Curative antimalarial efficacy and hepato-renal protective effects of Melochia umbellata leaf extract in rats infected with Plasmodium berghei

Vincent Ngouana , Patrick Valere Tsouh Fokou , Marius Jaures Tsakem Nangap , Raoul Kemzeu , Aubin Kamche Youbi , Fabrice Fekam Boyom

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100092

PDF (8566KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100092 DOI: 10.1016/j.pscia.2025.100092
Research Article
research-article

Curative antimalarial efficacy and hepato-renal protective effects of Melochia umbellata leaf extract in rats infected with Plasmodium berghei

Author information +
History +
PDF (8566KB)

Abstract

Malaria remains a major global health issue, particularly in endemic regions. Traditional medicine offers promising remedies, such as Melochia umbellata, a plant used in Cameroonian folk medicine for malaria treatment. While its in vitro antiplasmodial activity has been reported, the safety and curative efficacy of M. umbellata aqueous leaf extract (MULAE) in vivo required further investigation. This study evaluated the curative antimalarial and hepato-renal protective effects of MULAE in a Plasmodium berghei-infected rat model, alongside its phytochemical characterization. Qualitative and quantitative analyses confirmed the presence of pharmacologically active secondary metabolites, including alkaloids, phenols, flavonoids, and saponins. In acute toxicity tests (OECD guideline 423), female rats received single oral doses of MULAE (2000,5000mg/kg). No mortality or signs of toxicity were observed throughout the 14-day monitoring period, indicating an LD50 greater than 5000mg/kg. For the curative assay, P. berghei-infected rats were treated for five days with MULAE (100, 200, 400mg/kg), chloroquine (10mg/kg), or distilled water. MULAE significantly suppressed parasitemia dosedependently; the 400mg/kg dose achieved 86.20% chemosuppression. The extract also improved hematological markers (restoring hemoglobin levels to 14.9 g/dL at 400mg/kg), mitigated infection-induced weight loss, and reduced organ damage. This organ protection was evidenced by improved blood serum markers (creatinine, ALAT, ASAT, bilirubin, total protein), restored oxidative status, and ameliorated histopathological changes in the liver, kidneys, and spleen. These findings validate the traditional use of M. umbellata and support its potential as a source for novel antimalarial and organ-protective agents.

Keywords

Melochia umbellate / Antimalarial efficacy / Plasmodium berghei / Acute toxicity / Nephro-hepatoprotection

Cite this article

Download citation ▾
Vincent Ngouana, Patrick Valere Tsouh Fokou, Marius Jaures Tsakem Nangap, Raoul Kemzeu, Aubin Kamche Youbi, Fabrice Fekam Boyom. Curative antimalarial efficacy and hepato-renal protective effects of Melochia umbellata leaf extract in rats infected with Plasmodium berghei. Pharmaceutical Science Advances, 2025, 3(1): 100092 DOI:10.1016/j.pscia.2025.100092

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Vincent Ngouana: Writing - original draft, Validation, Supervision, Resources, Project administration, Methodology, Investigation, Conceptualization. Patrick Valere Tsouh Fokou: Writing - review & editing, Writing - original draft, Visualization, Supervision, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Marius Jaures Tsakem Nangap: Writing - original draft, Methodology, Investigation, Formal analysis, Data curation. Raoul Kemzeu: Writing original draft, Methodology, Investigation, Formal analysis, Data curation. Aubin Kamche Youbi: Writing - original draft, Formal analysis. Fabrice Fekam Boyom: Writing - review & editing, Supervision, Project administration.

Ethics approval

All animal experiments were conducted according to the Cameroon National Veterinary Laboratory (Ref No. 003/19/CCS/MINEPIA/RDNW/DDME/SSV) and followed the National Research Council's Guide for the Care and Use of Laboratory Animals [56].

Declaration of generative AI in scientific writing

Not applicable.

Funding

This research received no external funding.

Data availability

Data will be made available upon reasonable request.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the Yaoundé-Bielefeld Graduate School of Natural Products with Antiparasitic and Antibacterial Activities (YaBiNaPA) for their technical support throughout this study.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100092.

