Conquering viral drug resistance: Structural and mechanistic paradigms for antiresistance drug design

Mei Wang , Haiyong Jia , Xinyong Liu , Peng Zhan

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100094

PDF (1198KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100094 DOI: 10.1016/j.pscia.2025.100094
Perspective
research-article

Conquering viral drug resistance: Structural and mechanistic paradigms for antiresistance drug design

Author information +
History +
PDF (1198KB)

Abstract

Viral drug resistance remains a critical challenge in antiviral therapy. This perspective highlights five studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human immunodeficiency virus type 1 (HIV-1), monkeypox virus (MPXV), influenza A virus (IAV), and Hepatitis B virus (HBV), revealing novel resistance mechanisms and innovative strategies. For SARS-CoV-2, GC376's flexible benzyl group overcomes nirmatrelvir resistance. HIV-1's non-nucleoside reverse transcriptase inhibitors (NNRTIs) 5i3 adapts to resistant mutants via a quinazoline scaffold, while MPXV's tecovirimat acts as a "molecular glue" stabilizing F13 dimers. Expanding these paradigms, we present groundbreaking insights: An indazole-based IAV inhibitor (compound 24) disrupts the conserved PA-PB1 heterodimer, showing sub-micromolar potency against resistant strains. For HBV, a hydrophobic tagging degrader (HyT-S7) induces HBc degradation, bypassing resistance mutations impairing traditional capsid modulators. Key strategies include dynamic flexibility, multivalent interactions, and oligomerization control, integrated with AI-driven design and real-time surveillance. This perspective bridges structural insights with translational applications, offering a roadmap for next-generation, mutation-resilient antivirals.

Keywords

Drug resistance / Drug design / Structural virology / Molecular dynamics / Protein oligomerization / AI-Driven drug discovery

Cite this article

Download citation ▾
Mei Wang, Haiyong Jia, Xinyong Liu, Peng Zhan. Conquering viral drug resistance: Structural and mechanistic paradigms for antiresistance drug design. Pharmaceutical Science Advances, 2025, 3(1): 100094 DOI:10.1016/j.pscia.2025.100094

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Mei Wang: Writing - original draft, Conceptualization. Haiyong Jia: Writing - review & editing, Visualization. Xinyong Liu: Writing review & editing, Visualization. Peng Zhan: Writing - review & editing, Visualization.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

Not applicable.

Funding information

The authors are supported by the Key Research and Development Program, Ministry of Science and Technology of the People's Republic of China (No. 2023YFC2606500,2023YFE0206500).

Declaration of competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Not applicable.

Data availability

Not applicable.

References

[1]

Y. Ma, E. Frutos-Beltrán, D. Kang, C. Pannecouque, E. De Clercq, L. MenéndezArias, X. Liu, P. Zhan, Medicinal chemistry strategies for discovering antivirals effective against drug-resistant viruses, Chem. Soc. Rev. 50 (2021) 4514-4540, https://doi.org/10.1039/D0CS01084G.

[2]

S. Du, X. Hu, X. Liu, P. Zhan, Editorial of virtual special issue: the development of antiviral drug discovery, Acta Pharm. Sin. B 15 (2025) 2801-2804, https://doi.org/10.1016/j.apsb.2025.03.013.

[3]

S. Du, X. Hu, L. Menéndez-Arias, P. Zhan, X. Liu, Target-based drug design strategies to overcome resistance to antiviral agents: opportunities and challenges, Drug Resist. Updates 73 (2024) 101053, https://doi.org/10.1016/j.drup.2024.101053.

[4]

H. Yang, Z. Rao, Structural biology of SARS-CoV-2 and implications for therapeutic development, Nat. Rev. Microbiol. 19 (2021) 685-700, https://doi.org/10.1038/s41579-021-00630-8.

[5]

Y. Peng, Y. Zong, D. Wang, J. Chen, Z.S. Chen, F. Peng, Z. Liu, Current drugs for HIV-1: from challenges to potential in HIV/AIDS, Front. Pharmacol. 14 (2023) 1294966, https://doi.org/10.3389/fphar.2023.1294966.

[6]

X. Zhang, Y. Zhang, F. Wei, Research progress on the nonstructural protein 1 (NS1) of influenza a virus, Virulence 15 (2024) 2359470, https://doi.org/10.1080/21505594.2024.2359470.

[7]

B. Moss, Understanding the biology of monkeypox virus to prevent future outbreaks, Nat. Microbiol. 9 (2024) 1408-1416, https://doi.org/10.1038/s41564-024-01690-1.

[8]

H. Liu, S. Garg, J. Hu, J.C. Wang, Bilayer or not: revisiting the structural nature of HBV subviral particles, J. Med. Virol. 97 (2025) e70212, https://doi.org/10.1002/jmv.70212.

