26505.

[24]

Koch, I., M. Gade, and A. M. Philipp. 2004. “Inhibition of Response Mode in Task Switching.” Experimental Psychology 51, no. 1: 52-58. https://doi.org/10.1027/1618-3169.51.1.52.

[25]

Larson, M. J., P. E. Clayson, and A. Clawson. 2014. “Making Sense of All the Conflict: A Theoretical Review and Critique of Conflict-Related ERPs.” International Journal of Psychophysiology 93, no. 3: 283-297. https://doi.org/10.1016/j.ijpsycho.2014.06.007.

[26]

Liu, P., W. Yang, L. Chang, and A. Chen. 2013. “The Conflict Adaptation Effect Is Based on Specific-Domain.” Journal of Psychological Science 36, no. 3: 696-701.

[27]

Lobaugh, N. J., R. West, and A. R. McIntosh. 2001. “Spatiotemporal Analysis of Experimental Differences in Event-Related Potential Data With Partial Least Squares.” Psychophysiology 38, no. 3: 517-530. https://doi.org/10.1017/S0048577201991681.

[28]

Mao, W., and Y. P. Wang. 2011. “The Processing of Visual Double-Feature Conflict Under Different Attentive Conditions: An Event-Related Potential Study.” Chinese Journal of Mental Health 25, no. 2: 77-82.

[29]

Mari-Beffa, P., and A. Kirkham. 2014. “The Mixing Cost as a Measure of Cognitive Control.” In Task Switching and Cognitive Control, edited by J. A. Grange and G. Houghton, 74-100. Oxford University Press. https://doi.org/10.1093/acprof:osobl/9780199921959.003.0004.

[30]

McIntosh, A. R., and N. J. Lobaugh. 2004. “Partial Least Squares Analysis of Neuroimaging Data: Applications and Advances.” NeuroImage 23: S250-S263. https://doi.org/10.1016/j.neuroimage.2004.07.020.

[31]

Meier, B., A. Rey-Mermet, T. S. Woodward, R. Müri, and K. Gutbrod. 2013. “Episodic Context Binding in Task Switching: Evidence From Amnesia.” Neuropsychologia 51, no. 5: 886-892. https://doi.org/10.1016/j.neuropsychologia.2013.01.025.

[32]

Meier, B., T. S. Woodward, A. Rey-Mermet, and P. Graf. 2009. “The Bivalency Effect in Task Switching: General and Enduring.” Canadian Journal of Experimental Psychology-Revue Canadienne de Psychologie Expérimentale 63, no. 3: 201-210. https://doi.org/10.1037/a0014311.

[33]

Metzak, P. D., B. Meier, P. Graf, and T. S. Woodward. 2013. “More Than a Surprise: The Bivalency Effect in Task Switching.” Journal of Cognitive Psychology 25, no. 7: 833-842. https://doi.org/10.1080/20445911.2013.832196.

[34]

Moretti, L., I. Koch, M. Steinhauser, and S. Schuch. 2023. “Disentangling Task-Selection Failures From Task-Execution Failures in Task Switching: An Assessment of Different Paradigms.” Psychological Research 87, no. 3: 929-950. https://doi.org/10.1007/s00426-022-01708-5.

[35]

Moretti, L., I. Koch, M. Steinhauser, and S. Schuch. 2024. “Stimulus-Triggered Task Conflict Affects Task-Selection Errors in Task Switching: A Bayesian Multinomial Processing Tree Modeling Approach.” Journal of Experimental Psychology: Learning, Memory, and Cognition 50, no. 2: 230-243. https://doi.org/10.1037/xlm0001245.

[36]

Nicholson, R., F. Karayanidis, E. Bumak, D. Poboka, and P. T. Michie. 2006. “ERPs Dissociate the Effects of Switching Task Sets and Task Cues.” Brain Research 1095, no. 1: 107-123. https://doi.org/10.1016/j.brainres.2006.04.016.

[37]

Posner, M. I., and S. E. Petersen. 1990. “The Attention System of the Human Brain.” Annual Review of Neuroscience 13: 25-42. https://doi.org/10.1146/annurev.ne.13.030190.000325.

[38]

Posner, M. I., and M. K. Rothbart. 2007. “Research on Attention Networks as a Model for the Integration of Psychological Science.” Annual Review of Psychology 58: 1-23. https://doi.org/10.1146/annurev.psych.58.110405.085516.

[39]

Poulsen, C., P. Luu, C. Davey, and D. M. Tucker. 2005. “Dynamics of Task Sets: Evidence From Dense-Array Event-Related Potentials.” Cognitive Brain Research 24, no. 1: 133-154.

[40]

Rey-Mermet, A., T. Koenig, and B. Meier. 2013. “The Bivalency Effect Represents an Interference-Triggered Adjustment of Cognitive Control: An ERP Study.” Cognitive, Affective, & Behavioral Neuroscience 13: 575-583. https://doi.org/10.1016/j.cogbrainres.2005.01.008.

[41]

Rey-Mermet, A., and B. Meier. 2012a. “The Bivalency Effect: Adjustment of Cognitive Control Without Response Set Priming.” Psychological Research 76, no. 1: 50-59. https://doi.org/10.1007/s00426-011-0322-y.

[42]

Rey-Mermet, A., and B. Meier. 2012b. “The Bivalency Effect: Evidence for Flexible Adjustment of Cognitive Control.” Journal of Experimental Psychology: Human Perception and Performance 38, no. 1: 213-221. https://doi.org/10.1037/a0026024.

[43]

Rey-Mermet, A., and B. Meier. 2014a. “Age Affects the Adjustment of Cognitive Control After a Conflict: Evidence From the Bivalency Effect.” Aging, Neuropsychology, and Cognition 22, no. 1: 72-94. https://doi.org/10.1080/13825585.2014.889070.

