Discovery of a long-acting nanocrystal formulation of INND-2201, a new co-drug of pregabalin and palmitoylethanolamide with synergistic analgesic effects

Xiao-Min Han , Yang Xiao , Chao-Nan Huang , Ming-Yue Yin , Ben Xu , Yang-Yang Song , Tao Zhuang , Gui-Sen Zhang

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100099

PDF (9382KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100099 DOI: 10.1016/j.pscia.2025.100099
Research Article
research-article

Discovery of a long-acting nanocrystal formulation of INND-2201, a new co-drug of pregabalin and palmitoylethanolamide with synergistic analgesic effects

Author information +
History +
PDF (9382KB)

Abstract

Chronic pain is a global health problem affecting approximately 30% of the adult population worldwide. Currently available painkillers often showed limited efficacy or serious adverse effects and require frequent administration to maintain therapeutic effects. To develop new long-acting analgesics with synergistic antinociceptive effects, a new co-drug INND-2201 of pregabalin and palmitoylethanolamide (PEA) was synthesized, characterized and prepared as a nanocrystal formulation. INND-2201 was slowly metabolized into pregabalin and PEA in microsomal stability test, and oral INND-2201 exhibited significant and synergistic antinociceptive effects for inflammatory and neuropathic pain with ED50 values of 4.43 and 5.54mg/kg, respectively. Nanocrystals (NCs) of INND-2201 were then prepared by the ball milling method with the particle size of 107.1±2.7 nm. Intramuscular administration of INND-2201 NCs demonstrated prolonged pain relief lasting up to 5 days for chronic inflammatory pain in mice. Acute toxicity test, muscular irritation evaluation, rotarod test and open field test indicated that INND-2201 had a good safety profile. Taken together, INND-2201 NCs exerted long-acting analgesic effects and provided a promising strategy for the management of chronic pain.

Keywords

Chronic pain / Co-drug / Nanocrystals / Pregabalin / Synergistic analgesic effects

Cite this article

Download citation ▾
Xiao-Min Han, Yang Xiao, Chao-Nan Huang, Ming-Yue Yin, Ben Xu, Yang-Yang Song, Tao Zhuang, Gui-Sen Zhang. Discovery of a long-acting nanocrystal formulation of INND-2201, a new co-drug of pregabalin and palmitoylethanolamide with synergistic analgesic effects. Pharmaceutical Science Advances, 2025, 3(1): 100099 DOI:10.1016/j.pscia.2025.100099

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xiao-Min Han: Writing - original draft, Validation, Investigation, Formal analysis, Data curation. Yang Xiao: Writing - original draft, Investigation. Chao-Nan Huang: Writing - original draft, Investigation. Ming-Yue Yin: Visualization, Software. Ben Xu: Formal analysis. YangYang Song: Formal analysis. Tao Zhuang: Writing - review & editing, Writing - original draft, Methodology, Formal analysis, Data curation, Conceptualization. Gui-Sen Zhang: Writing - review & editing, Conceptualization.

Ethical approval

All animal experiments were executed in accordance with the protocol approved by the Ethical Committee of Jiangsu Ocean University (Approval No. 202200029).

Declaration of generative AI in scientific writing

Not applicable.

Funding information

This research was supported by National Natural Science Foundation of China (82304275) and Postgraduate Research & Practice Innovation Program of Jiangsu Ocean University (KYCX2024-19).

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We thank Zongzheng Li for his assistance with NMR data interpretation.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100099.

References

[1]

A. Zajacova, H. Grol-Prokopczyk, Z. Zimmer, Sociology of chronic pain, J. Health Soc. Behav. 62 (2021) 302-317, https://doi.org/10.1177/00221465211025962.

[2]

J.W.S. Vlaeyen, G. Crombez, Behavioral conceptualization and treatment of chronic pain, Annu. Rev. Clin. Psychol. 16 (2020) 187-212, https://doi.org/10.1146/annurev-clinpsy-050718-095744.

[3]

S.P. Cohen, L. Vase, W.M. Hooten, Chronic pain: an update on burden, best practices, and new advances, Lancet 397 (2021) 2082-2097, https://doi.org/10.1016/S0140-6736(21)00393-7.

[4]

N. Hylands-White, R.V. Duarte, J.H. Raphael, An overview of treatment approaches for chronic pain management, Rheumatol. Int. 37 (2017) 29-42, https://doi.org/10.1007/s00296-016-3481-8.

