Research progress of 3D printing technology in the field of oral materials

Khan Rajib Hossain , Dipika Ramdas Kalambhe , M. Abdul Jalil , Nusrat Tabassum Farah

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100093

PDF (9155KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100093 DOI: 10.1016/j.pscia.2025.100093
Review Article
research-article

Research progress of 3D printing technology in the field of oral materials

Author information +
History +
PDF (9155KB)

Abstract

The emergence of three-dimensional (3D) printing has represented a significant technological breakthrough, exerting a profound influence across various domains of society in recent times. There has been a noticeable shift in the healthcare industry's dominant paradigm of therapeutic interventions, particularly regarding the utilization of 3D printing technology to mend or replace damaged or missing biological components. Adopting cuttingedge technology can significantly enhance the range of applications within the field of oral healthcare. A significant amount of research is being conducted to leverage the substantial potential of 3D printing in oral applications, with a focus on developing customized treatment plans tailored to specific case scenarios. By building specialized implantology from different biological composite materials layer by layer, 3D printing technology precisely restores the anatomical structure of defects in the mouth and maxillofacial region. This review presents a comprehensive discussion on the history and classification of 3D printing technology, as well as the dynamics of biological materials, cells, and bioactive factors utilized in repairing oral and maxillofacial bone defects. Additionally, this review provides an update on the materials commonly used in typical oral healthcare applications and examines future trends and concerns related to material perspectives in oral healthcare management.

Keywords

3D printing / Oral materials / Prosthodontics / Orthodontics / Implantology

Cite this article

Download citation ▾
Khan Rajib Hossain, Dipika Ramdas Kalambhe, M. Abdul Jalil, Nusrat Tabassum Farah. Research progress of 3D printing technology in the field of oral materials. Pharmaceutical Science Advances, 2025, 3(1): 100093 DOI:10.1016/j.pscia.2025.100093

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Khan Rajib Hossain: Writing - original draft, Software, Resources, Conceptualization. Dipika Ramdas Kalambhe: Writing - review & editing. M. Abdul Jalil: Writing - review & editing. Nusrat Tabassum Farah: Writing - review & editing.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

No generative AI tools have been used throughout the entire writing process of this manuscript.

Funding information

There was no agency funding used in the drafting of this manuscript.

Declaration of competing interest

The content of the article is free of pertinent conflicts of interest and is not sponsored by any manufacturer or associated business, either directly or indirectly. There aren't any confidentiality leaks, disagreements over other people's projects or patented technologies, duplicate submissions of the same manuscript, or authorship disputes in the content.

Acknowledgments

The authors would like to express their gratitude to peers and colleagues for their support and constructive suggestions during the preparation of this manuscript. In this study, no specialized software tools were used; instead, the authors' expertise and standard procedures were used for each assessment and interpretation. The authors acknowledge that Figs. 1 and 7 were created using Adobe Illustrator. The UNIZ Desktop 3D printer and its slicing software were used in conjunction with SolidWorks to create Figs. 2 and 7. These tools were used solely for illustration and visualization purposes.

Data availability

Not applicable.

References

[1]

X. Yao, Y. Guo, Y. Gao, K.R. Hossain, Z. Ji, Z. Lu, F. Zhou, Additive manufacturing patterned self-lubricating polyimide surfaces, Tribol. Int. 189 (2023) 108972, https://doi.org/10.1016/j.triboint.2023.108972.

[2]

M.H. Rahman, N.Y. Liza, K.R. Hossain, D.R. Kalambhe, M.A. Shyeed, D.H. Noor, Additive manufacturing in nano drug delivery systems, Pharmaceut. Sci. Adv. 2 (2024) 100036, https://doi.org/10.1016/j.pscia.2024.100036.

[3]

S. Ghai, Y. Sharma, N. Jain, M. Satpathy, A.K. Pillai, Use of 3-D printing technologies in craniomaxillofacial surgery: a review, Oral Maxillofac. Surg. 22 (2018) 249-259, https://doi.org/10.1007/s10006-018-0704-z.

