Targeted RNA base editing for therapeutic: mechanisms and advances

Weikai Yan , Xiaocheng Weng

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100089

PDF (6383KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100089 DOI: 10.1016/j.pscia.2025.100089
Review Article
research-article

Targeted RNA base editing for therapeutic: mechanisms and advances

Author information +
History +
PDF (6383KB)

Abstract

RNA base editing, which enables RNA base modification through effector proteins guided by targeting systems, is a powerful technology to correct disease-associated point mutations. Although overshadowed by CRISPR-based genome editing, RNA editing has seen rapid development in recent years, with significant improvements in efficiency and precision. In this review, we summarize the core components of RNA base editing systems (RNAtargeting systems and effector proteins) and describe major RNA editing types, including A-to-I, C-to-U, A-tom6 A/m6 A-to-A, and U-to-$\mathrm{\Psi }$ base editors, along with their research progress. In addition, we systematically summarize the delivery methods of the developed RNA editors and their initial exploration in treating diseases caused by nonsense mutations. Finally, combining the current development status of the RNA editing related field, we reflect on the problems encountered in the current development of the RNA editing field and offer our own insights on the future development direction.

Keywords

RNA editing / Point mutation / CRISPR-Cas / RNA modification

Cite this article

Download citation ▾
Weikai Yan, Xiaocheng Weng. Targeted RNA base editing for therapeutic: mechanisms and advances. Pharmaceutical Science Advances, 2025, 3(1): 100089 DOI:10.1016/j.pscia.2025.100089

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Weikai Yan: Writing – original draft, Resources. Xiaocheng Weng: Writing – review & editing, Supervision.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

No generative AI tools have been used throughout the entire writing process of this manuscript.

Funding information

This work was supported financially by the Noncommunicable Chronic Diseases-National Science and Technology Major Project (2023ZD0507700,2023ZD0507701), the National Natural Science Foundation of China [92253202 and 22177087 to X. W.].

Data availability

Not applicable.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work utilized BioGDP.com for the generation of scientific figures, and the authors acknowledge its contribution to the visual presentation of this review.

References

[1]

J. Tao, D.E. Bauer, R. Chiarle, Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing, Nat. Commun. 14 (2023) 212, https://doi.org/10.1038/s41467-023-35886-6.

[2]

H.A. Rees, D.R. Liu, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet. 19 (2018) 770-788, https://doi.org/10.1038/s41576-018-0059-1.

[3]

M.W. Gray, Evolutionary origin of RNA editing, Biochemistry 51 (2012) 5235-5242, https://doi.org/10.1021/bi300419r.

[4]

P. Zhang, Y. Zhu, Q. Guo, J. Li, X. Zhan, H. Yu, N. Xie, H. Tan, N. Lundholm, L. Garcia-Cuetos, M.D. Martin, M.A. Subirats, Y.-H. Su, I. Ruiz-Trillo, M. Q. Martindale, J.-K. Yu, M.T.P. Gilbert, G. Zhang, Q. Li, On the origin and evolution of RNA editing in metazoans, Cell Rep. 42 (2023) 112112, https://doi.org/10.1016/j.celrep.2023.112112.

[5]

L.S. Pfeiffer, T. Stafforst, Precision RNA base editing with engineered and endogenous effectors, Nat. Biotechnol. 41 (2023) 1526-1542, https://doi.org/10.1038/s41587-023-01927-0.

[6]

S. Brezgin, A. Kostyusheva, D. Kostyushev, V. Chulanov, Dead cas systems: types, principles, and applications, Int. J. Mol. Sci. 20 (2019) 6041, https://doi.org/10.3390/ijms20236041.

[7]

M.P. Terns, CRISPR-based technologies: impact of RNA-targeting systems, Mol. Cell 72 (2018) 404-412, https://doi.org/10.1016/j.molcel.2018.09.018.

[8]

O.O. Abudayyeh, J.S. Gootenberg, S. Konermann, J. Joung, I.M. Slaymaker, D.B. T. Cox, S. Shmakov, K.S. Makarova, E. Semenova, L. Minakhin, K. Severinov, A. Regev, E.S. Lander, E.V. Koonin, F. Zhang, C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector, Science 353 (2016) aaf5573, https://doi.org/10.1126/science.aaf5573.

[9]

A. East-Seletsky, M.R. O'Connell, S.C. Knight, D. Burstein, J.H.D. Cate, R. Tjian, J. A. Doudna, Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection, Nature 538 (2016) 270-273, https://doi.org/10.1038/nature19802.

[10]

K.S. Makarova, Y.I. Wolf, J. Iranzo, S.A. Shmakov, O.S. Alkhnbashi, S.J.J. Brouns, E. Charpentier, D. Cheng, D.H. Haft, P. Horvath, S. Moineau, F.J.M. Mojica, D. Scott, S.A. Shah, V. Siksnys, M.P. Terns, C. Venclovas, M.F. White, A. F. Yakunin, W. Yan, F. Zhang, R.A. Garrett, R. Backofen, J. van der Oost, R. Barrangou, E.V. Koonin, Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants, Nat. Rev. Microbiol. 18 (2020) 67-83, https://doi.org/10.1038/s41579-019-0299-x.