References

[1]

W.H.O., WHO, World Malaria Report 2023, World Health Organization, 2023.

[2]

S.Y. Pan, G. Litscher, S.H. Gao, S.F. Zhou, Z.L. Yu, H.Q. Chen, S.F. Zhang, M. K. Tang, J.N. Sun, K.M. Ko, Historical perspective of traditional indigenous medical practices: the current renaissance and conservation of herbal resources, Evid Based Complement Alternat. Med. 2014 (1) (2014) 525340, https://doi.org/10.1155/2014/525340.

[3]

S.J. Draper, B.K. Sack, C.R. King, C.M. Nielsen, J.C. Rayner, M.K. Higgins, C. A. Long, R.A. Seder, Malaria vaccines: recent advances and new Horizons, Cell Host Microbe 24 (1) (2018) 43-56, https://doi.org/10.1016/j.chom.2018.06.008.

[4]

J.J. Moehrle, Development of new strategies for malaria chemoprophylaxis: from monoclonal antibodies to long-acting injectable drugs, Trop. Med. Infect. Dis. 7 (4) (2022) 58, https://doi.org/10.3390/tropicalmed7040058.

[5]

M. Ekor, The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety, Front. Pharmacol. 4 (2014) 177, https://doi.org/10.3389/fphar.2013.00177.

[6]

N.J. White, Antimalarial drug resistance, J. Clin. Investig. 113 (8) (2004) 1084-1092, https://doi.org/10.1172/JCI21682.

[7]

M.H. Yetein, L.G. Houessou, T.O. Lougbegnon, O. Teka, B. Tente, Ethnobotanical study of medicinal plants used for the treatment of malaria in plateau of Allada, Benin (West Africa), J. Ethnopharmacol. 146 (1) (2013) 154-163, https://doi.org/10.1016/j.jep.2012.12.022.

[8]

X.H. Yuan, Y.D. Tian, J.H. Oh, T.T. Bach, J.H. Chung, Z.H. Jin, Melochia corchorifolia extract inhibits melanogenesis in B16F10 mouse melanoma cells via activation of the ERK signaling, J. Cosmet. Dermatol. 19 (9) (2020) 2421-2427, https://doi.org/10.1111/jocd.13282.

[9]

R.C. Jadulco, C.D. Pond, R.M. Van Wagoner, M. Koch, O.G. Gideon, T. K. Matainaho, P. Piskaut, L.R. Barrows, 4-Quinolone alkaloids from Melochia odorata, J. Nat. Prod. 77 (1) (2014) 183-187, https://doi.org/10.1021/np400847t.

[10]

D. Zofou, V. Kuete, V.P. Titanji, Antimalarial and other antiprotozoal products from African medicinal plants, in: V. Kuete (Ed.), Medicinal Plant Research in Africa, 97801240592762013, pp. 661-709.10.1016/B978-0-12-405927-6.00017-5.

[11]

V. Ngouana, P.V. Tsouh Fokou, A. Youbi Kamche, R. Kemzeu, Y.K. Melogmo Dongmo, M.J. Tsakem Nangap, F. Fekam Boyom, Exploring the antimalarial potential of Entandrophragma utile and Melochia umbellata extracts, Chem. Biodivers. 22 (2) (2025) e202401314, https://doi.org/10.1002/cbdv.202401314.

[12]

E. Nortjie, M. Basitere, D. Moyo, P. Nyamukamba, Extraction methods, quantitative and qualitative phytochemical screening of medicinal plants for antimicrobial textiles: a review, Plants (Basel) 11 (15) (2022) 2011, https://doi.org/10.3390/plants11152011.

[13]

J.J.L. Bezerra, A.A.V. Pinheiro, D. Dourado, Antimalarial potential of Moringa oleifera Lam. (Moringaceae): a review of the ethnomedicinal, pharmacological, toxicological, and phytochemical evidence, J. Venom. Anim. Toxins Incl. Trop. Dis. 29 (2023) e20220079, https://doi.org/10.1590/1678-9199-JVATITD-2022-0079.