[44]

Rey-Mermet, A., and B. Meier. 2014b. “More Conflict Does Not Trigger More Adjustment of Cognitive Control for Subsequent Events: A Study of the Bivalency Effect.” Acta Psychologica 145: 111-117. https://doi.org/10.1016/j.actpsy.2013.11.005.

[45]

Rey-Mermet, A., and B. Meier. 2017. “How Long-Lasting Is the Post-Conflict Slowing After Incongruent Trials? Evidence From the Stroop, Simon, and Flanker Tasks.” Attention, Perception, & Psychophysics 79, no. 7: 1945-1967. https://doi.org/10.3758/s13414-017-1348-z.

[46]

Scannella, S., J. Pariente, X. De Boissezon, et al. 2016. “N270 Sensitivity to Conflict Strength and Working Memory: A Combined ERP and sLORETA Study.” Behavioural Brain Research 297: 231-240. https://doi.org/10.1016/j.bbr.2015.10.014.

[47]

Schuch, S., D. Dignath, M. Steinhauser, and M. Janczyk. 2019. “Monitoring and Control in Multitasking.” Psychonomic Bulletin & Review 26, no. 1: 222-240. https://doi.org/10.3758/s13423-018-1512-z.

[48]

Sheth, S. A., M. K. Mian, S. R. Patel, et al. 2012. “Human Dorsal Anterior Cingulate Cortex Neurons Mediate Ongoing Behavioral Adaptation.” Nature 488, no. 7410: 218-221. https://doi.org/10.1038/nature11239.

[49]

Smith, E. H., G. Horga, M. J. Yates, et al. 2019. “Widespread Temporal Coding of Cognitive Control in the Human Prefrontal Cortex.” Nature Neuroscience 22, no. 11: 1883-1891. https://doi.org/10.1038/s41593-019-0494-0.

[50]

Strobach, T., M. Wendt, and M. Janczyk. 2018. “Multitasking: Executive Functioning in Dual-Task and Task Switching Situations.” Frontiers in Psychology 9: 108. https://doi.org/10.3389/fpsyg.2018.00108.

[51]

Swainson, R., R. Cunnington, G. M. Jackson, et al. 2003. “Cognitive Control Mechanisms Revealed by ERP and fMRI: Evidence From Repeated Task-Switching.” Journal of Cognitive Neuroscience 15, no. 6: 785-799. https://doi.org/10.1162/089892903322370717.

[52]

Syrov, N., L. Yakovlev, V. Nikolaeva, A. Kaplan, and M. Lebedev. 2022. “Mental Strategies in a P300-BCI: Visuomotor Transformation Is an Option.” Diagnostics 12, no. 11: 2607. https://doi.org/10.3390/diagnostics12112607.

[53]

Vandierendonck, A., B. Liefooghe, and F. Verbruggen. 2010. “Task Switching: Interplay of Reconfiguration and Interference Control.” Psychological Bulletin 136, no. 4: 601-626. https://doi.org/10.1037/a0019791.

[54]

Wang, H. J., Y. P. Wang, J. Kong, L. L. Cui, and S. J. Tian. 2001. “Enhancement of Conflict Processing Activity in Human Brain Under Task Relevant Condition.” Neuroscience Letters 298, no. 3: 155-158. https://doi.org/10.1016/s0304-3940(00)01757-2.

[55]

Wang, Y. P., S. J. Tian, H. J. Wang, L. L. Cui, Y. Y. Zhang, and X. Zhang. 2003. “Event-Related Potentials Evoked by Multi-Feature Conflict Under Different Attentive Conditions.” Experimental Brain Research 148, no. 4: 451-457. https://doi.org/10.1007/s00221-002-1319-y.

[56]

Wolff, N., F. Giller, J. Buse, V. Roessner, and C. Beste. 2018. “When Repetitive Mental Sets Increase Cognitive Flexibility in Adolescent Obsessive-Compulsive Disorder.” Journal of Child Psychology and Psychiatry 59, no. 9: 1024-1032. https://doi.org/10.1111/jcpp.12901.

[57]

Woodward, T. S., B. Meier, C. Tipper, and P. Graf. 2003. “Bivalency Is Costly: Bivalent Stimuli Elicit Cautious Responding.” Experimental Psychology 50, no. 4: 233-238. https://doi.org/10.1026//1618-3169.50.4.233.

[58]

Woodward, T. S., P. D. Metzak, B. Meier, and C. B. Holroyd. 2008. “Anterior Cingulate Cortex Signals the Requirement to Break Inertia When Switching Tasks: A Study of the Bivalency Effect.” NeuroImage 40, no. 3: 1311-1318. https://doi.org/10.1016/j.neuroimage.2007.12.049.

[59]

Xie, L., B. Cao, Z. Li, and F. Li. 2020. “Neural Dynamics of Cognitive Control in Various Types of Incongruence.” Frontiers in Human Neuroscience 14: 214. https://doi.org/10.3389/fnhum.2020.00214.

[60]

Yancey, J. R., C. B. Bowyer, K. E. Roberts, et al. 2022. “Boldness Moderates Cognitive Performance Under Acute Threat: Evidence From a Task-Switching Paradigm Involving Cueing for Shock.” Journal of Experimental Psychology: Human Perception and Performance 48, no. 6: 549-562. https://doi.org/10.1037/xhp0000995.

[61]

Zhuo, B. X., Y. Chen, M. Q. Zhu, B. H. Cao, and F. H. Li. 2021. “Response Variations Can Promote the Efficiency of Task Switching: Electrophysiological Evidence.” Neuropsychologia 156: 107828. https://doi.org/10.1016/j.neuropsychologia.2021.107828.

RIGHTS & PERMISSIONS

2025 The Author(s). PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/