[11]

O.O. Abudayyeh, J.S. Gootenberg, P. Essletzbichler, S. Han, J. Joung, J.J. Belanto, V. Verdine, D.B.T. Cox, M.J. Kellner, A. Regev, E.S. Lander, D.F. Voytas, A. Y. Ting, F. Zhang, RNA targeting with CRISPR-Cas13, Nature 550 (2017) 280-284, https://doi.org/10.1038/nature24049.

[12]

S. Konermann, P. Lotfy, N.J. Brideau, J. Oki, M.N. Shokhirev, P.D. Hsu, Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors, Cell 173 (2018) 665-676.e14, https://doi.org/10.1016/j.cell.2018.02.033.

[13]

R. Nakagawa, S. Kannan, H. Altae-Tran, S.N. Takeda, A. Tomita, H. Hirano, T. Kusakizako, T. Nishizawa, K. Yamashita, F. Zhang, H. Nishimasu, O. Nureki, Structure and engineering of the minimal type VI CRISPR-Cas13bt3, Mol. Cell 82 (2022) 3178-3192.e5, https://doi.org/10.1016/j.molcel.2022.08.001.

[14]

G. Li, Y. Cheng, J. Yu, Y. Zhu, H. Ma, Y. Zhou, Z. Pu, G. Zhu, Y. Yuan, Z. Zhang, X. Zhou, K. Tian, J. Qiao, X. Hu, X. Chen, Q. Ji, X. Huang, B. Ma, Y. Yao, Compact RNA editors with natural miniature Cas13j nucleases, Nat. Chem. Biol. (2024) 1-11, https://doi.org/10.1038/s41589-024-01729-8.

[15]

T. Stafforst, M.F. Schneider, An RNA-deaminase conjugate selectively repairs point mutations, Angew Chem. Int. Ed. Engl. 51 (2012) 11166-11169, https://doi.org/10.1002/anie.201206489.

[16]

M.F. Montiel-González, I.C. Vallecillo-Viejo, J.J.C. Rosenthal, An efficient system for selectively altering genetic information within mRNAs, Nucleic Acids Res. 44 (2016) e157, https://doi.org/10.1093/nar/gkw738.

[17]

D. Katrekar, G. Chen, D. Meluzzi, A. Ganesh, A. Worlikar, Y.-R. Shih, S. Varghese, P. Mali, in vivo RNA editing of point mutations via RNA-guided adenosine deaminases, Nat. Methods 16 (2019) 239-242, https://doi.org/10.1038/s41592-019-0323-0.

[18]

A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel, K. Johnsson, A general method for the covalent labeling of fusion proteins with small molecules in vivo, Nat. Biotechnol. 21 (2003) 86-89, https://doi.org/10.1038/nbt765.

[19]

T. Merkle, S. Merz, P. Reautschnig, A. Blaha, Q. Li, P. Vogel, J. Wettengel, J.B. Li, T. Stafforst, Precise RNA editing by recruiting endogenous ADARs with antisense oligonucleotides, Nat. Biotechnol. 37 (2019) 133-138, https://doi.org/10.1038/s41587-019-0013-6.

[20]

W. Han, W. Huang, T. Wei, Y. Ye, M. Mao, Z. Wang, Programmable RNA base editing with a single gRNA-free enzyme, Nucleic Acids Res. 50 (2022) 9580-9595, https://doi.org/10.1093/nar/gkac713.

[21]

J. Song, L. Dong, H. Sun, N. Luo, Q. Huang, K. Li, X. Shen, Z. Jiang, Z. Lv, L. Peng, M. Zhang, K. Wang, K. Liu, J. Hong, C. Yi, CRISPR-free, programmable RNA pseudouridylation to suppress premature termination codons, Mol. Cell 83 (2023) 139-155.e9, https://doi.org/10.1016/j.molcel.2022.11.011.

[22]

X.-M. Liu, J. Zhou, Y. Mao, Q. Ji, S.-B. Qian, Programmable RNA N6methyladenosine editing by CRISPR-Cas9 conjugates, Nat. Chem. Biol. 15 (2019) 865-871, https://doi.org/10.1038/s41589-019-0327-1.

[23]

C. Wilson, P.J. Chen, Z. Miao, D.R. Liu, Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase, Nat. Biotechnol. 38 (2020) 1431-1440, https://doi.org/10.1038/s41587-020-0572-6.

[24]

V. Mekler, L. Minakhin, E. Semenova, K. Kuznedelov, K. Severinov, Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3'-terminal segment of guide RNA, Nucleic Acids Res. 44 (2016) 2837-2845, https://doi.org/10.1093/nar/gkw138.

[25]

C.-G. Cheong, T.M.T. Hall, Proc. Natl. Acad. Sci. Engineering RNA sequence specificity of Pumilio repeats, USA 103 (2006) 13635-13639, https://doi.org/10.1073/pnas.0606294103.

