Nanoplatforms in sepsis storm: Multimodal synergy for precision immunomodulation and pathogen neutralizations

Xinxin Wang , Xuemei Wang , Yuxin Cao , Wenming Wang , Dandan Liu , Jingwen Zhang , Yuxiu Chen , Daquan Chen

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100087

PDF (3203KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100087 DOI: 10.1016/j.pscia.2025.100087
Review Article
research-article

Nanoplatforms in sepsis storm: Multimodal synergy for precision immunomodulation and pathogen neutralizations

Author information +
History +
PDF (3203KB)

Abstract

Sepsis, a severe global health challenge characterized by life-threatening organ dysfunction stemming from a dysregulated immune response to drug-resistant pathogens, imposes a substantial disease burden. The intricate nature of sepsis necessitates meticulous drug administration and underscores the urgency for advanced drug delivery strategies. This paper presents a comprehensive overview of recent advancements in nanotechnologydriven therapeutic interventions for sepsis, emphasizing innovative approaches such as stimulus-responsive and nano-drug delivery systems that have been applied to tackle sepsis and its associated complications. Drawing from various theories and mechanistic insights into sepsis pathogenesis, we explore novel therapeutic avenues and their potential integration with nano-delivery systems, considering factors such as the microenvironment. We demonstrate how these nano-delivery systems can enhance treatment accuracy and diversity. Furthermore, the synergy between nanomedicine and emerging technologies like CRISPR, CAR-T therapy, AI, microfluidics, microbiome research, and immunotherapy holds the promise to revolutionize sepsis diagnosis, treatment, and management strategies. However, overcoming pathogen resistance, precisely modulating excessive immune response/immunosuppression, and achieving efficient targeted delivery of nanocarriers in complex pathological environments remain core challenges. Future research needs to focus on the development of smarter and more responsive nanoplatforms and deeply explore their deep integration with multiple cuttingedge technologies in order to advance the clinical translation of precision sepsis diagnosis and treatment.

Keywords

Sepsis / Nanomedicine / Drug delivery / Microbiome / Immunotherapy

Cite this article

Download citation ▾
Xinxin Wang, Xuemei Wang, Yuxin Cao, Wenming Wang, Dandan Liu, Jingwen Zhang, Yuxiu Chen, Daquan Chen. Nanoplatforms in sepsis storm: Multimodal synergy for precision immunomodulation and pathogen neutralizations. Pharmaceutical Science Advances, 2025, 3(1): 100087 DOI:10.1016/j.pscia.2025.100087

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xinxin Wang: Writing - review & editing, Visualization, Validation, Investigation, Formal analysis, Conceptualization. Xuemei Wang: Validation, Methodology, Investigation, Conceptualization. Yuxin Cao: Writing - review & editing, Investigation. Wenming Wang: Methodology, Investigation. Dandan Liu: Supervision. Jingwen Zhang: Writing - review & editing, Supervision, Methodology. Yuxiu Chen: Methodology, Investigation. Daquan Chen: Writing - review & editing, Supervision, Resources, Conceptualization.

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Declaration of generative AI in scientific writing

No generative AI tools have been used throughout the entire writing process of this manuscript.

Funding

The Shandong Province Modern Agricultural Industrial Technology System Chinese Herbal Medicine System (SDAIT-20-06).

Declaration of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

Figures were created using BioRender.com.

References

[1]

T.E. Gofton, G.B. Young, Sepsis-associated encephalopathy, Nat. Rev. Neurol. 8 (10) (2012) 557-566, https://doi.org/10.1038/nrneurol.2012.183.

[2]

M. Legrand, S. Bell, L. Forni, M. Joannidis, J.L. Koyner, K. Liu, V. Cantaluppi, Pathophysiology of COVID-19-associated acute kidney injury, Nat. Rev. Nephrol. 17 (11) (2021) 751-764, https://doi.org/10.1038/s41581-021-00452-0.

[3]

J.M. Connors, J.H. Levy, COVID-19 and its implications for thrombosis and anticoagulation, Blood 135 (23) (2020) 2033-2040, https://doi.org/10.1182/blood.2020006000.

[4]

M.P. Fink, H.S. Warren, Strategies to improve drug development for sepsis, Nat. Rev. Drug Discov. 13 (10) (2014) 741-758, https://doi.org/10.1038/nrd4368.

[5]

W. Tian, N. Zhang, R. Jin, Y. Feng, S. Wang, S. Gao, R. Gao, G. Wu, D. Tian, W. Tan, Y. Chen, G.F. Gao, C.C.L. Wong, Immune suppression in the early stage of COVID19 disease, Nat. Commun. 11 (1) (2020) 5859, https://doi.org/10.1038/s41467-020-19706-9.