[4]

K.R. Hossain, J. Wu, X. Xu, K. Cobra, M.M. Jami, M.B. Ahmed, X. Wang, Tribological bioinspired interfaces for 3D printing, Tribol. Int. 188 (2023) 108904, https://doi.org/10.1016/j.triboint.2023.108904.

[5]

B. Derby, Printing and prototyping of tissues and scaffolds, science 338 (6109) (2012) 921-926, https://doi.org/10.1126/science.1226340.

[6]

K.R. Hossain, Y. Lu, D. Hu, Z. Ji, X. Yao, T. Wu, X. Wang, Polymer-based lubricating in 3D printing, Macromol. Chem. Phys. e 00047 (2025) 1-27, https://doi.org/10.1002/macp.202500047.

[7]

R.H. Risad, M.H. Ahmed, A. Basher, S. Rashid, M.M.A. Shishir, K.R. Hossain, FDM printing process and its biomedical application, Chem. Res. Technol. 1 (3) (2024) 138-149, https://doi.org/10.22034/chemrestec.2024.467346.1021.

[8]

H. Peng, X. Wang, L. Hu, Y. Zhang, I. Baker, Selective electron beam additive manufacturing of a nanoparticle-strengthened medium-entropy alloy for cryogenic applications, Mater. Sci. Eng., A 911 (2024) 146917, https://doi.org/10.1016/j.msea.2024.146917.

[9]

I. Hossain, M. Sakib Khan, I.K. Khan, K.R. Hossain, Y. He, X. Wang, Technology of additive manufacturing: a comprehensive review, Kufa J. Eng. 15 (1) (2024), https://doi.org/10.30572/2018/KJE/150108.

[10]

M.A. Shyeed, M.K. Hasan, M.K. Khatun, K.R. Hossain, D. Hu, X. Wang, Additive manufacturing of hydrogels in tissue engineering, J. Chem. Lett. 5 (1) (2024) 17-43, https://doi.org/10.22034/jchemlett.2024.424393.1144.

[11]

K. Sheikh, K.R. Hossain, M.A. Hossain, M.S.I. Sagar, M.R.H. Raju, F. Haque, 3D printed ionic liquids based hydrogels and applications, J. Ionic Liquids (2024) 100093, https://doi.org/10.1016/j.jil.2024.100093.

[12]

Rahman M., Prodhan S. A. H., Islam R., Mahmud A., & Hossain K. R. Review of the 3D Bioprinting Methods and Materials Applicable in 4D Bioprinting. https://doi.org/10.46793/tribomat.2024.009.

[13]

A.N. Aufa, M.Z. Hassan, Z. Ismail, F. Ramlie, K.R. Jamaludin, M.Y.M. Daud, J. Ren, Current trends in additive manufacturing of selective laser melting for biomedical implant applications, J. Mater. Res. Technol. (2024), https://doi.org/10.1016/j.jmrt.2024.06.041.

[14]

H. Zhu, J. Jiang, Y. Wang, S. Wang, Y. He, F. He, Additive manufacturing of dental ceramics in prosthodontics: the status quo and the future, J. Prosthodontic Res. 68 (3) (2024) 380-399, https://doi.org/10.2186/jpr.JPR_D_23_00119.

[15]

R.B. Osman, A.J. van der Veen, D. Huiberts, D. Wismeijer, N. Alharbi, 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs, J. Mech. Behav. Biomed. Mater. 75 (2017) 521-528, https://doi.org/10.1016/j.jmbbm.2017.08.018.

[16]

S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques, Tissue Eng. 8 (1) (2002) 1-11, https://doi.org/10.1089/107632702753503009.

[17]

C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu, S. Peng, Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering, Biofabrication 5 (1) (2013) 015014, https://doi.org/10.1088/1758-5082/5/1/015014.