[26]

S. Dong, Y. Wang, C. Cassidy-Amstutz, G. Lu, R. Bigler, M.R. Jezyk, C. Li, T.M. T. Hall, Z. Wang, Specific and modular binding code for cytosine recognition in Pumilio/FBF (PUF) RNA-binding domains, J. Biol. Chem. 286 (2011) 26732-26742, https://doi.org/10.1074/jbc.M111.244889.

[27]

A. Filipovska, M.F.M. Razif, K.K.A. Nygård, O. Rackham, A universal code for RNA recognition by PUF proteins, Nat. Chem. Biol. 7 (2011) 425-427, https://doi.org/10.1038/nchembio.577.

[28]

J. Song, Y. Zhuang, C. Yi, Programmable RNA base editing via targeted modifications, Nat. Chem. Biol. 20 (2024) 277-290, https://doi.org/10.1038/s41589-023-01531-y.

[29]

B.L. Bass, H. Weintraub, An unwinding activity that covalently modifies its double-stranded RNA substrate, Cell 55 (1988) 1089-1098, https://doi.org/10.1016/0092-8674(88)90253-x.

[30]

U. Kim, Y. Wang, T. Sanford, Y. Zeng, K. Nishikura, Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing, Proc. Natl. Acad. Sci. USA 91 (1994) 11457-11461, https://doi.org/10.1073/pnas.91.24.11457.

[31]

C.X. George, C.E. Samuel, Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible, Proc. Natl. Acad. Sci. USA 96 (1999) 4621-4626, https://doi.org/10.1073/pnas.96.8.4621.

[32]

M.M. Matthews, J.M. Thomas, Y. Zheng, K. Tran, K.J. Phelps, A.I. Scott, J. Havel, A.J. Fisher, P.A. Beal, Structures of human ADAR2 bound to dsRNA reveal baseflipping mechanism and basis for site selectivity, Nat. Struct. Mol. Biol. 23 (2016) 426-433, https://doi.org/10.1038/nsmb.3203.

[33]

M.F. Jantsch, M. Ohman, RNA editing by Adenosine Deaminases that Act on RNA (ADARs), in: H.U. Göringer (Ed.), RNA Ed., Springer, Berlin, Heidelberg, 2008, pp. 51-84, https://doi.org/10.1007/978-3-540-73787-2_3.

[34]

T. Stafforst, M.F. Schneider, An RNA-deaminase conjugate selectively repairs point mutations, Angew. Chem. Int. Ed. 51 (2012) 11166-11169, https://doi.org/10.1002/anie.201206489.

[35]

P. Vogel, M.F. Schneider, J. Wettengel, T. Stafforst, Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA, Angew Chem. Int. Ed. Engl. 53 (2014) 6267-6271, https://doi.org/10.1002/anie.201402634.

[36]

A. Hanswillemenke, T. Kuzdere, P. Vogel, G. Jékely, T. Stafforst, Site-directed RNA editing in vivo can be triggered by the light-driven assembly of an artificial riboprotein, J. Am. Chem. Soc. 137 (2015) 15875-15881, https://doi.org/10.1021/jacs.5b10216.

[37]

P. Vogel, M. Moschref, Q. Li, T. Merkle, K.D. Selvasaravanan, J.B. Li, T. Stafforst, Efficient and precise editing of endogenous transcripts with SNAP-tagged ADARs, Nat. Methods 15 (2018) 535-538, https://doi.org/10.1038/s41592-018-0017-z.

[38]

M.F. Schneider, J. Wettengel, P.C. Hoffmann, T. Stafforst, Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans, Nucleic Acids Res. 42 (2014) e87, https://doi.org/10.1093/nar/gku272.

[39]

K.D. Kiran Kumar, S. Singh, S.M. Schmelzle, P. Vogel, C. Fruhner, A. Hanswillemenke, A. Brun, J. Wettengel, Y. Füll, L. Funk, V. Mast, J.J. Botsch, P. Reautschnig, J.B. Li, T. Stafforst, An improved SNAP-ADAR tool enables efficient RNA base editing to interfere with post-translational protein modification, Nat. Commun. 15 (2024) 6615, https://doi.org/10.1038/s41467-024-50395-w.

[40]

M.F. Montiel-Gonzalez, I. Vallecillo-Viejo, G.A. Yudowski, J.J.C. Rosenthal, Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing, Proc. Natl. Acad. Sci. USA 110 (2013) 18285-18290, https://doi.org/10.1073/pnas.1306243110.

[41]

D.B.T. Cox, J.S. Gootenberg, O.O. Abudayyeh, B. Franklin, M.J. Kellner, J. Joung, F. Zhang, RNA editing with CRISPR-Cas13, Science 358 (2017) 1019-1027, https://doi.org/10.1126/science.aaq0180.