[6]

R.S. Keshari, R. Silasi-Mansat, C. Lupu, F.B. Taylor Jr., F. Lupu, Bacteremia, not coagulation proteases contribute to in vivo complement activation in sepsis, Blood 128 (22) (2016), https://doi.org/10.1182/blood.V128.22.275.275.

[7]

N.K. Patil, J.K. Bohannon, E.R. Sherwood, Immunotherapy: a promising approach to reverse sepsis-induced immunosuppression, Pharmacol. Res. 111 (2016) 688-702, https://doi.org/10.1016/j.phrs.2016.07.019.

[8]

Q. Li, X. Liu, C. Yan, B. Zhao, Y. Zhao, L. Yang, M. Shi, H. Yu, X. Li, K. Luo, Polysaccharide-based stimulus-responsive nanomedicines for combination cancer immunotherapy, Small 19 (23) (2023) 2206211, https://doi.org/10.1002/smll.202206211.

[9]

R. Chang, L. Chen, M. Qamar, Y. Wen, L. Li, J. Zhang, X. Li, E. Assadpour, T. Esatbeyoglu, M.S. Kharazmi, Y. Li, S.M. Jafari, The bioavailability, metabolism and microbial modulation of curcumin-loaded nanodelivery systems, Adv. Colloid Interface Sci. 318 (2023) 102933, https://doi.org/10.1016/j.cis.2023.102933.

[10]

C. Montes, M.J. Villaseñor, Á. Ríos, Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: achievements and challenges, Trends Food Sci. Technol. 90 (2019) 47-62, https://doi.org/10.1016/j.tifs.2019.06.001.

[11]

A. Pant, I. Mackraj, T. Govender, Advances in sepsis diagnosis and management: a paradigm shift towards nanotechnology, J. Biomed. Sci. 28 (1) (2021) 6, https://doi.org/10.1186/s12929-020-00702-6.

[12]

V. Selvaraj, N. Nepal, S. Rogers, N.D.P.K. Manne, R. Arvapalli, K.M. Rice, S. Asano, E. Fankhanel, J.J. Ma, T. Shokuhfar, M. Maheshwari, E.R. Blough, Inhibition of MAP kinase/NF-kB mediated signaling and attenuation of lipopolysaccharide induced severe sepsis by cerium oxide nanoparticles, Biomaterials 59 (2015) 160-171, https://doi.org/10.1016/j.biomaterials.2015.04.025.

[13]

Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines, Acc. Chem. Res. 52 (5) (2019) 1255-1264, https://doi.org/10.1021/acs.accounts.9b00079.

[14]

W. Chen, M. Schilperoort, Y. Cao, J. Shi, I. Tabas, W. Tao, Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis, Nat. Rev. Cardiol. 19 (4) (2022) 228-249, https://doi.org/10.1038/s41569-021-00629-x.

[15]

C.Y. Zhang, J. Gao, Z. Wang, Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management, Adv. Mater. 30 (43) (2018) 1803618, https://doi.org/10.1002/adma.201803618.

[16]

J. Rayes, S. Lax, S. Wichaiyo, S.K. Watson, Y. Di, S. Lombard, B. Grygielska, S. W. Smith, K. Skordilis, S.P. Watson, The podoplanin-CLEC-2 axis inhibits inflammation in sepsis, Nat. Commun. 8 (1) (2017) 2239, https://doi.org/10.1038/s41467-017-02402-6.

[17]

J. Boldt, M. Müller, D. Kuhn, L.C. Linke, G. Hempelmann, Retracted article: circulating adhesion molecules in the critically ill: a comparison between trauma and sepsis patients, Intensive Care Med. 22 (2) (1996) 122-128, https://doi.org/10.1007/BF01720718.

[18]

Z. Zhang, C. Zhu, L. Mo, Y. Hong, Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis, Intensive Care Med. 44 (11) (2018) 1888-1895, https://doi.org/10.1007/s00134-018-5379-2.

[19]

N. Li, H. Zhou, H. Wu, Q. Wu, M. Duan, W. Deng, Q. Tang, TING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3, Redox Biol. 24 (2019) 101215, https://doi.org/10.1016/j.redox.2019.101215.

[20]

S. Tian, H.C. van der Mei, Y. Ren, H.J. Busscher, L. Shi, Co-Delivery of an amyloiddisassembling polyphenol cross-linked in a micellar shell with core-loaded antibiotics for balanced biofilm dispersal and killing, Adv. Funct. Mater. 32 (51) (2022) 2209185, https://doi.org/10.1002/adfm.202209185.