[5]

A.B. Jindal, A.R. Bhide, S. Salave, D. Rana, D. Benival, Long-acting parenteral drug delivery systems for the treatment of chronic diseases, Adv. Drug Deliv. Rev. 198 (2023) 114862, https://doi.org/10.1016/j.addr.2023.114862.

[6]

R. Patel, A.H. Dickenson, Neuropharmacological basis for multimodal analgesia in chronic pain, Postgrad. Med. J. 134 (2022) 245-259, https://doi.org/10.1080/00325481.2021.1985351.

[7]

A. O'Neill, P. Lirk, Multimodal analgesia, Anesthesiol. Clin. 40 (2022) 455-468, https://doi.org/10.1016/j.anclin.2022.04.002.

[8]

A. Nudelman, Mutual prodrugs - codrugs, Curr. Med. Chem. 30 (2023) 4283-4339, https://doi.org/10.2174/0929867330666221209102650.

[9]

E. Zingale, A. Bonaccorso, C. Carbone, T. Musumeci, R. Pignatello, Drug nanocrystals: focus on brain delivery from therapeutic to diagnostic applications, Pharmaceutics 14 (2022) 691, https://doi.org/10.3390/pharmaceutics14040691.

[10]

J. Chen, Z. Zhao, B. Yathavan, A. Mirajkar, D. Guo, J. Huang, Recent advancement of nanocrystal dosage forms, in: S.A.Saraf (Eds.), Emerging Frontiers in the Drug Formulation Design, IntechOpen, 2025, https://doi.org/10.5772/intechopen.1007776.

[11]

L. Ma, Y. He, L. Bai, M. Li, X. Sui, B. Liu, B. Tian, Y. Liu, Q. Fu, Preclinical studies of a high drug-loaded meloxicam nanocrystals injection for analgesia, Colloids Surf. B Biointerfaces 218 (2022) 112777, https://doi.org/10.1016/j.colsurfb.2022.112777.

[12]

S. Derry, R.F. Bell, S. Straube, P.J. Wiffen, D. Aldington, R.A. Moore, Pregabalin for neuropathic pain in adults, Cochrane Database Syst. Rev. 1 (2019) CD007076, https://doi.org/10.1002/14651858.CD007076.pub3.

[13]

J. Rosner, D.C. de Andrade, K.D. Davis, S.M. Gustin, J.L.K. Kramer, R.P. Seal, N. B. Finnerup, Central neuropathic pain, Nat. Rev. Dis. Primers 9 (2023) 73, https://doi.org/10.1038/s41572-023-00484-9.

[14]

E. Ben-Menachem, Pregabalin pharmacology and its relevance to clinical practice, Epilepsia 45 (Suppl 6) (2004) 13-18, https://doi.org/10.1111/j.00139580.2004.455003.x.

[15]

S.J. Moon, J.-Y. Jeon, Y. Lim, T. An, S.B. Jang, S. Kim, W.-S. Na, S.Y. Lee, M.G. Kim, Pharmacokinetics of a new, once-daily, sustained-release Pregabalin tablet in healthy Male volunteers, Clin. Ther. 43 (2021) 1381-1391.e1, https://doi.org/10.1016/j.clinthera.2021.06.010.

[16]

C. Qin, M. Wu, S. Xu, X. Wang, W. Shi, Y. Dong, L. Yang, W. He, X. Han, L. Yin, Design and optimization of gastro-floating sustained-release tablet of pregabalin: in vitro and in vivo evaluation, Int. J. Pharm. 545 (2018) 37-44, https://doi.org/10.1016/j.ijpharm.2018.04.011.

[17]

S. Petrosino, V. Di Marzo, The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations, Br. J. Pharmacol. 174 (2017) 1349-1365, https://doi.org/10.1111/bph.13580.

[18]

D. Impellizzeri, G. Bruschetta, M. Cordaro, R. Crupi, R. Siracusa, E. Esposito, S. Cuzzocrea, Micronized/ultramicronized palmitoylethanolamide displays superior oral efficacy compared to nonmicronized palmitoylethanolamide in a rat model of inflammatory pain, J. Neuroinflammation 11 (2014) 136, https://doi.org/10.1186/s12974-014-0136-0.

[19]

I. Jarocka-Karpowicz, M. Biernacki, A. Wroński, A. Gęgotek, E. Skrzydlewska, Cannabidiol effects on phospholipid metabolism in keratinocytes from patients with psoriasis vulgaris, Biomolecules 10 (2020) 367, https://doi.org/10.3390/biom10030367.