[42]

S. Kannan, H. Altae-Tran, X. Jin, V.J. Madigan, R. Oshiro, K.S. Makarova, E. V. Koonin, F. Zhang, Compact RNA editors with small Cas13 proteins, Nat. Biotechnol. 40 (2022) 194-197, https://doi.org/10.1038/s41587-021-01030-2.

[43]

C. Xu, Y. Zhou, Q. Xiao, B. He, G. Geng, Z. Wang, B. Cao, X. Dong, W. Bai, Y. Wang, X. Wang, D. Zhou, T. Yuan, X. Huo, J. Lai, H. Yang, Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes, Nat. Methods 18 (2021) 499-506, https://doi.org/10.1038/s41592-021-01124-4.

[44]

X. Wang, R. Zhang, D. Yang, G. Li, Z. Fan, H. Du, Z. Wang, Y. Liu, J. Lin, X. Wu, L. Shi, H. Yang, Y. Zhou, Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e, Adv. Sci. Weinh. Baden-Wurtt. Ger. 10 (2023) e2206813, https://doi.org/10.1002/advs.202206813.

[45]

S. Rauch, E. He, M. Srienc, H. Zhou, Z. Zhang, B.C. Dickinson, Programmable RNA-guided RNA effector proteins built from human parts, Cell 178 (2019) 122-134.e12, https://doi.org/10.1016/j.cell.2019.05.049.

[46]

P.J. Teoh, O. An, T.-H. Chung, J.Y. Chooi, S.H.M. Toh, S. Fan, W. Wang, B.T. H. Koh, M.J. Fullwood, M.G. Ooi, S. de Mel, C.Y. Soekojo, L. Chen, S.B. Ng, H. Yang, W.J. Chng, Aberrant hyperediting of the myeloma transcriptome by ADAR1 confers oncogenicity and is a marker of poor prognosis, blood 132 (2018) 1304-1317, https://doi.org/10.1182/blood-2018-02-832576.

[47]

J. Wettengel, P. Reautschnig, S. Geisler, P.J. Kahle, T. Stafforst, Harnessing human ADAR2 for RNA repair - recoding a PINK1 mutation rescues mitophagy, Nucleic Acids Res. 45 (2017) 2797-2808, https://doi.org/10.1093/nar/gkw911.

[48]

M. Fukuda, H. Umeno, K. Nose, A. Nishitarumizu, R. Noguchi, H. Nakagawa, Construction of a guide-RNA for site-directed RNA mutagenesis utilising intracellular A-to-I RNA editing, Sci. Rep. 7 (2017) 41478, https://doi.org/10.1038/srep41478.

[49]

L. Qu, Z. Yi, S. Zhu, C. Wang, Z. Cao, Z. Zhou, P. Yuan, Y. Yu, F. Tian, Z. Liu, Y. Bao, Y. Zhao, W. Wei, Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs, Nat. Biotechnol. 37 (2019) 1059-1069, https://doi.org/10.1038/s41587-019-0178-z.

[50]

S. Memczak, M. Jens, A. Elefsinioti, F. Torti, J. Krueger, A. Rybak, L. Maier, S. D. Mackowiak, L.H. Gregersen, M. Munschauer, A. Loewer, U. Ziebold, M. Landthaler, C. Kocks, F. le Noble, N. Rajewsky, Circular RNAs are a large class of animal RNAs with regulatory potency, Nature 495 (2013) 333-338, https://doi.org/10.1038/nature11928.

[51]

Y. Enuka, M. Lauriola, M.E. Feldman, A. Sas-Chen, I. Ulitsky, Y. Yarden, Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor, Nucleic Acids Res. 44 (2016) 1370-1383, https://doi.org/10.1093/nar/gkv1367.

[52]

Z. Yi, L. Qu, H. Tang, Z. Liu, Y. Liu, F. Tian, C. Wang, X. Zhang, Z. Feng, Y. Yu, P. Yuan, Z. Yi, Y. Zhao, W. Wei, Engineered circular ADAR-recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo, Nat. Biotechnol. 40 (2022) 946-955, https://doi.org/10.1038/s41587-021-01180-3.

[53]

P. Reautschnig, N. Wahn, J. Wettengel, A.E. Schulz, N. Latifi, P. Vogel, T.W. Kang, L.S. Pfeiffer, C. Zarges, U. Naumann, L. Zender, J.B. Li, T. Stafforst, CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo, Nat. Biotechnol. 40 (2022) 759-768, https://doi.org/10.1038/s41587-021-01105-0.

[54]

P. Reautschnig, C. Fruhner, N. Wahn, C.P. Wiegand, S. Kragness, J.F. Yung, D. T. Hofacker, J. Fisk, M. Eidelman, N. Waffenschmidt, M. Feige, L.S. Pfeiffer, A. E. Schulz, Y. Füll, E.Y. Levanon, G. Mandel, T. Stafforst, Precise in vivo RNA base editing with a wobble-enhanced circular CLUSTER guide RNA, Nat. Biotechnol. (2024) 1-13, https://doi.org/10.1038/s41587-024-02313-0.