[21]

J.E. Ghadiali, M.M. Stevens, Enzyme-responsive nanoparticle systems, Adv. Mater. 20 (22) (2008) 4359-4363, https://doi.org/10.1002/adma.200703158.

[22]

J. Yan, J. Zhang, Y. Wang, H. Liu, X. Sun, A. Li, P. Cui, L. Yu, X. Yan, Z. He, Rapidly inhibiting the inflammatory cytokine storms and restoring cellular homeostasis to alleviate sepsis by blocking pyroptosis and mitochondrial apoptosis pathways, Adv. Sci. 10 (14) (2023) 2207448, https://doi.org/10.1002/advs.202207448.

[23]

Y. Li, C. Guo, Q. Chen, Y. Su, H. Guo, R. Liu, C. Sun, S. Mi, J. Wang, D. Chen, Improvement of pneumonia by curcumin-loaded bionanosystems based on platycodon grandiflorum polysaccharides via calming cytokine storm, Int. J. Biol. Macromol. 202 (2022) 691-706, https://doi.org/10.1016/j.ijbiomac.2022.01.194.

[24]

Y. Lu, Z. Yue, J. Xie, W. Wang, H. Zhu, E. Zhang, Z. Cao, Micelles with ultralow critical micelle concentration as carriers for drug delivery, Nat. Biomed. Eng. 2 (5) (2018) 318-325, https://doi.org/10.1038/s41551-018-0234-x.

[25]

T. Jiang, Y. Qiao, W. Ruan, D. Zhang, Q. Yang, G. Wang, Q. Chen, F. Zhu, J. Yin, Y. Zou, R. Qian, M. Zheng, B. Shi, Cation-free siRNA micelles as effective drug delivery platform and potent RNAi nanomedicines for glioblastoma therapy, Adv. Mater. 33 (45) (2021) 2104779, https://doi.org/10.1002/adma.202104779.

[26]

B. Ma, H. Xu, W. Zhuang, Y. Wang, G. Li, Y. Wang, Reactive oxygen species responsive Theranostic nanoplatform for two-photon aggregation-induced emission imaging and therapy of acute and chronic inflammation, ACS Nano 14 (5) (2020) 5862-5873, https://doi.org/10.1021/acsnano.0c01012.

[27]

C.Y. Zhang, X. Dong, J. Gao, W. Lin, Z. Liu, Z. Wang, Nanoparticle-induced neutrophil apoptosis increases survival in sepsis and alleviates neurological damage in stroke, Sci. Adv. 5 (11) (2019) eaax7964, https://doi.org/10.1126/sciadv.aax7964.

[28]

Z. Yu, L. Ma, S. Ye, G. Li, M. Zhang, Construction of an environmentally friendly octenylsuccinic anhydride modified pH -sensitive chitosan nanoparticle drug delivery system to alleviate inflammation and oxidative stress, Carbohydr. Polym. 236 (2020) 115972, https://doi.org/10.1016/j.carbpol.2020.115972.

[29]

M. Ye, Y. Zhao, Y. Wang, R. Xie, Y. Tong, J.-D. Sauer, S. Gong, NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis, Nat. Nanotechnol. 17 (8) (2022) 880-890, https://doi.org/10.1038/s41565-022-01137-w.

[30]

L. Li, Y. Wang, R. Guo, S. Li, J. Ni, S. Gao, X. Gao, J. Mao, Y. Zhu, P. Wu, H. Wang, D. Kong, H. Zhang, M. Zhu, G. Fan, Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemiareperfusion injury, J. Contr. Release 317 (2020) 259-272, https://doi.org/10.1016/j.jconrel.2019.11.032.

[31]

G. Chen, H. Deng, X. Song, M. Lu, L. Zhao, S. Xia, G. You, J. Zhao, Y. Zhang, A. Dong, H. Zhou, Reactive oxygen species-responsive polymeric nanoparticles for alleviating sepsis-induced acute liver injury in mice, Biomaterials 144 (2017) 30-41, https://doi.org/10.1016/j.biomaterials.2017.08.008.

[32]

Y. Wang, Q. Yuan, W. Feng, W. Pu, J. Ding, H. Zhang, X. Li, B. Yang, Q. Dai, L. Cheng, J. Wang, F. Sun, D. Zhang, Targeted delivery of antibiotics to the infected pulmonary tissues using ROS-responsive nanoparticles, J. Nanobiotechnol. 17 (1) (2019) 103, https://doi.org/10.1186/s12951-019-0537-4.

[33]

M.-H. Xiong, Y. Bao, X.-Z. Yang, Y.-C. Wang, B. Sun, J. Wang, Lipase-sensitive polymeric triple-layered nanogel for "On-Demand" drug delivery, J. Am. Chem. Soc. 134 (9) (2012) 4355-4362, https://doi.org/10.1021/ja211279u.