[20]

K. Lang-Illievich, C. Klivinyi, C. Lasser, C.T.A. Brenna, I.S. Szilagyi, H. BornemannCimenti, Palmitoylethanolamide in the treatment of chronic pain: a systematic review and meta-analysis of double-blind randomized controlled trials, Nutrients 15 (2023) 1350, https://doi.org/10.3390/nu15061350.

[21]

P. Clayton, M. Hill, N. Bogoda, S. Subah, R. Venkatesh, Palmitoylethanolamide: a natural compound for health management, Int. J. Mol. Sci. 22 (2021) 5305, https://doi.org/10.3390/ijms22105305.

[22]

T. Zhuang, J. Xiong, X. Ren, L. Liang, Z. Qi, S. Zhang, W. Du, Y. Chen, X. Liu, G. Zhang, Benzylaminofentanyl derivates: discovery of bifunctional μ opioid and σ1 receptor ligands as novel analgesics with reduced adverse effects, Eur. J. Med. Chem. 241 (2022) 114649, https://doi.org/10.1016/j.ejmech.2022.114649.

[23]

J. Ma, J. Lin, L. Zhao, K. Harms, M. Marsch, X. Xie, E. Meggers, Synthesis of β-Substituted γ-Aminobutyric acid derivatives through enantioselective photoredox catalysis, Angew Chem. Int. Ed. Engl. 57 (2018) 11193-11197, https://doi.org/10.1002/anie.201804040.

[24]

H.-M. Qin, Z.-K. Luo, H.-L. Zhou, J. Zhu, X.-Y. Xiao, Y. Xiao, T. Zhuang, G.S. Zhang, Novel drug-drug salt crystals of metformin with ibuprofen or naproxen: improved solubility, dissolution rate, and synergistic antinociceptive effects, Int. J. Pharm. 657 (2024) 124126, https://doi.org/10.1016/j.ijpharm.2024.124126.

[25]

K. Sharma, R.R. Singh, M. Kandaswamy, C. Mithra, S. Giri, S. Rajagopal, R. Mullangi, LC-MS/MS-ESI method for simultaneous quantitation of three endocannabinoids and its application to rat pharmacokinetic studies, Bioanalysis 3 (2011) 181-196, https://doi.org/10.4155/bio.10.192.

[26]

F.T. Seta, X. An, L. Liu, H. Zhang, J. Yang, W. Zhang, S. Nie, S. Yao, H. Cao, Q. Xu, Y. Bu, H. Liu, Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis, Carbohydr. Polym. 234 (2020) 115942, https://doi.org/10.1016/j.carbpol.2020.115942.

[27]

Z. Malik, M. Abbas, L.T. Al Kury, F.A. Shah, M. Alam, A.-U. Khan, H. Nadeem, S. Alghamdi, M.U.K. Sahibzada, S. Li, Thiazolidine derivatives attenuate carrageenan-induced inflammatory pain in mice, Drug Des. Dev. Ther. 15 (2021) 369-384, https://doi.org/10.2147/DDDT.S281559.

[28]

Y. Ma, W. Liu, L. Liang, J. Ye, C. Huang, T. Zhuang, G. Zhang, Synergistic antinociceptive effects of indomethacin-pregabalin and meloxicam-pregabalin in paclitaxel-induced neuropathic pain, Biomedicines 10 (2022) 1413, https://doi.org/10.3390/biomedicines10061413.

[29]

B. Qabazard, W. Masocha, M. Khajah, O.A. Phillips, H2 S donor GYY4137 ameliorates paclitaxel-induced neuropathic pain in mice, Biomed. Pharmacother. 127 (2020) 110210, https://doi.org/10.1016/j.biopha.2020.110210.

[30]

C.-N. Huang, Y.-M. Chen, X.-Y. Xiao, H.-L. Zhou, J. Zhu, H.-M. Qin, X. Jiang, Z. Li, T. Zhuang, G.-S. Zhang, Pregabalin can interact synergistically with Kv7 channel openers to exert antinociception in mice, Eur. J. Pharmacol. 954 (2023) 175870, https://doi.org/10.1016/j.ejphar.2023.175870.

[31]

L. Bravo, M. Llorca-Torralba, I. Suárez-Pereira, E. Berrocoso, Pain in neuropsychiatry: insights from animal models, Neurosci. Biobehav. Rev. 115 (2020) 96-115, https://doi.org/10.1016/j.neubiorev.2020.04.029.

[32]

K.E. McCarson, J.C. Fehrenbacher, Models of inflammation: carrageenan- or complete freund's adjuvant (CFA)-induced edema and hypersensitivity in the rat, Curr. Protoc. 1 (2021) e202, https://doi.org/10.1002/cpz1.202.