[55]

T. Tohama, M. Sakari, T. Tsukahara, Development of a single construct system for site-directed RNA editing using MS2-ADAR, Int. J. Mol. Sci. 21 (2020) 4943, https://doi.org/10.3390/ijms21144943.

[56]

D. Katrekar, J. Yen, Y. Xiang, A. Saha, D. Meluzzi, Y. Savva, P. Mali, Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs, Nat. Biotechnol. 40 (2022) 938-945, https://doi.org/10.1038/s41587-021-01171-4.

[57]

P. Monian, C. Shivalila, G. Lu, M. Shimizu, D. Boulay, K. Bussow, M. Byrne, A. Bezigian, A. Chatterjee, D. Chew, J. Desai, F. Favaloro, J. Godfrey, A. Hoss, N. Iwamoto, T. Kawamoto, J. Kumarasamy, A. Lamattina, A. Lindsey, F. Liu, R. Looby, S. Marappan, J. Metterville, R. Murphy, J. Rossi, T. Pu, B. Bhattarai, S. Standley, S. Tripathi, H. Yang, Y. Yin, H. Yu, C. Zhou, L.H. Apponi, P. Kandasamy, C. Vargeese, Endogenous ADAR-mediated RNA editing in nonhuman primates using stereopure chemically modified oligonucleotides, Nat. Biotechnol. 40 (2022) 1093-1102, https://doi.org/10.1038/s41587-022-012251.

[58]

O.O. Abudayyeh, J.S. Gootenberg, B. Franklin, J. Koob, M.J. Kellner, A. Ladha, J. Joung, P. Kirchgatterer, D.B.T. Cox, F. Zhang, A cytosine deaminase for programmable single-base RNA editing, Science 365 (2019) 382-386, https://doi.org/10.1126/science.aax7063.

[59]

N. Latifi, A.M. Mack, I. Tellioglu, S. Di Giorgio, T. Stafforst, Precise and efficient C-to-U RNA base editing with SNAP-CDAR-S, Nucleic Acids Res. 51 (2023) e84, https://doi.org/10.1093/nar/gkad598.

[60]

P.P. Lau, W.J. Xiong, H.J. Zhu, S.H. Chen, L. Chan, Apolipoprotein B mRNA editing is an intranuclear event that occurs posttranscriptionally coincident with splicing and polyadenylation, J. Biol. Chem. 266 (1991) 20550-20554.

[61]

R. Pecori, S. Di Giorgio, J. Paulo Lorenzo, F. Nina Papavasiliou, Functions and consequences of AID/APOBEC-mediated DNA and RNA deamination, Nat. Rev. Genet. 23 (2022) 505-518, https://doi.org/10.1038/s41576-022-00459-8.

[62]

S. Sharma, S.K. Patnaik, R.T. Taggart, E.D. Kannisto, S.M. Enriquez, P. Gollnick, B.E. Baysal, APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages, Nat. Commun. 6 (2015) 6881, https://doi.org/10.1038/ncomms7881.

[63]

N. Fossat, K. Tourle, T. Radziewic, K. Barratt, D. Liebhold, J.B. Studdert, M. Power, V. Jones, D.A.F. Loebel, P.P.L. Tam, C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47, EMBO Rep. 15 (2014) 903-910, https://doi.org/10.15252/embr.201438450.

[64]

E.M. Snyder, C. McCarty, A. Mehalow, K.L. Svenson, S.A. Murray, R. Korstanje, R. E. Braun, APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo, RNA N. Y. N 23 (2017) 457-465, https://doi.org/10.1261/rna.058818.116.

[65]

R.R. Shah, T.J. Knott, J.E. Legros, N. Navaratnam, J.C. Greeve, J. Scott, Sequence requirements for the editing of apolipoprotein B mRNA, J. Biol. Chem. 266 (1991) 16301-16304.

[66]

A. Mehta, D.M. Driscoll, A sequence-specific RNA-binding protein complements apobec-1 to edit apolipoprotein B mRNA, Mol. Cell Biol. 18 (1998) 4426-4432, https://doi.org/10.1128/MCB.18.8.4426.

[67]

X. Huang, J. Lv, Y. Li, S. Mao, Z. Li, Z. Jing, Y. Sun, X. Zhang, S. Shen, X. Wang, M. Di, J. Ge, X. Huang, E. Zuo, T. Chi, Programmable C-to-U RNA editing using the human APOBEC3A deaminase, EMBO J. 40 (2021) e108209, https://doi.org/10.15252/embj.2021108209.

[68]

J. Ge, Y.-T. Yu, RNA pseudouridylation: new insights into an old modification, Trends Biochem. Sci. 38 (2013) 210-218, https://doi.org/10.1016/j.tibs.2013.01.002.

[69]

T.M. Carlile, M.F. Rojas-Duran, B. Zinshteyn, H. Shin, K.M. Bartoli, W.V. Gilbert, Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells, Nature 515 (2014) 143-146, https://doi.org/10.1038/nature13802.