[34]

J.C. Mejías, K. Roy, In-vitro and in-vivo characterization of a multi-stage enzymeresponsive nanoparticle-in-microgel pulmonary drug delivery system, J. Contr. Release 316 (2019) 393-403, https://doi.org/10.1016/j.jconrel.2019.09.012.

[35]

H. Cao, Y. Gao, H. Jia, L. Zhang, J. Liu, G. Mu, H. Gui, Y. Wang, C. Yang, J. Liu, Macrophage-membrane-camouflaged nonviral gene vectors for the treatment of multidrug-resistant bacterial sepsis, Nano Lett. 22 (19) (2022) 7882-7891, https://doi.org/10.1021/acs.nanolett.2c02560.

[36]

C. Qiao, X. Wang, G. Liu, Z. Yang, Q. Jia, L. Wang, R. Zhang, Y. Xia, Z. Wang, Y. Yang, Erythrocyte membrane camouflaged metal-organic framework nanodrugs for remodeled tumor microenvironment and enhanced tumor chemotherapy, Adv. Funct. Mater. 32 (6) (2022) 2107791, https://doi.org/10.1002/adfm.202107791.

[37]

B.-M. Chen, T.-L. Cheng, S.R. Roffler, Polyethylene glycol immunogenicity: theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies, ACS Nano 15 (9) (2021) 14022-14048, https://doi.org/10.1021/acsnano.1c05922.

[38]

G.B. Lim, Pro-inflammatory atherogenic role of platelets, Nat. Rev. Cardiol. 17 (1) (2020) 6-7, https://doi.org/10.1038/s41569-019-0312-0.

[39]

J. Yang, X. Miao, Y. Guan, C. Chen, S. Chen, X. Zhang, X. Xiao, Z. Zhang, Z. Xia, T. Yin, Z. Hei, W. Yao, Microbubble functionalization with platelet membrane enables targeting and early detection of sepsis-induced acute kidney injury, Adv. Healthcare Mater. 10 (23) (2021) 2101628, https://doi.org/10.1002/adhm.202101628.

[40]

M. Klompas, T. Calandra, M. Singer, Antibiotics for sepsis-finding the equilibrium, JAMA 320 (14) (2018) 1433-1434, https://doi.org/10.1001/jama.2018.12179.

[41]

K. Byrgazov, M. Kraus, A. Besse, A. Slipicevic, F. Lehmann, C. Driessen, L. Besse, Effect of ABCB1 multidrug resistance protein on efficacy of anti-myeloma drugs in carfilzomib-resistant myeloma model, Blood 136 (Supplement 1) (2020) 36-37, https://doi.org/10.1182/blood-2020-136725.

[42]

X. Hou, X. Zhang, W. Zhao, C. Zeng, B. Deng, D.W. McComb, S. Du, C. Zhang, W. Li, Y. Dong, Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis, Nat. Nanotechnol. 15 (1) (2020) 41-46, https://doi.org/10.1038/s41565-019-0600-1.

[43]

V. Lázár, A. Martins, R. Spohn, L. Daruka, G. Grézal, G. Fekete, M. Számel, P. K. Jangir, B. Kintses, B. Csörgő, Á. Nyerges, Á. Györkei, A. Kincses, A. Dér, F. R. Walter, M.A. Deli, E. Urbán, Z. Hegedüs, G. Olajos, O. Méhi, B. Bálint, I. Nagy, T. A. Martinek, B. Papp, C. Pál, Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides, Nat. Microbiol. 3 (6) (2018) 718-731, https://doi.org/10.1038/s41564-018-0164-0.

[44]

J. Xuan, W. Feng, J. Wang, R. Wang, B. Zhang, L. Bo, Z.-S. Chen, H. Yang, L. Sun, Antimicrobial peptides for combating drug-resistant bacterial infections, Drug Resist. Updates 68 (2023) 100954, https://doi.org/10.1016/j.drup.2023.100954.

[45]

Q. Zhao, Z. Gong, J. Wang, L. Fu, J. Zhang, C. Wang, R.J. Miron, Q. Yuan, Y. Zhang, A Zinc- and calcium-rich lysosomal nanoreactor rescues monocyte/macrophage dysfunction under sepsis, Adv. Sci. (2023) 2205097, https://doi.org/10.1002/advs.202205097n/a(n/a).

[46]

M. Chen, J. Zhang, J. Qi, R. Dong, H. Liu, D. Wu, H. Shao, X. Jiang, Boronic aciddecorated multivariate photosensitive metal-organic frameworks for combating multi-drug-resistant bacteria, ACS Nano 16 (5) (2022) 7732-7744, https://doi.org/10.1021/acsnano.1c11613.