[33]

X.-Y. Xiao, Y.-M. Chen, J. Zhu, M.-Y. Yin, C.-N. Huang, H.-M. Qin, S.-X. Liu, Y. Xiao, H.-W. Fang, T. Zhuang, Y. Chen, The synergistic anti-nociceptive effects of nefopam and gabapentinoids in inflammatory, osteoarthritis, and neuropathic pain mouse models, Eur. J. Pharmacol. 977 (2024) 176738, https://doi.org/10.1016/j.ejphar.2024.176738.

[34]

Z. Li, X. Xiao, Y. Xue, H. Zhou, C. Huang, M. Zhu, T. Zhuang, Y. Chen, L. Huang, Discovery of a novel class of benzoxazole derivatives as histamine H 3 receptor ligands for the treatment of neuropathic pain, Bioorg. Chem. 127 (2022) 106039, https://doi.org/10.1016/j.bioorg.2022.106039.

[35]

M. Qin, J. Xin, W. Han, M. Li, X. Sui, H. Dong, Q. Fu, Z. He, Stabilizer-induced different in vivo behaviors for intramuscularly long-acting celecoxib nanocrystals, Int. J. Pharm. 628 (2022) 122298, https://doi.org/10.1016/j.ijpharm.2022.122298.

[36]

L. Adedayo, V. Adesoye, O. Bamidele, I. Azeez, O. Oyebanjo, A. Adekeye, S. Samaila, N. Aitokhuehi, O. Adebayo, G. Ojo, An investigation into the underlying mechanisms of risperidone-induced antinociception through the cholinergic pathway, Pharm.Sci. Adv. 3 (2025) 100086, https://doi.org/10.1016/j.pscia.2025.100086.

[37]

C. Lubrich, P. Giesler, M. Kipp, Motor behavioral deficits in the cuprizone model: validity of the rotarod test paradigm, Int. J. Mol. Sci. 23 (2022) 11342, https://doi.org/10.3390/ijms231911342.

[38]

H. Wang, Q. Wang, L. Cui, X. Feng, P. Dong, L. Tan, L. Lin, H. Lian, S. Cao, H. Huang, P. Cao, X.-M. Li, A molecularly defined amygdala-independent tetrasynaptic forebrain-to-hindbrain pathway for odor-driven innate fear and anxiety, Nat. Neurosci. 27 (2024) 514-526, https://doi.org/10.1038/s41593-023-01562-7.

[39]

R.J. Tallarida, The interaction index: a measure of drug synergism, Pain 98 (2002) 163-168, https://doi.org/10.1016/S0304-3959(02)00041-6.

[40]

P. Boonrueng, P.W.D. Wasana, Hasriadi, O. Vajragupta, P. Rojsitthisak, P. Towiwat, Combination of curcumin and piperine synergistically improves painlike behaviors in mouse models of pain with no potential CNS side effects, Chin. Med. 17 (2022) 119, https://doi.org/10.1186/s13020-022-00660-1.

[41]

S.G. Sousa, L.A. Oliveira, D. de Aguiar Magalhães, T.V. de Brito, J.A. Batista, C.M. C. Pereira, M. de Souza Costa, J.C.R. Mazulo, M. de Carvalho Filgueiras, D.F. P. Vasconselos, D.A. da Silva, F.C.N. Barros, V.G. Sombra, A.L.P. Freitas, R.C.M. de Paula, J.P. de Andrade Feitosa, A.L. Dos Reis Barbosa, Chemical structure and antiinflammatory effect of polysaccharide extracted from Morinda citrifolia Linn (Noni), Carbohydr. Polym. 197 (2018) 515-523, https://doi.org/10.1016/j.carbpol.2018.06.042.

[42]

T.J. Brown, R. Sedhom, A. Gupta, Chemotherapy-induced peripheral neuropathy, JAMA Oncol. 5 (2019) 750, https://doi.org/10.1001/jamaoncol.2018.6771.

[43]

R. Dale, B. Stacey, Multimodal treatment of chronic pain, Med. Clin. North. Am. 100 (2016) 55-64, https://doi.org/10.1016/j.mcna.2015.08.012.

[44]

I. Gilron, T.S. Jensen, A.H. Dickenson, Combination pharmacotherapy for management of chronic pain: from bench to bedside, Lancet Neurol. 12 (2013) 1084-1095, https://doi.org/10.1016/S1474-4422(13)70193-5.