[18]

J. Kundu, J.H. Shim, J. Jang, S.W. Kim, D.W. Cho, An additive manufacturingbased PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering, J. Tissue Eng. Regen. Med. 9 (11) (2015) 1286-1297, https://doi.org/10.1002/term.1682.

[19]

D. Hu, D. Liu, Y. Hu, Y. Wang, Y. Lu, C. Bai, X. Wang, Dual-physical network PVA hydrogel commensurate with articular cartilage bearing lubrication enabled by harnessing nanoscale crystalline domains, Nano Res. 17 (11) (2024) 9784-9795, https://doi.org/10.1007/s12274-024-6968-8.

[20]

Z. Ji, P. Jiang, R. Guo, K.R. Hossain, X. Wang, 4D-printed light-responsive structures, in: Smart Materials in Additive Manufacturing, Elsevier, 2022, pp. 55-105, https://doi.org/10.1016/B978-0-12-824082-3.00017-9.

[21]

F.L. Morgan, L. Moroni, M.B. Baker, Dynamic bioinks to advance bioprinting, Adv. Healthcare Mater. 9 (15) (2020) 1901798, https://doi.org/10.1002/adhm.201901798.

[22]

H.W. Kang, S.J. Lee, I.K. Ko, C. Kengla, J.J. Yoo, A. Atala, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Nat. Biotechnol. 34 (3) (2016) 312-319, https://doi.org/10.1038/nbt.3413.

[23]

D.J. Odde, M.J. Renn, Laser-guided direct writing for applications in biotechnology, Trends Biotechnol. 17 (10) (1999) 385-389, https://doi.org/10.1016/S0167-7799(99)01355-4.

[24]

F. Guillemot, A. Souquet, S. Catros, B. Guillotin, J. Lopez, M. Faucon, J. Amédée, High-throughput laser printing of cells and biomaterials for tissue engineering, Acta Biomater. 6 (7) (2010) 2494-2500, https://doi.org/10.1016/j.actbio.2009.09.029.

[25]

S.V. Murphy, A. Skardal, A. Atala, Evaluation of hydrogels for bio-printing applications, J. Biomed. Mater. Res. 101 (1) (2013) 272-284, https://doi.org/10.1002/jbm.a.34326.

[26]

N.A. Sears, D.R. Seshadri, P.S. Dhavalikar, E. Cosgriff-Hernandez, A review of three-dimensional printing in tissue engineering, Tissue Eng. B Rev. 22 (4) (2016) 298-310, https://doi.org/10.1089/ten.teb.2015.0464.

[27]

A. Islam, J. Hasan, K.R. Hossain, Intelligent materials in 3D printing: a journey from additive manufacturing to 4D printing, J. Adv. Manufact. Sci. Tech. 4 (4) (2024), https://doi.org/10.51393/j.jamst.2024016.

[28]

L.E. Murr, A metallographic review of 3D printing/additive manufacturing of metal and alloy products and components, Metallogr. Microstruct. Anal. 7 (2018) 103-132, https://doi.org/10.1007/s13632-018-0433-6.

[29]

T. Li, H. Ma, S. Xu, R. Liu, Y. Pan, G. Ren, Z. Zhao, Parametric modeling and simulation analysis of porous materials prepared by 3D printing technology, Int. J. Simul. Multidiscip. Des. Optim. 16 (2025) 3, https://doi.org/10.1051/smdo/2025002.

[30]

S. Pan, S. Ding, X. Zhou, N. Zheng, M. Zheng, J. Wang, G. Yang, 3D-printed dosage forms for oral administration: a review, Drug Deliver Trans. Res. 14 (2) (2024) 312-328, https://doi.org/10.1007/s13346-023-01414-8.

[31]

B. Cai, D. Kilian, D. Ramos Mejia, R.J. Rios, A. Ali, S.C. Heilshorn, Diffusion-based 3D bioprinting strategies, Adv. Sci. 11 (8) (2024) 2306470, https://doi.org/10.1002/advs.202306470.