[70]

A. Angrisani, M. Turano, L. Paparo, C. Di Mauro, M. Furia, A new human dyskerin isoform with cytoplasmic localization, Biochim. Biophys. Acta 1810 (2011) 1361-1368, https://doi.org/10.1016/j.bbagen.2011.07.012.

[71]

V. Belli, N. Matrone, S. Sagliocchi, R. Incarnato, A. Conte, E. Pizzo, M. Turano, A. Angrisani, M. Furia, A dynamic link between H/ACA snoRNP components and cytoplasmic stress granules, Biochim. Biophys. Acta Mol. Cell Res. 1866 (2019) 118529, https://doi.org/10.1016/j.bbamcr.2019.118529.

[72]

M. Mort, D. Ivanov, D.N. Cooper, N.A. Chuzhanova, A meta-analysis of nonsense mutations causing human genetic disease, Hum. Mutat. 29 (2008) 1037-1047, https://doi.org/10.1002/humu.20763.

[73]

J.T. Mendell, H.C. Dietz, When the message goes awry: disease-producing mutations that influence mRNA content and performance, Cell 107 (2001) 411-414, https://doi.org/10.1016/S0092-8674(01)00583-9.

[74]

J. Atkinson, R. Martin, Mutations to nonsense codons in human genetic disease: implications for gene therapy by nonsense suppressor tRNAs, Nucleic Acids Res. 22 (1994) 1327-1334, https://doi.org/10.1093/nar/22.8.1327.

[75]

J. Karijolich, Y.-T. Yu, Converting nonsense codons into sense codons by targeted pseudouridylation, Nature 474 (2011) 395-398, https://doi.org/10.1038/nature10165.

[76]

N. Luo, Q. Huang, L. Dong, W. Liu, J. Song, H. Sun, H. Wu, Y. Gao, C. Yi, Nearcognate tRNAs increase the efficiency and precision of pseudouridine-mediated readthrough of premature termination codons, Nat. Biotechnol. 43 (2025) 114-123, https://doi.org/10.1038/s41587-024-02165-8.

[77]

H. Adachi, Y. Pan, X. He, J.L. Chen, B. Klein, G. Platenburg, P. Morais, P. Boutz, Y.-T. Yu, Targeted pseudouridylation: an approach for suppressing nonsense mutations in disease genes, Mol. Cell 83 (2023) 637-651.e9, https://doi.org/10.1016/j.molcel.2023.01.009.

[78]

L.-Y. Zhao, J. Song, Y. Liu, C.-X. Song, C. Yi, Mapping the epigenetic modifications of DNA and RNA, Protein Cell 11 (2020) 792-808, https://doi.org/10.1007/s13238-020-00733-7.

[79]

J. Liu, Y. Yue, D. Han, X. Wang, Y. Fu, L. Zhang, G. Jia, M. Yu, Z. Lu, X. Deng, Q. Dai, W. Chen, C. He, A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation, Nat. Chem. Biol. 10 (2014) 93-95, https://doi.org/10.1038/nchembio.1432.

[80]

G. Zheng, J.A. Dahl, Y. Niu, P. Fedorcsak, C.-M. Huang, C.J. Li, C.B. Vågbø, Y. Shi, W.-L. Wang, S.-H. Song, Z. Lu, R.P.G. Bosmans, Q. Dai, Y.-J. Hao, X. Yang, W.M. Zhao, W.-M. Tong, X.-J. Wang, F. Bogdan, K. Furu, Y. Fu, G. Jia, X. Zhao, J. Liu, H.E. Krokan, A. Klungland, Y.-G. Yang, C. He, ALKBH 5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol. Cell 49 (2013) 18-29, https://doi.org/10.1016/j.molcel.2012.10.015.

[81]

S. Morita, H. Noguchi, T. Horii, K. Nakabayashi, M. Kimura, K. Okamura, A. Sakai, H. Nakashima, K. Hata, K. Nakashima, I. Hatada, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol. 34 (2016) 1060-1065, https://doi.org/10.1038/nbt.3658.

[82]

M.E. Tanenbaum, L.A. Gilbert, L.S. Qi, J.S. Weissman, R.D. Vale, A proteintagging system for signal amplification in gene expression and fluorescence imaging, Cell 159 (2014) 635-646, https://doi.org/10.1016/j.cell.2014.09.039.

[83]

J. Mo, Z. Chen, S. Qin, S. Li, C. Liu, L. Zhang, R. Ran, Y. Kong, F. Wang, S. Liu, Y. Zhou, X. Zhang, X. Weng, X. Zhou, TRADES: targeted RNA demethylation by SunTag system, Adv. Sci. 7 (2020) 2001402, https://doi.org/10.1002/advs.202001402.

[84]

J. Li, Z. Chen, F. Chen, G. Xie, Y. Ling, Y. Peng, Y. Lin, N. Luo, C.-M. Chiang, H. Wang, Targeted mRNA demethylation using an engineered dCas13b-ALKBH5 fusion protein, Nucleic Acids Res. 48 (2020) 5684-5694, https://doi.org/10.1093/nar/gkaa269.