[14]

W. Sun, M.H. Shahrajabian, Therapeutic potential of phenolic compounds in medicinal plants-natural health products for human health, Molecules 28 (4) (2023), https://doi.org/10.3390/molecules28041845.

[15]

L. Mamede, A. Ledoux, O. Jansen, M. Frederich, Natural phenolic compounds and derivatives as potential antimalarial agents, Planta Med. 86 (9) (2020) 585-618, https://doi.org/10.1055/a-1148-9000.

[16]

M. Kavit, B. Patel, B. Jain, Phytochemical analysis of leaf extract of Phyllanthus fraternus, Res. J. Recent Sci. 2 (ISC-2012) (2013) 12-15. https://www.isca.me/rjrs/archive/v2/iISC-2012/3.ISCA-ISC-2012-03BS-43.php.

[17]

F. Ali, Y. Ranneh, A. Ismail, N.M. Esa, Identification of phenolic compounds in polyphenols-rich extract of Malaysian cocoa powder using the HPLC-UV-ESI-MS/ MS and probing their antioxidant properties, J. Food Sci. Technol. 52 (4) (2015) 2103-2111, https://doi.org/10.1007/s13197-013-1187-4.

[18]

R. Yadav, R. Khare, A. Singhal, Qualitative phytochemical screening of some selected medicinal plants of shivpuri district (mp), Int. J. Life Sci. Sci. Res. 3 (1) (2017) 844-847, https://doi.org/10.21276/ijlssr.2017.3.1.16.

[19]

V. Singleton, Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, Methods Enzymol. 299 (1999) 152-178.

[20]

F. Ali-Rachedi, S. Meraghni, N. Touaibia, S. Mesbah, Analyse quantitative des composés phénoliques d'une endémique algérienne Scabiosa Atropurpurea sub. Maritima L, Bulletin de la société royale des sciences de liège 87 (2018) 13-21, https://doi.org/10.25518/0037-9565.7398.

[21]

E. Schlede, Oral acute toxic class method: OECD test guideline 423, Rapporti istisan 41 (2002) 32-36.

[22]

A.G. Gornall, C.J. Bardawill, M.M. David, Determination of serum proteins by means of the biuret reaction, J. Biol. Chem. 177 (2) (1949) 751-766. https://www.ncbi.nlm.nih.gov/pubmed/18110453.

[23]

H.P. Misra, I. Fridovich, The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase, J. Biol. Chem. 247 (10) (1972) 3170-3175, https://doi.org/10.1016/S0021-9258(19)45228-9.

[24]

M.H. Davies, D.F. Birt, R.C. Schnell, Direct enzymatic assay for reduced and oxidized glutathione, J. Pharmacol. Methods 12 (3) (1984) 191-194, https://doi.org/10.1016/0160-5402(84)90059-7.

[25]

B. Fermor, S.E. Christensen, I. Youn, J.M. Cernanec, C.M. Davies, J.B. Weinberg, Eur. Cell. Oxygen, nitric oxide and articular cartilage, Mater. 13 (11) (2007) 56-65, https://doi.org/10.22203/ecm.v013a06, discussion 65.

[26]

D. Grotto, L.S. Maria, J. Valentini, C. Paniz, G. Schmitt, S.C. Garcia, V.J. Pomblum, J.B.T. Rocha, M. Farina, Importance of the lipid peroxidation biomarkers and methodological aspects for malondialdehyde quantification, Quim. Nova 32 (2009) 169-174, https://doi.org/10.1590/S0100-40422009000100032.

[27]

P. Soto, H. Gaete, M.E. Hidalgo, Assessment of catalase activity, lipid peroxidation, chlorophyll-a, and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc, Latin Am. J. Aquat. Res. 39 (2) (2011) 280-285, https://doi.org/10.3856/vol39-issue2-fulltext-9.

[28]

V. Ngouana, P.V. Tsouh Fokou, A.Y. Kamche, R. Kemzeu, Y.K.M. Dongmo, M.J.T. Nangap, F.F. Boyom, Exploring the antimalarial potential of Entandrophragma utile and Melochia umbellata extracts, Chem. Biodivers. e202401314.