[32]

K.R. Hossain, P. Jiang, X. Yao, J. Wu, D. Hu, X. Yang, X. Wang, Additive manufacturing of polymer-based lubrication, Macromol. Mater. Eng. 308 (11) (2023) 2300147, https://doi.org/10.1002/mame.202300147.

[33]

M. Meglioli, A. Naveau, G.M. Macaluso, S. Catros, 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review, 3D Print. Med. 6 (2020) 1-19, https://doi.org/10.1186/s41205-020-00082-5.

[34]

U. Punia, A. Kaushik, R.K. Garg, D. Chhabra, A. Sharma, 3D printable biomaterials for dental restoration: a systematic review, Mater. Today Proc. 63 (2022) 566-572, https://doi.org/10.1016/j.matpr.2022.04.018.

[35]

N. Li, Y. Zheng, Novel magnesium alloys developed for biomedical application: a review, J. Mater. Sci. Technol. 29 (6) (2013) 489-502, https://doi.org/10.1016/j.jmst.2013.02.005.

[36]

W. Gao, X. Wang, Y. Lin, X. Wang, D. Liu, X. Sun, Achieving ultra-high strength and ductility in a rare-earth-free magnesium alloy via precisely controlled secondary hot extrusion process with an extremely low extrusion speed, J. Magnesium Alloys 12 (12) (2024) 5216-5230, https://doi.org/10.1016/j.jma.2024.07.015.

[37]

Y. Ye, H. Shao, Z. Jing, Z. Nian, Y. Gong, Magnesium-containing silicate bioceramic degradable intramedullary nail for bone fractures, Crystals 12 (7) (2022) 974, https://doi.org/10.3390/cryst12070974.

[38]

W. Zhang, Q. Wang, F. Zhai, X. Fan, F. Meng, G. Shen, F. Yu, Core-shell magnetic nanocarriers: Fe3O4-Hydroxyapatite/Polysuccinimide hybrids for enhanced oral bioavailability of fluorouracil, Int. J. Nanomed. (2025) 3671-3695, https://doi.org/10.2147/IJN.S507458.

[39]

S. Zhu, H. Sun, T. Mu, A. Richel, Research progress in 3D printed biobased and biodegradable polyester/Ceramic composite materials: applications and challenges in bone tissue engineering, ACS Appl. Mater. Interfaces (2025), https://doi.org/10.1021/acsami.4c15719.

[40]

T. Barbin, D.V. Veloso, L.D.R. Silva, G.A. Borges, A.G.C. Presotto, V.A.R. Barão, M. F. Mesquita, 3D metal printing in dentistry: an in vitro biomechanical comparative study of two additive manufacturing technologies for full-arch implant-supported prostheses, J. Mech. Behav. Biomed. Mater. 108 (2020) 103821, https://doi.org/10.1016/j.jmbbm.2020.103821.

[41]

M. Furko, Bioglasses versus bioactive calcium phosphate derivatives as advanced ceramics in tissue engineering: comparative and comprehensive study. Current Trends and Innovative Solutions, 2025, https://doi.org/10.20944/preprints202504.0433.v1.

[42]

Ghosal K.s. Thomas N. Kalarikkal a. Gnanamani, Collagen coated electrospun polycaprolactone (PCl) with titanium dioxide (Tio2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute, J. Polym. Res. 21 (5) (2014) 410, https://doi.org/10.1007/s10965-014-0410-y.

[43]

A. Yeo, B. Rai, E. Sju, J.J. Cheong, S.H. Teoh, The degradation profile of novel, bioresorbable PCL-TCP scaffolds: an in vitro and in vivo study, J. Biomed. Mater. Res. Part A: Off. J. Soc. Biomater. Japan. Soc. Biomater. Austral. Soc. Biomater. Korean Soc. Biomater. 84 (1) (2008) 208-218, https://doi.org/10.1002/jbm.a.31454.