[45]

F. Vacondio, M. Bassi, C. Silva, R. Castelli, C. Carmi, L. Scalvini, A. Lodola, V. Vivo, L. Flammini, E. Barocelli, M. Mor, S. Rivara, Amino acid derivatives as palmitoylethanolamide prodrugs: synthesis, in vitro metabolism and in vivo plasma profile in rats, PLoS One 10 (2015) e0128699, https://doi.org/10.1371/journal.pone.0128699.

[46]

C.J. Morris, Carrageenan-induced paw edema in the rat and mouse, Methods Mol. Biol. 225 (2003) 115-121, https://doi.org/10.1385/1-59259-374-7:115.

[47]

F.S. Kilic, B. Kaygisiz, S. Aydin, C. Yildirim, H. Karimkhani, S. Oner, Pregabalin attenuates carrageenan-induced acute inflammation in rats by inhibiting proinflammatory cytokine levels, Eurasian. J. Med. 50 (2018) 156-159, https://doi.org/10.5152/eurasianjmed.2018.17261.

[48]

D.-S. Im, GPR119 and GPR55 as receptors for fatty acid ethanolamides, oleoylethanolamide and palmitoylethanolamide, Int. J. Mol. Sci. 22 (2021) 1034, https://doi.org/10.3390/ijms22031034.

[49]

A. Mabou Tagne, Y. Fotio, L. Lin, E. Squire, F. Ahmed, T.I. Rashid, E. Karimian Azari, D. Piomelli, Palmitoylethanolamide and hemp oil extract exert synergistic anti-nociceptive effects in mouse models of acute and chronic pain, Pharmacol. Res. 167 (2021) 105545, https://doi.org/10.1016/j.phrs.2021.105545.

[50]

I. Sankaranarayanan, D. Tavares-Ferreira, J.M. Mwirigi, G.L. Mejia, M.D. Burton, T. J. Price, Inducible co-stimulatory molecule (ICOS) alleviates paclitaxel-induced neuropathic pain via an IL-10-mediated mechanism in female mice, J. Neuroinflammation 20 (2023) 32, https://doi.org/10.1186/s12974-023-027198.

[51]

G. Donvito, J.L. Wilkerson, M.I. Damaj, A.H. Lichtman, J. Pharmacol. Exp. Palmitoylethanolamide reverses paclitaxel-induced allodynia in mice, Therapeut. 359 (2016) 310-318, https://doi.org/10.1124/jpet.116.236182.

[52]

A. Mangaiarkkarasi, S. Rameshkannan, R.M. Ali, Effect of gabapentin and pregabalin in rat model of taxol induced neuropathic pain, J. Clin. Diagn. Res. 9 (2015) FF11-FF14, https://doi.org/10.7860/JCDR/2015/13373.5955.

[53]

I.A. Aljuffali, C.-F. Lin, C.-H. Chen, J.-Y. Fang, The codrug approach for facilitating drug delivery and bioactivity, Expet Opin. Drug Deliv. 13 (2016) 1311-1325, https://doi.org/10.1080/17425247.2016.1187598.

[54]

T.H. Baryakova, B.H. Pogostin, R. Langer, K.J. McHugh, Overcoming barriers to patient adherence: the case for developing innovative drug delivery systems, Nat. Rev. Drug Discov. 22 (2023) 387-409, https://doi.org/10.1038/s41573-023-00670-0.

[55]

S.-T. Chien, I.T. Suydam, K.A. Woodrow, Prodrug approaches for the development of a long-acting drug delivery systems, Adv. Drug Deliv. Rev. 198 (2023) 114860, https://doi.org/10.1016/j.addr.2023.114860.

[56]

D.H. Surve, A.B. Jindal, Recent advances in long-acting nanoformulations for delivery of antiretroviral drugs, J. Contr. Release 324 (2020) 379-404, https://doi.org/10.1016/j.jconrel.2020.05.022.

[57]

E.R. Nestmann, Safety of micronized palmitoylethanolamide (microPEA): lack of toxicity and genotoxic potential, Food Sci. Nutr. 5 (2017) 292-309, https://doi.org/10.1002/fsn3.392.

[58]

N. Li, C. Li, R. Han, Y. Wang, M. Yang, H. Wang, J. Tian, LPM580098, a novel triple reuptake inhibitor of serotonin, noradrenaline, and dopamine, attenuates neuropathic pain, Front. Pharmacol. 10 (2019) 53, https://doi.org/10.3389/fphar.2019.00053.

AI Summary AI Mindmap
PDF (9382KB)

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/