[85]

X. Chen, Q. Zhao, Y.-L. Zhao, G.-S. Chai, W. Cheng, Z. Zhao, J. Wang, G.-Z. Luo, N. Cao, Targeted RNA N6 -Methyladenosine demethylation controls cell fate transition in human pluripotent stem cells, Adv. Sci. Weinh. Baden-Wurtt. Ger. 8 (2021) e2003902, https://doi.org/10.1002/advs.202003902.

[86]

H. Tang, S. Han, Y. Jie, X. Jiang, Y. Zhang, J. Peng, F. Wang, X. Li, X. Zhou, W. Jiang, X. Weng, Enhanced or reversible RNA N6-methyladenosine editing by red/far-red light induction, Nucleic Acids Res. 53 (2025) gkaf181, https://doi.org/10.1093/nar/gkaf181.

[87]

D. Wang, P.W.L. Tai, G. Gao, Adeno-associated virus vector as a platform for gene therapy delivery, Nat. Rev. Drug Discov. 18 (2019) 358-378, https://doi.org/10.1038/s41573-019-0012-9.

[88]

D. Wang, F. Zhang, G. Gao, CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors, Cell 181 (2020) 136-150, https://doi.org/10.1016/j.cell.2020.03.023.

[89]

B. Kantor, B. O'Donovan, J. Rittiner, D. Hodgson, N. Lindner, S. Guerrero, W. Dong, A. Zhang, O. Chiba-Falek, The therapeutic implications of all-in-one AAV-delivered epigenome-editing platform in neurodegenerative disorders, Nat. Commun. 15 (2024) 7259, https://doi.org/10.1038/s41467-024-50515-6.

[90]

H. Zhang, K. Kelly, J. Lee, D. Echeverria, D. Cooper, R. Panwala, N. Amrani, Z. Chen, N. Gaston, A. Wagh, G.A. Newby, J. Xie, D.R. Liu, G. Gao, S.A. Wolfe, A. Khvorova, J.K. Watts, E.J. Sontheimer, Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo, Nucleic Acids Res. 52 (2024) 977-997, https://doi.org/10.1093/nar/gkad1125.

[91]

F. Wu, N. Li, Y. Xiao, R. Palanki, H. Yamagata, M.J. Mitchell, X. Han, Lipid nanoparticles for delivery of CRISPR gene editing components, Small Methods n/ a (n.d.) 2401632. https://doi.org/10.1002/smtd.202401632.

[92]

R. Masarwy, L. Stotsky-Oterin, A. Elisha, I. Hazan-Halevy, D. Peer, Delivery of nucleic acid based genome editing platforms via lipid nanoparticles: clinical applications, Adv. Drug Deliv. Rev. 211 (2024) 115359, https://doi.org/10.1016/j.addr.2024.115359.

[93]

Y. Sun, S. Chatterjee, X. Lian, Z. Traylor, S.R. Sattiraju, Y. Xiao, S.A. Dilliard, Y.C. Sung, M. Kim, S.M. Lee, S. Moore, X. Wang, D. Zhang, S. Wu, P. Basak, J. Wang, J. Liu, R.J. Mann, D.F. LePage, W. Jiang, S. Abid, M. Hennig, A. Martinez, B. A. Wustman, D.J. Lockhart, R. Jain, R.A. Conlon, M.L. Drumm, C.A. Hodges, D. J. Siegwart, in vivo editing of lung stem cells for durable gene correction in mice, Science 384 (2024) 1196-1202, https://doi.org/10.1126/science.adk9428.

[94]

R. Hołubowicz, S.W. Du, J. Felgner, R. Smidak, E.H. Choi, G. Palczewska, C. R. Menezes, Z. Dong, F. Gao, O. Medani, A.L. Yan, M.W. Hołubowicz, P.Z. Chen, M. Bassetto, E. Risaliti, D. Salom, J.N. Workman, P.D. Kiser, A.T. Foik, D.C. Lyon, G.A. Newby, D.R. Liu, P.L. Felgner, K. Palczewski, Safer and efficient base editing and prime editing via ribonucleoproteins delivered through optimized lipidnanoparticle formulations, Nat. Biomed. Eng. 9 (2025) 57-78, https://doi.org/10.1038/s41551-024-01296-2.

[95]

J. Wang, W. Zhang, S. Li, W. Shi, B. Li, J. Zhang, Y. Liang, X. Teng, K. Zhang, RNA editing-mediated correction of TP53 nonsense mutations via lipid nanoparticledelivered circular ADAR-recruiting RNAs, J. Am. Chem. Soc. 147 (2025) 18512-18523, https://doi.org/10.1021/jacs.4c17920.

[96]

M. Segel, B. Lash, J. Song, A. Ladha, C.C. Liu, X. Jin, S.L. Mekhedov, R.K. Macrae, E.V. Koonin, F. Zhang, Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery, Science 373 (2021) 882-889, https://doi.org/10.1126/science.abg6155.