[44]

C.H. Tsai, C.H. Hung, C.N. Kuo, C.Y. Chen, Y.N. Peng, M.Y. Shie, Improved bioactivity of 3D printed porous titanium alloy scaffold with chitosan/magnesium- calcium silicate composite for orthopaedic applications, Materials 12 (2) (2019) 203, https://doi.org/10.3390/ma12020203.

[45]

M. Ly, S. Spinelli, S. Hays, D. Zhu, 3D printing of ceramic biomaterials, Eng. Regen. 3 (1) (2022) 41-52, https://doi.org/10.1016/j.engreg.2022.01.006.

[46]

M. Maintz, C. Tourbier, M. de Wild, P.C. Cattin, M. Beyer, D. Seiler, F. M. Thieringer, Patient-specific implants made of 3D printed bioresorbable polymers at the point-of-care: material, technology, and scope of surgical application, 3D Printing Med. 10 (1) (2024) 13, https://doi.org/10.1186/s41205-024-00207-0.

[47]

M. Paul, S.D. Pramanik, R.N. Sahoo, Y.N. Dey, A.K. Nayak, Dental delivery systems of antimicrobial drugs using chitosan, alginate, dextran, cellulose and other polysaccharides: a review, Int. J. Biol. Macromol. 247 (2023) 125808, https://doi.org/10.1016/j.ijbiomac.2023.125808.

[48]

T. Inubushi, P. Nag, J.I. Sasaki, Y. Shiraishi, T. Yamashiro, The significant role of glycosaminoglycans in tooth development, Glycobiology 34 (5) (2024) cwae024, https://doi.org/10.1093/glycob/cwae024.

[49]

A.P. Rg, G. Bajaj, A.E. John, S. Chandran, V.V. Kumar, S. Ramakrishna, A review on the recent applications of synthetic biopolymers in 3D printing for biomedical applications, J. Mater. Sci. Mater. Med. 34 (12) (2023) 1-22, https://doi.org/10.1007/s10856-023-06765-9.

[50]

D. Suárez-González, K. Barnhart, F. Migneco, C. Flanagan, S.J. Hollister, W. L. Murphy, Controllable mineral coatings on PCL scaffolds as carriers for growth factor release, Biomaterials 33 (2) (2012) 713-721, https://doi.org/10.1016/j.biomaterials.2011.09.095.

[51]

E. Sandberg, C. Dahlin, A. Linde, Bone regeneration by the osteopromotion technique using bioabsorbable membranes: an experimental study in rats, J. Oral Maxillofac. Surg. 51 (10) (1993) 1106-1114, https://doi.org/10.1016/S0278-2391(10)80450-1.

[52]

K. Liang, S. Carmone, D. Brambilla, J.C. Leroux, 3D printing of a wearable personalized oral delivery device: a first-in-human study, Sci. Adv. 4 (5) (2018) eaat2544, https://doi.org/10.1126/sciadv.aat2544.

[53]

A. Athirasala, F. Lins, A. Tahayeri, M. Hinds, A.J. Smith, C. Sedgley, L. E. Bertassoni, A novel strategy to engineer pre-vascularized full-length dental pulplike tissue constructs, Sci. Rep. 7 (1) (2017) 3323, https://doi.org/10.1038/s41598-017-02532-3.

[54]

L. Li, S. Yang, L. Xu, Y. Li, Y. Fu, H. Zhang, J. Song, Nanotopography on titanium promotes osteogenesis via autophagy-mediated signaling between YAP and β-catenin, Acta Biomater. 96 (2019) 674-685, https://doi.org/10.1016/j.actbio.2019.07.007.

[55]

D. Shopova, A. Mihaylova, A. Yaneva, D. Bakova, Advancing dentistry through bioprinting: personalization of oral tissues, J. Funct. Biomater. 14 (10) (2023) 530, https://doi.org/10.3390/jfb14100530.

[56]

R. Tonini, E. Xhajanka, M. Giovarruscio, F. Foschi, G. Boschi, A. Atav-Ates, L. Pacifici, Print and try technique: 3D-Printing of teeth with complex anatomy a novel endodontic approach, Appl. Sci. 11 (4) (2021) 1511, https://doi.org/10.3390/app11041511.