[9]

G. Neilsen, S. Lan, R.L. Slack, Z.C. Lorson, A. Emanuelli Castaner, R. Lee, K. G. Edwards, H. Zhang, J. Lee, W.A. Cantara, M.E. Cilento, H. Zhang, R. De, F. Amblard, P.R. Tedbury, K.A. Kirby, R.F. Schinazi, S.G. Sarafianos, Strategy to overcome a nirmatrelvir resistance mechanism in the SARS-CoV-2 nsp5 protease, Sci. Adv. 11 (2025) eadv8875, https://doi.org/10.1126/sciadv.adv8875.

[10]

P. Zhan, C. Pannecouque, E. De Clercq, X. Liu, Anti-HIV drug discovery and development: current innovations and future trends, J. Med. Chem. 59 (2016) 2849-2878, https://doi.org/10.1021/acs.jmedchem.5b00497.

[11]

Z. Wang, S. Rumrill, D. Kang, S.D. Guma, D. Feng, E. De Clercq, C. Pannecouque, C. H. Chen, E. Arnold, F.X. Ruiz, X. Liu, P. Zhan, Development of enhanced HIV-1 non-nucleoside reverse transcriptase inhibitors with improved resistance and pharmacokinetic profiles, Sci. Adv. 11 (2025), https://doi.org/10.1126/sciadv.adt8916eadt8916.

[12]

R. Vernuccio, A. Martíne z León, C.S. Poojari, J. Buchrieser, C.N. Selverian, Y. Jaleta, A. Meola, F. Guivel-Benhassine, F. Porrot, A. Haouz, M. Chevreuil, B. Raynal, J. Mercer, E. Simon-Loriere, K. Chandran, O. Schwartz, J.S. Hub, P. Guardado-Calvo, Structural insights into tecovirimat antiviral activity and poxvirus resistance, Nat. Microbiol. 10 (2025) 734-748, https://doi.org/10.1038/s41564-025-01936-6.

[13]

Y.S. Tang, C. Zhang, J. Xu, H. Zhang, Z. Jin, M. Xiao, N. Yiliyaer, E.F. Huang, X. Zhao, C. Hu, P.C. Shaw, Design, synthesis and biological evaluation of a novel class of indazole-containing compounds with potent anti-influenza activities targeting the PA-PB1 interface, Acta Pharm. Sin. B 15 (2025) 3163-3180, https://doi.org/10.1016/j.apsb.2025.04.014.

[14]

S. Xu, Y. Wang, D. Shi, S. Wang, L. Qiao, G. Yang, Y. Zhou, X. Liu, S. Wu, Y. Li, P. Zhan, Discovery and mechanism verification of first-in-class hydrophobic tagging-based degraders of HBV core protein, Acta Pharm. Sin. B 15 (2025) 2170-2196, https://doi.org/10.1016/j.apsb.2025.02.033.

[15]

G. Corso, H. Stärk, B. Jing, R. Barzilay, T. Jaakkola, DiffDock: diffusion steps, twists, and turns for molecular docking, in: International Conference on Learning Representations (ICLR), Kigali, Rwanda, 2023. https://iclr.cc/virtual/2023/poster/11750.

[16]

H.H. Loeffler, J. He, A. Tibo, J.P. Janet, A. Voronov, L.H. Mervin, O. Engkvist, Reinvent 4: modern AI-driven generative molecule design, J. Cheminf. 16 (2024) 20, https://doi.org/10.1186/s13321-024-00812-5.

[17]

V. Bagal, R. Aggarwal, P.K. Vinod, U.D. Priyakumar, MolGPT: molecular generation using a transformer-decoder model, J. Chem. Inf. Model. 62 (2022) 2064-2076, https://doi.org/10.1021/acs.jcim.1c00600.

[18]

A. Nunes-Alves, K. Merz, AlphaFold 2 in molecular discovery, J. Chem. Inf. Model. 63 (2023) 5947-5949, https://doi.org/10.1021/acs.jcim.3c01459.

[19]

L. Chen, Q. Li, K.F.A. Nasif, Y. Xie, B. Deng, S. Niu, S. Pouriyeh, Z. Dai, J. Chen, C. Y. Xie, AI-Driven deep learning techniques in protein structure prediction, Int. J. Mol. Sci. 25 (2024) 8426, https://doi.org/10.3390/ijms25158426.

[20]

A.S. Rifaioglu, E. Nalbat, V. Atalay, M.J. Martin, R. Cetin-Atalay, T. Doğan, DEEPScreen: high performance drug-target interaction prediction with convolutional neural networks using 2-D structural compound representations, Chem. Sci. 11 (2020) 2531-2557, https://doi.org/10.1039/c9sc03414e.

[21]

M. Yang, M.K. Lee, S. Gao, L. Song, H.Y. Jang, I. Jo, C.C. Yang, K. Sylvester, C. Ko, S. Wang, B. Ye, K. Tang, J. Li, M. Gu, C.E. Müller, N. Sträter, X. Liu, M. Kim, P. Zhan, Miniaturized modular click chemistry-enabled rapid discovery of unique SARS-CoV-2 Mpro inhibitors with robust potency and drug-like profile, Adv. Sci. (Weinh.) 11 (2024) e2404884, https://doi.org/10.1002/advs.202404884.

AI Summary AI Mindmap
PDF (1198KB)

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/