[97]

C.B. Gurumurthy, R.M. Quadros, M. Ohtsuka, Prototype mouse models for researching SEND-based mRNA delivery and gene therapy, Nat. Protoc. 17 (2022) 2129-2138, https://doi.org/10.1038/s41596-022-00721-7.

[98]

L. Huang, E. Wu, J. Liao, Z. Wei, J. Wang, Z. Chen, Research advances of engineered exosomes as drug delivery carrier, ACS Omega 8 (2023) 43374-43387, https://doi.org/10.1021/acsomega.3c04479.

[99]

M. Zhang, S. Hu, L. Liu, P. Dang, Y. Liu, Z. Sun, B. Qiao, C. Wang, Engineered exosomes from different sources for cancer-targeted therapy, Signal Transduct. Targeted Ther. 8 (2023) 124, https://doi.org/10.1038/s41392-023-01382-y.

[100]

M. MacBrinn, S. Okada, M. Woollacott, V. Patel, M.W. Ho, A.L. Tappel, J. S. O'Brien, Beta-Galactosidase deficiency in the Hurler syndrome, N. Engl. J. Med. 281 (1969) 338-343, https://doi.org/10.1056/NEJM196908142810702.

[101]

L. Szabó, J. Polgár, Z. Vass, L. Józsa, A HURLER'S syndrome variant, Lancet 290 (1967) 1314, https://doi.org/10.1016/S0140-6736(67)90433-3.

[102]

B. Gentner, F. Tucci, S. Galimberti, F. Fumagalli, M.D. Pellegrin, P. Silvani, C. Camesasca, S. Pontesilli, S. Darin, F. Ciotti, M. Sarzana, G. Consiglieri, C. Filisetti, G. Forni, L. Passerini, D. Tomasoni, D. Cesana, A. Calabria, G. Spinozzi, M.-P. Cicalese, V. Calbi, M. Migliavacca, F. Barzaghi, F. Ferrua, V. Gallo, S. Miglietta, E. Zonari, P.S. Cheruku, C. Forni, M. Facchini, A. Corti, M. Gabaldo, S. Zancan, S. Gasperini, A. Rovelli, J.-J. Boelens, S.A. Jones, R. Wynn, C. Baldoli, E. Montini, S. Gregori, F. Ciceri, M.G. Valsecchi, G. la Marca, R. Parini, L. Naldini, A. Aiuti, M.-E. Bernardo, Hematopoietic Stem- and progenitor-cell gene therapy for Hurler syndrome, N. Engl. J. Med. 385 (2021) 1929-1940, https://doi.org/10.1056/NEJMoa2106596.

[103]

S.C. Bell, M.A. Mall, H. Gutierrez, M. Macek, S. Madge, J.C. Davies, P.-R. Burgel, E. Tullis, C. Castaños, C. Castellani, C.A. Byrnes, F. Cathcart, S.H. Chotirmall, R. Cosgriff, I. Eichler, I. Fajac, C.H. Goss, P. Drevinek, P.M. Farrell, A.M. Gravelle, T. Havermans, N. Mayer-Hamblett, N. Kashirskaya, E. Kerem, J.L. Mathew, E. F. McKone, L. Naehrlich, S.Z. Nasr, G.R. Oates, C. O'Neill, U. Pypops, K.S. Raraigh, S.M. Rowe, K.W. Southern, S. Sivam, A.L. Stephenson, M. Zampoli, F. Ratjen, The future of cystic fibrosis care: a global perspective, Lancet Respir. Med. 8 (2020) 65-124, https://doi.org/10.1016/S2213-2600(19)30337-6.

[104]

Q. Xiao, Z. Xu, Y. Xue, C. Xu, L. Han, Y. Liu, F. Wang, R. Zhang, S. Han, X. Wang, G.-L. Li, H. Li, H. Yang, Y. Shu, Rescue of autosomal dominant hearing loss by in vivo delivery of mini dCas13X-derived RNA base editor, Sci. Transl. Med. 14 (2022) eabn0449, https://doi.org/10.1126/scitranslmed.abn0449.

[105]

X. Wang, R. Zhang, D. Yang, G. Li, Z. Fan, H. Du, Z. Wang, Y. Liu, J. Lin, X. Wu, L. Shi, H. Yang, Y. Zhou, Develop a compact RNA base editor by fusing ADAR with engineered EcCas6e, Adv. Sci. 10 (2023) 2206813, https://doi.org/10.1002/advs.202206813.

[106]

J.R. Sinnamon, S.Y. Kim, G.M. Corson, Z. Song, H. Nakai, J.P. Adelman, G. Mandel, Site-directed RNA repair of endogenous Mecp2 RNA in neurons, Proc. Natl. Acad. Sci. 114 (2017) E9395-E9402, https://doi.org/10.1073/pnas.1715320114.

AI Summary AI Mindmap
PDF (6383KB)

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/