[29]

OECD, Acute oral toxicity - methods by acute toxicity class, OECD Guidel. Test. Chem. (2001) 14. Guideline 423.

[30]

A. Watt, A Pathophysiological, Clinical, and Epidemiological View of Malaria, 2023.

[31]

D.A. Fidock, P.J. Rosenthal, S.L. Croft, R. Brun, S. Nwaka, Antimalarial drug discovery: efficacy models for compound screening, Nat. Rev. Drug Discov. 3 (6) (2004) 509-520, https://doi.org/10.1038/nrd1416.

[32]

A.G. Maier, K. Matuschewski, M. Zhang, M. Rug, Plasmodium falciparum, Trends Parasitol. 35 (6) (2019) 481-482, https://doi.org/10.1016/j.pt.2018.11.010.

[33]

F. Prugnolle, P. Durand, B. Ollomo, L. Duval, F. Ariey, C. Arnathau, J.-P. Gonzalez, E. Leroy, F. Renaud, A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent, PLoS Pathog. 7 (2) (2011) e1001283, https://doi.org/10.1371/journal.ppat.1001283.

[34]

E. Deharo, G. Bourdy, C. Quenevo, V. Munoz, G. Ruiz, M. Sauvain, A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part V. Evaluation of the antimalarial activity of plants used by the Tacana Indians, J. Ethnopharmacol. 77 (1) (2001) 91-98, https://doi.org/10.1016/s0378-8741(01)00270-7.

[35]

H. Abdulelah, B. Zainal-Abidin, in vivo anti-malarial tests of Nigella sativa (black seed) different extracts, Am. J. Pharmacol. Toxicol. 2 (2) (2007) 46-50, https://doi.org/10.3844/ajptsp.2007.46.50.

[36]

G. Obediah, N. Obi, Anti-plasmodial effect of Moringa oleifera seeds in Plasmodium berghei infected albino rats, Biochem. Pharmacol. 9 (1) (2020) 2167-2501, https://doi.org/10.35248/2167-0501.20.9.268.

[37]

S. Frolich, C. Schubert, U. Bienzle, K. Jenett-Siems, In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin, J. Antimicrob. Chemother. 55 (6) (2005) 883-887, https://doi.org/10.1093/jac/dki099.

[38]

P.F. Uzor, C.K. Onyishi, A.P. Omaliko, S.A. Nworgu, O.H. Ugwu, N.J. Nwodo, Study of the antimalarial activity of the leaf extracts and fractions of Persea americana and Dacryodes edulis and their HPLC analysis, Evid Based Complement Alternat. Med. 2021 (1) (2021) 5218294, https://doi.org/10.1155/2021/5218294.

[39]

F. Ntie-Kang, L.L. Lifongo, L.M. Mbaze, N. Ekwelle, L.C. Owono Owono, E. Megnassan, P.N. Judson, W. Sippl, S.M. Efange, Cameroonian medicinal plants: a bioactivity versus ethnobotanical survey and chemotaxonomic classification, BMC Compl. Alternative Med. 13 (2013) 147, https://doi.org/10.1186/1472-6882-13-147.

[40]

A. Paulo, E.T. Gomes, J. Steele, D.C. Warhurst, P.J. Houghton, Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots, Planta Med. 66 (1) (2000) 30-34, https://doi.org/10.1055/s-2000-11106.

[41]

R.N. Teh, I.U.N. Sumbele, D.N. Meduke, S.T. Ojong, H.K. Kimbi, Malaria parasitaemia, anaemia and malnutrition in children less than 15 years residing in different altitudes along the slope of Mount Cameroon: prevalence, intensity and risk factors, Malar. J. 17 (1) (2018) 336, https://doi.org/10.1186/s12936-018-2492-1.

[42]

M.B. Tchatat Tali, C.D. Jiatsa Mbouna, P.V. Tsouh Fokou, J.M. Tsakem Nangap, R. Keumoe, A. Ngoutane Mfopa, I. Bakarnga-Via, R. Gounoue Kamkumo, F. Fekam Boyom, L.R. Yamthe Tchokouaha, in vivo antiplasmodial activity of Terminalia mantaly stem bark aqueous extract in mice infected by Plasmodium berghei, J. Parasitol. Res. 2020 (1) (2020) 4580526, https://doi.org/10.1155/2020/4580526.