[47]

X. Han, G. Boix, M. Balcerzak, O.H. Moriones, M. Cano-Sarabia, P. Cortés, N. Bastús, V. Puntes, M. Llagostera, I. Imaz, D. Maspoch, Antibacterial films based on MOF composites that release iodine passively or upon triggering by near- infrared light, Adv. Funct. Mater. 32 (19) (2022) 2112902, https://doi.org/10.1002/adfm.202112902.

[48]

C. Wu, D. Xu, M. Ge, J. Luo, L. Chen, Z. Chen, Y. You, Y.-x. Zhu, H. Lin, J. Shi, Blocking glutathione regeneration: inorganic NADPH oxidase nanozyme catalyst potentiates tumoral ferroptosis, Nano Today 46 (2022) 101574, https://doi.org/10.1016/j.nantod.2022.101574.

[49]

Y. Wu, W. Xu, L. Jiao, Y. Tang, Y. Chen, W. Gu, C. Zhu, Defect engineering in nanozymes, Mater. Today 52 (2022) 327-347, https://doi.org/10.1016/j.mattod.2021.10.032.

[50]

Z. Wang, R. Zhang, X. Yan, K. Fan, Structure and activity of nanozymes: inspirations for de novo design of nanozymes, Mater. Today 41 (2020) 81-119, https://doi.org/10.1016/j.mattod.2020.08.020.

[51]

X. Du, M. Zhang, H. Zhou, W. Wang, C. Zhang, L. Zhang, Y. Qu, W. Li, X. Liu, M. Zhao, K. Tu, Y.-Q. Li, Decoy nanozymes enable multitarget blockade of proinflammatory cascades for the treatment of multi-drug-resistant bacterial sepsis, Research 2022 (2022), https://doi.org/10.34133/2022/9767643.

[52]

F. Gao, T. Shao, Y. Yu, Y. Xiong, L. Yang, Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action, Nat. Commun. 12 (1) (2021) 745, https://doi.org/10.1038/s41467-021-20965-3.

[53]

K. Ma, Y.H. Cheung, K.O. Kirlikovali, H. Xie, K.B. Idrees, X. Wang, T. Islamoglu, J. H. Xin, O.K. Farha, Fibrous Zr-MOF nanozyme aerogels with macro-nanoporous structure for enhanced catalytic hydrolysis of organophosphate toxins, Adv. Mater. n/a(n/a) 2300951, https://doi.org/10.1002/adma.202300951.

[54]

R. Chen, J. Yang, M. Wu, D. Zhao, Z. Yuan, L. Zeng, J. Hu, X. Zhang, T. Wang, J. Xu, J. Zhang, M2 macrophage hybrid membrane-camouflaged targeted biomimetic nanosomes to reprogram inflammatory microenvironment for enhanced enzyme-thermo-immunotherapy, Adv. Mater. n/a(n/a) 2304123, https://doi.org/10.1002/adma.202304123.

[55]

J.S. O'Donnell, M.W.L. Teng, M.J. Smyth, Cancer immunoediting and resistance to T cell-based immunotherapy, Nat. Rev. Clin. Oncol. 16 (3) (2019) 151-167, https://doi.org/10.1038/s41571-018-0142-8.

[56]

I. Rubio, M.F. Osuchowski, M. Shankar-Hari, T. Skirecki, M.S. Winkler, G. Lachmann, P. La Rosée, G. Monneret, F. Venet, M. Bauer, F.M. Brunkhorst, M. Kox, J.-M. Cavaillon, F. Uhle, M.A. Weigand, S.B. Flohé, W.J. Wiersinga, M. Martin-Fernandez, R. Almansa, I. Martin-Loeches, A. Torres, E.J. GiamarellosBourboulis, M. Girardis, A. Cossarizza, M.G. Netea, T. van der Poll, A. Scherag, C. Meisel, J.C. Schefold, J.F. Bermejo-Martín, Current gaps in sepsis immunology: new opportunities for translational research, Lancet Infect. Dis. 19 (12) (2019) e422-e436, https://doi.org/10.1016/S1473-3099(19)30567-5.

[57]

X. Pang, X. Liu, Y. Cheng, C. Zhang, E. Ren, C. Liu, Y. Zhang, J. Zhu, X. Chen, G. Liu, Sono-immunotherapeutic nanocapturer to combat multidrug-resistant bacterial infections, Adv. Mater. 31 (35) (2019) 1902530, https://doi.org/10.1002/adma.201902530.