[57]

S.B. Khan, N. Li, J. Liang, C. Xiao, X. Sun, S. Chen, The effect of absorbed solvent on the flexural characteristics of 3D-printed photosensitive polymers, Mech. TimeDepend. Mater. 27 (3) (2023) 687-704, https://doi.org/10.1007/s11043-022-09586-5.

[58]

M.J. Rana, K.R. Hossain, X. Yao, M.A. Shyeed, U. Hani, Study on 4D printing shape memory polymers in the field of biomedical progress, Int. J. Modern Trends Sci. Technol. 8 (12) (2022) 128-136, https://doi.org/10.46501/IJMTST0812020.

[59]

D.D. Hernandez, Factors affecting dimensional precision of consumer 3D printing, Int. J. Aviation, Aeronaut. Aeros. 2 (4) (2015) 2, https://doi.org/10.1089/3dp.2020.0175.

[60]

A. Longoni, J. Li, G.C. Lindberg, J. Rnjak-Kovacina, L.M. Wise, G.J. Hooper, K. S. Lim, Strategies for inclusion of growth factors into 3D printed bone grafts, Essays Biochem. 65 (3) (2021) 569-585, https://doi.org/10.1042/EBC20200130.

[61]

V. Khunová, M. Kováčová, P. Olejniková, F. Ondreáš, Z. Špitalský, K. Ghosal, D. Berkeš, Antibacterial electrospun polycaprolactone nanofibers reinforced by halloysite nanotubes for tissue engineering, Polymers 14 (4) (2022) 746, https://doi.org/10.3390/polym14040746.

[62]

M. Bahraminasab, Challenges on optimization of 3D-printed bone scaffolds, Biomed. Eng. Online 19 (1) (2020) 69, https://doi.org/10.1186/s12938-020-00810-2.

[63]

C. Direkwatana, N. Rattanapan, 3D printing process for patient-specific models and applications, Ramathibodi Med. J. 48 (2) (2025), https://doi.org/10.33165/rmj.48.02.e270830.

[64]

J.R. de Souza, M. Rahimnejad, I.P.M. Soares, C. Anselmi, P.H. de Oliveira, A.H. dos Reis-Prado, M.C. Bottino, 3D printing β-TCP-laden GelMA/Alginate interpenetrating-polymer-network biomaterial inks for bone tissue engineering, Bioprinting 49 (2025) e00413, https://doi.org/10.1016/j.bprint.2025.e00413.

[65]

X. Liang, B. Yu, Y. Dai, Y. Wang, M. Hu, H.J. Zhong, J. He, Three-dimensional printing resin-based dental provisional crowns and bridges: recent progress in properties, applications, and perspectives, Materials 18 (10) (2025) 2202, https://doi.org/10.3390/ma18102202.

[66]

P. Balamurugan, N. Selvakumar, Development of patient specific dental implant using 3D printing, J. Ambient Intell. Hum. Comput. 12 (3) (2021) 3549-3558, https://doi.org/10.1007/s12652-020-02758-6.

[67]

L. Zhang, G. Yang, B.N. Johnson, X. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater. 84 (2019) 16-33, https://doi.org/10.1016/j.actbio.2018.11.039.

[68]

S. Harikrishnan, A.K. Subramanian, 3D printing in orthodontics: a narrative review, J. Int. Oral Health 15 (1) (2023) 15-27, https://doi.org/10.4103/jioh.jioh_83_22.

[69]

A. Arslan-Yildiz, R. El Assal, P. Chen, S. Guven, F. Inci, U. Demirci, Towards artificial tissue models: past, present, and future of 3D bioprinting, Biofabrication 8 (1) (2016) 014103, https://doi.org/10.1088/1758-5090/8/1/014103.

AI Summary AI Mindmap
PDF (9155KB)

197

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/