[43]

V.H. Haase, Regulation of erythropoiesis by hypoxia-inducible factors, Blood Rev. 27 (1) (2013) 41-53, https://doi.org/10.1016/j.blre.2012.12.003.

[44]

J.H. Walters, G.I. Mc, The mechanism of malarial hepatomegaly and its relationship to hepatic fibrosis, Trans. R. Soc. Trop. Med. Hyg. 54 (2) (1960) 135-145, https://doi.org/10.1016/0035-9203(60)90050-x.

[45]

M. Aikawa, Human cerebral malaria, Am. J. Trop. Med. Hyg. 39 (1) (1988) 3-10, https://doi.org/10.4269/ajtmh.1988.39.3.

[46]

P. Wilairatana, S. Looareesuwan, P. Charoenlarp, Liver profile changes and complications in jaundiced patients with falciparum malaria, Trop. Med. Parasitol. 45 (4) (1994) 298-302. https://www.ncbi.nlm.nih.gov/pubmed/7716391.

[47]

S.K. Mishra, B.S. Das, Malaria and acute kidney injury. Seminars in Nephrology, Elsevier, 2008, pp. 395-408.

[48]

S. Eiam-Ong, V. Sitprija, Falciparum malaria and the kidney: a model of inflammation, Am. J. Kidney Dis. 32 (3) (1998) 361-375, https://doi.org/10.1053/ajkd.1998.v32.pm9740151.

[49]

I. Bates, G. Bedu-Addo, Chronic malaria and splenic lymphoma: clues to understanding lymphoma evolution, Leukemia 11 (12) (1997) 2162-2167, https://doi.org/10.1038/sj.leu.2400878.

[50]

A. Viapiana, F. Maggi, M. Kaszuba, P. Konieczynski, M. Wesolowski, Quality assessment of Coffea arabica commercial samples, Nat. Prod. Res. 34 (21) (2020) 3154-3157, https://doi.org/10.1080/14786419.2019.1610750.

[51]

K. Becker, L. Tilley, J.L. Vennerstrom, D. Roberts, S. Rogerson, H. Ginsburg, Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions, Int. J. Parasitol. 34 (2) (2004) 163-189, https://doi.org/10.1016/j.ijpara.2003.09.011.

[52]

D. Pitocco, M. Tesauro, R. Alessandro, G. Ghirlanda, C. Cardillo, Oxidative stress in diabetes: implications for vascular and other complications, Int. J. Mol. Sci. 14 (11) (2013) 21525-21550, https://doi.org/10.3390/ijms141121525.

[53]

A.O. Saliu, A.M. Akanji, A.O. Idowu, Luffa cylindrica (Linn. MJ Roem) reduces oxidative stress in vivo in Plasmodium berghei-infected Albino mice, Ibnosina J. Med. Biomed. Sci. 14 (4) (2022) 145-151, https://doi.org/10.1055/s-00421758033.

[54]

U. Zlotek, M. Karas, U. Gawlik-Dziki, U. Szymanowska, B. Baraniak, A. Jakubczyk, Antioxidant activity of the aqueous and methanolic extracts of coffee beans (Coffea arabica L.), Acta Sci. Pol. Technol. Aliment. 15 (3) (2016) 281-288, https://doi.org/10.17306/J.AFS.2016.3.27.

[55]

A. Ali, H.F. Zahid, J.J. Cottrell, F.R. Dunshea, A comparative study for nutritional and phytochemical profiling of Coffea arabica (C. arabica) from different origins and their antioxidant potential and molecular docking, Molecules 27 (16) (2022) 5126, https://doi.org/10.3390/molecules27165126.

[56]

NRC, Guide for the Care and Use of Laboratory Animals, eighth ed., The National Academies Press, Washington, DC, 2011 https://doi.org/10.17226/12910.

AI Summary AI Mindmap
PDF (8566KB)

94

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/