[58]

E.A. Ismail, N. Devnarain, T. Govender, C.A. Omolo, Stimuli-responsive and biomimetic delivery systems for sepsis and related complications, J. Contr. Release 352 (2022) 1048-1070. https://doi-org-s.ytu.yitlink.com:443/10.1016/j.jconrel.2022.11.013

[59]

M.F. Barginear, A.G. Chandok, C. Sison, L. Yang, D.R. Budman, J. D'Olimpio, K. J. Tracey, T. Bradley, HMGB1 expression in sickle cell disease: a pro-inflammatory cytokine and potential therapeutic target, Blood 110 (11) (2007), https://doi.org/10.1182/blood.V110.11.3803.3803,3803-3803.

[60]

Y. Yang, Y. Ding, B. Fan, Y. Wang, Z. Mao, W. Wang, J. Wu, Inflammation-targeting polymeric nanoparticles deliver sparfloxacin and tacrolimus for combating acute lung sepsis, J. Contr. Release 321 (2020) 463-474, https://doi.org/10.1016/j.jconrel.2020.02.030.

[61]

E.P. Stater, G. Morcos, E. Isaac, A. Ogirala, H.-T. Hsu, V.A. Longo, J. Grimm, Translatable drug-loaded iron oxide nanophore sensitizes Murine melanoma tumors to monoclonal antibody immunotherapy, ACS Nano 17 (7) (2023) 6178-6192, https://doi.org/10.1021/acsnano.2c05800.

[62]

M.G. Netea, F. Balkwill, M. Chonchol, F. Cominelli, M.Y. Donath, E.J. GiamarellosBourboulis, D. Golenbock, M.S. Gresnigt, M.T. Heneka, H.M. Hoffman, R. Hotchkiss, L.A.B. Joosten, D.L. Kastner, M. Korte, E. Latz, P. Libby, T. MandrupPoulsen, A. Mantovani, K.H.G. Mills, K.L. Nowak, L.A. O'Neill, P. Pickkers, T. van der Poll, P.M. Ridker, J. Schalkwijk, D.A. Schwartz, B. Siegmund, C.J. Steer, H. Tilg, J.W.M. van der Meer, F.L. van de Veerdonk, C.A. Dinarello, A guiding map for inflammation, Nat. Immunol. 18 (8) (2017) 826-831, https://doi.org/10.1038/ni.3790.

[63]

S.L. Foster, D.C. Hargreaves, R. Medzhitov, Gene-specific control of inflammation by TLR-induced chromatin modifications, Nature 447 (7147) (2007) 972-978, https://doi.org/10.1038/nature05836.

[64]

J.-H. Koo, S.-H. Kim, S.-H. Jeon, M.-J. Kang, J.-M. Choi, Macrophage-preferable delivery of the leucine-rich repeat domain of NLRX1 ameliorates lethal sepsis by regulating NF- κB and inflammasome signaling activation, Biomaterials 274 (2021) 120845. https://doi-org-s.ytu.yitlink.com:443/10.1016/j.biomaterials.2021.120 845.

[65]

B. Duncan, X. Li, R.F. Landis, S.T. Kim, A. Gupta, L.-S. Wang, R. Ramanathan, R. Tang, J.A. Boerth, V.M. Rotello, Nanoparticle-stabilized capsules for the treatment of bacterial biofilms, ACS Nano 9 (8) (2015) 7775-7782, https://doi.org/10.1021/acsnano.5b01696.

[66]

X. Chen, Y. Chen, L. Zou, X. Zhang, Y. Dong, J. Tang, D.J. McClements, W. Liu, Plant-based nanoparticles prepared from proteins and phospholipids consisting of a Core-multilayer-shell structure: fabrication, stability, and foamability, J. Agric. Food Chem. 67 (23) (2019) 6574-6584, https://doi.org/10.1021/acs.jafc.9b02028.

[67]

Z. Liu, X. Chen, W. Ma, Y. Gao, Y. Yao, J. Li, T. Zhang, X. Qin, Y. Ge, Y. Jiang, Y. Lin, Suppression of lipopolysaccharide-induced sepsis by tetrahedral framework nucleic acid loaded with Quercetin, Adv. Funct. Mater. 32 (43) (2022) 2204587, https://doi.org/10.1002/adfm.202204587.

[68]

Y. Yang, P. Jin, X. Zhang, N. Ravichandran, H. Ying, C. Yu, H. Ying, Y. Xu, J. Yin, K. Wang, M. Wu, Q. Du, New epigallocatechin gallate (EGCG) nanocomplexes CoAssembled with 3-Mercapto-1-Hexanol and β-Lactoglobulin for improvement of antitumor activity, J. Biomed. Nanotechnol. 13 (7) (2017) 805-814, https://doi.org/10.1166/jbn.2017.2400,10.

[69]

Y. Chen, R. Luo, J. Li, S. Wang, J. Ding, K. Zhao, B. Lu, W. Zhou, Intrinsic radical species scavenging activities of tea polyphenols nanoparticles block pyroptosis in endotoxin-induced sepsis, ACS Nano 16 (2) (2022) 2429-2441, https://doi.org/10.1021/acsnano.1c08913.

[70]

X. Zhang, G. Parekh, B. Guo, X. Huang, Y. Dong, W. Han, X. Chen, G. Xiao, Polyphenol and self-assembly: metal polyphenol nanonetwork for drug delivery and pharmaceutical applications, Future Drug Discov. 1 (1) (2019) FDD7, https://doi.org/10.4155/fdd-2019-0001.

[71]

Y. Ruan, Y. Xiong, W. Fang, Q. Yu, Y. Mai, Z. Cao, K. Wang, M. Lei, J. Xu, Y. Liu, X. Zhang, W. Liao, J. Liu, Highly sensitive Curcumin-conjugated nanotheranostic platform for detecting amyloid-beta plaques by magnetic resonance imaging and reversing cognitive deficits of Alzheimer's disease via NLRP3-inhibition, J. Nanobiotechnol. 20 (1) (2022) 322, https://doi.org/10.1186/s12951-022-01524-4.

[72]

C. Guo, N. Diao, D. Zhang, M. Cao, W. Wang, H. Geng, M. Kong, D. Chen, Achyranthes polysaccharide based dual-responsive nano-delivery system for treatment of rheumatoid arthritis, Int. J. Biol. Macromol. 234 (2023) 123677, https://doi.org/10.1016/j.ijbiomac.2023.123677.

[73]

T. van der Poll, F.L. van de Veerdonk, B.P. Scicluna, M.G. Netea, The immunopathology of sepsis and potential therapeutic targets, Nat. Rev. Immunol. 17 (7) (2017) 407-420, https://doi.org/10.1038/nri.2017.36.

[74]

D. Yim, D.-E. Lee, Y. So, C. Choi, W. Son, K. Jang, C.-S. Yang, J.-H. Kim, Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species, ACS Nano 14 (8) (2020) 10324-10336, https://doi.org/10.1021/acsnano.0c03807.

[75]

C.D. Curran, L. Lu, Y. Jia, C.J. Kiely, B.W. Berger, S. McIntosh, Direct singleenzyme biomineralization of catalytically active Ceria and Ceria-Zirconia nanocrystals, ACS Nano 11 (3) (2017) 3337-3346, https://doi.org/10.1021/acsnano.7b00696.

[76]

H.H. Park, W. Park, Y.Y. Lee, H. Kim, H.S. Seo, D.W. Choi, H.-K. Kwon, D.H. Na, T.H. Kim, Y.B. Choy, J.H. Ahn, W. Lee, C.G. Park, Bioinspired DNase-I-Coated melanin-like nanospheres for modulation of infection-associated NETosis dysregulation, Adv. Sci. 7 (23) (2020) 2001940, https://doi.org/10.1002/advs.202001940.

[77]

S. Dey, C. Fan, K.V. Gothelf, J. Li, C. Lin, L. Liu, N. Liu, M.A.D. Nijenhuis, B. Saccà, F.C. Simmel, H. Yan, P. Zhan, DNA origami, Nat. Rev. Methods Prim. 1 (1) (2021) 13, https://doi.org/10.1038/s43586-020-00009-8.

[78]

G. Kong, M. Xiong, L. Liu, L. Hu, H.-M. Meng, G. Ke, X.-B. Zhang, W. Tan, DNA origami-based protein networks: from basic construction to emerging applications, Chem. Soc. Rev. 50 (3) (2021) 1846-1873, https://doi.org/10.1039/D0CS00255K.

[79]

G.A. Knappe, E.-C. Wamhoff, M. Bathe, Functionalizing DNA origami to investigate and interact with biological systems, Nat. Rev. Mater. 8 (2) (2023) 123-138, https://doi.org/10.1038/s41578-022-00517-x.

[80]

Q. Jiang, S. Liu, J. Liu, Z.-G. Wang, B. Ding, Rationally designed DNA-origami nanomaterials for drug delivery in vivo, Adv. Mater. 31 (45) (2019) 1804785, https://doi.org/10.1002/adma.201804785.

[81]

I. Mela, P.P. Vallejo-Ramirez, S. Makarchuk, G. Christie, D. Bailey, R. M. Henderson, H. Sugiyama, M. Endo, C.F. Kaminski, DNA nanostructures for targeted antimicrobial delivery, Angew. Chem. Int. Ed. 59 (31) (2020) 12698-12702, https://doi.org/10.1002/anie.202002740.

[82]

Y. Ma, Z. Lu, B. Jia, Y. Shi, J. Dong, S. Jiang, Z. Li, DNA origami as a nanomedicine for targeted rheumatoid arthritis therapy through reactive oxygen species and nitric oxide scavenging, ACS Nano 16 (8) (2022) 12520-12531, https://doi.org/10.1021/acsnano.2c03991.

[83]

D. Zhong, D. Zhang, W. Chen, J. He, C. Ren, X. Zhang, N. Kong, W. Tao, M. Zhou, Orally deliverable strategy based on microalgal biomass for intestinal disease treatment, Sci. Adv. 7 (48) (2021) eabi9265, https://doi.org/10.1126/sciadv.abi9265.

[84]

F. Zhang, Z. Li, C. Chen, H. Luan, R.H. Fang, L. Zhang, J. Wang, Biohybrid microalgae robots: design, fabrication, materials and applications, Adv. Mater. n/a (n/a) 2303714, https://doi.org/10.1002/adma.202303714.

[85]

J. Wang, F. Soto, S. Liu, Q. Yin, E. Purcell, Y. Zeng, E.-C. Hsu, D. Akin, B. Sinclair, T. Stoyanova, U. Demirci, Volbots: Volvox microalgae-based robots for multimode precision imaging and therapy, Adv. Funct. Mater. 32 (50) (2022) 2201800, https://doi.org/10.1002/adfm.202201800.

[86]

H. Choi, B. Kim, S.H. Jeong, T.Y. Kim, D.-P. Kim, Y.-K. Oh, S.K. Hahn, Microalgaebased biohybrid microrobot for accelerated diabetic wound healing, Small 19 (1) (2023) 2204617, https://doi.org/10.1002/smll.202204617.

[87]

Y. Qiao, F. Yang, T. Xie, Z. Du, D. Zhong, Y. Qi, Y. Li, W. Li, Z. Lu, J. Rao, Y. Sun, M. Zhou, Engineered algae: a novel oxygen-generating system for effective treatment of hypoxic cancer, Sci. Adv. 6 (21) (2020) eaba5996, https://doi.org/10.1126/sciadv.aba5996.

[88]

C. Gao, C.H.T. Kwong, Q. Wang, H. Kam, J. Wei, Q. Chen, J. Zhang, S.M.Y. Lee, D. Gu, R. Wang, Surface-engineered chlorella alleviated hypoxic tumor microenvironment for enhanced chemotherapy and immunotherapy of first-line drugs, Mater. Today 58 (2022) 57-70, https://doi.org/10.1016/j.mattod.2022.06.024.

[89]

N. Branzk, A. Lubojemska, S.E. Hardison, Q. Wang, M.G. Gutierrez, G.D. Brown, V. Papayannopoulos, Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens, Nat. Immunol. 15 (11) (2014) 1017-1025, https://doi.org/10.1038/ni.2987.

[90]

H. Liang, Y. Du, C. Zhu, Z. Zhang, G. Liao, L. Liu, Y. Chen, Nanoparticulate cationic poly(amino acid)s block cancer metastases by destructing neutrophil extracellular traps, ACS Nano 17 (3) (2023) 2868-2880, https://doi.org/10.1021/acsnano.2c11280.

[91]

L. Papafilippou, A. Claxton, P. Dark, K. Kostarelos, M. Hadjidemetriou, Nanotools for sepsis diagnosis and treatment, Adv. Healthcare Mater. 10 (1) (2021) 2001378, https://doi.org/10.1002/adhm.202001378.

[92]

D.A. Hofmaenner, A. Kleyman, A. Press, M. Bauer, M. Singer, The many roles of cholesterol in sepsis:a review, Am. J. Respir. Crit. Care Med. 205 (4) (2022) 388-396, https://doi.org/10.1164/rccm.202105-1197TR.

[93]

L. Liu, M. Bi, Y. Wang, J. Liu, X. Jiang, Z. Xu, X. Zhang, Artificial intelligencepowered microfluidics for nanomedicine and materials synthesis, Nanoscale 13 (46) (2021) 19352-19366, https://doi.org/10.1039/D1NR06195J.

[94]

B. Wang, Y. Li, M. Zhou, Y. Han, M. Zhang, Z. Gao, Z. Liu, P. Chen, W. Du, X. Zhang, X. Feng, B.-F. Liu, Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence, Nat. Commun. 14 (1) (2023) 1341, https://doi.org/10.1038/s41467-023-36017-x.

AI Summary AI Mindmap
PDF (3203KB)

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/