Circular RNA: From non-coding regulators to functional protein encoders

Xinwei Zhang , Hongyan Wu , Xuechuan Hong , Yuling Xiao , Xiaodong Zeng

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100085

PDF (7524KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100085 DOI: 10.1016/j.pscia.2025.100085
Review Article
research-article

Circular RNA: From non-coding regulators to functional protein encoders

Author information +
History +
PDF (7524KB)

Abstract

Circular RNAs (circRNAs), a distinct class of non-coding RNAs characterized by a covalently closed circular structure, have gained prominence as a promising research field due to their unique biological properties and functional roles relative to linear RNAs. This review summarizes recent progress in circRNA research, emphasizing fundamental mechanisms and translational potential. We first outline the discovery, biological features, synthesis, and purification of circRNAs. Next, their delivery systems, biological functions, and applications are reviewed. Finally, we discuss challenges and future prospects for clinical translation, with a focus on advancing precision medicine, gene therapy, and personalized vaccines. This review uniquely integrates recent advances in circRNA biology with their translational applications, offering a comprehensive perspective from molecular mechanisms to clinical potential.

Keywords

Circular RNA / Structural features / Biological functions / Gene therapy / Delivery strategies

Cite this article

Download citation ▾
Xinwei Zhang, Hongyan Wu, Xuechuan Hong, Yuling Xiao, Xiaodong Zeng. Circular RNA: From non-coding regulators to functional protein encoders. Pharmaceutical Science Advances, 2025, 3(1): 100085 DOI:10.1016/j.pscia.2025.100085

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xinwei Zhang: Writing - original draft, Conceptualization. Hongyan Wu: Writing - original draft, Validation, Conceptualization. Xuechuan Hong: Writing - review & editing, Supervision, Funding acquisition, Conceptualization. Yuling Xiao: Writing - review & editing, Project administration, Funding acquisition, Conceptualization. Xiaodong Zeng: Writing - review & editing, Project administration, Methodology, Conceptualization.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

During the preparation of this work the author(s) used ChatGPT in order to assist with language editing and refinement of sentence structure. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Funding

The work was supported by the National Key R&D Program of China (2023YFC3605500), National Natural Science Foundation of China (22477129, 82273796, 82372005, and 82171986), Taishan Scholar Project of Shandong Province (TSQN202306320), Special Supporting Funds for Leading Talents at or above the Provincial Level in Yantai, Natural Science Foundation of Shandong Province (ZR2023MB085, ZR2024QH253), Shandong Laboratory Program (SYS202205).

Data availability

Not applicable.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Not applicable.

References

[1]

H.L. Sanger, G. Klotz, D. Riesner, H.J. Gross, A.K. Kleinschmidt, Viroids are single-stranded covalently closed circular RNA molecules existing as highly basepaired rod-like structures, Proc. Natl. Acad. Sci. 73 (11) (1976) 3852-3856, https://doi.org/10.1073/pnas.73.11.3852.

[2]

M.-T. Hsu, M. Coca-Prados, Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells, Nature 280 (5720) (1979) 339-340, https://doi.org/10.1038/280339a0.

[3]

Jakub O. Westholm, P. Miura S. Olson S. Shenker B. Joseph P. Sanfilippo, Susan E. Celniker, Brenton R. Graveley, Eric C. Lai, Genome-wide analysis of Drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation, Cell Rep. 9 (5) (2014) 1966-1980, https://doi.org/10.1016/j.celrep.2014.10.062.

[4]

C.-Y. Ye, L. Chen, C. Liu, Q.-H. Zhu, L. Fan, Widespread noncoding circular RNAs in plants, New Phytol. 208 (1) (2015) 88-95, https://doi.org/10.1111/nph.13585.

[5]

Y. Zhang, W. Liang, P. Zhang, J. Chen, H. Qian, X. Zhang, W. Xu, J. Exp. Clin. Circular RNAs: emerging cancer biomarkers and targets, Cancer Res. 36 (1) (2017) 152, https://doi.org/10.1186/s13046-017-0624-z.

[6]

W.R. Jeck, J.A. Sorrentino, K. Wang, M.K. Slevin, C.E. Burd, J. Liu, W.F. Marzluff, N.E. Sharpless, Circular RNAs are abundant, conserved, and associated with ALU repeats, RNA 19 (2) (2013) 141-157, https://doi.org/10.1261/rna.035667.112.

[7]

L.-L. Chen, The biogenesis and emerging roles of circular RNAs, Nat. Rev. Mol. Cell Biol. 17 (4) (2016) 205-211, https://doi.org/10.1038/nrm.2015.32.

[8]

A. Beric, Y. Sun, S. Sanchez, C. Martin, T. Powell, R. Kumar, J.A. Pardo, G. Darekar, J. Sanford, D. Dikec, B. Phillips, J.A. Botia, C. Cruchaga, L. Ibanez, Circulating blood circular RNA in Parkinson's disease; from involvement in pathology to diagnostic tools in at-risk individuals, npj Parkinson's Dis. 10 (1) (2024) 222, https://doi.org/10.1038/s41531-024-00839-3.

[9]

C. Song, Y. Zhang, W. Huang, J. Shi, Q. Huang, M. Jiang, Y. Qiu, T. Wang, H. Chen, H. Wang, Circular RNA Cwc27 contributes to Alzheimer's disease pathogenesis by repressing Pur- α activity, Cell Death Differ. 29 (2) (2022) 393-406, https://doi.org/10.1038/s41418-021-00865-1.

[10]

D. Neufeldt, A. Schmidt, E. Mohr, D. Lu, S. Chatterjee, M. Fuchs, K. Xiao, W. Pan, S. Cushman, C. Jahn, M. Juchem, H.J. Hunkler, G. Cipriano, B. Jürgens, K. Schmidt, S. Groß, M. Jung, J. Hoepfner, N. Weber, R. Foo, A. Pich, R. Zweigerdt, T. Kraft, T. Thum, C. Bär, Circular RNA circZFPM2 regulates cardiomyocyte hypertrophy and survival, Basic Res. Cardiol. 119 (4) (2024) 613-632, https://doi.org/10.1007/s00395-024-01048-y.

[11]

J. Cheng, G. Li, W. Wang, D.B. Stovall, G. Sui, D. Li, Circular RNAs with proteincoding ability in oncogenesis, Biochim. Biophys. Acta Rev. Canc 1878 (4) (2023) 188909, https://doi.org/10.1016/j.bbcan.2023.188909.

[12]

G. Huang, S. Li, N. Yang, Y. Zou, D. Zheng, T. Xiao, Recent progress in circular RNAs in human cancers, Cancer Lett. 404 (2017) 8-18, https://doi.org/10.1016/j.canlet.2017.07.002.

[13]

X. Meng, X. Li, P. Zhang, J. Wang, Y. Zhou, M. Chen, Circular RNA: an emerging key player in RNA world, Briefings Bioinf. 18 (4) (2016) 547-557, https://doi.org/10.1093/bib/bbw045bbw045.

[14]

L. Chen, C. Huang, X. Wang, G. Shan, Circular RNAs in eukaryotic cells, Curr. Genom. 16 (5) (2015) 312-318, https://doi.org/10.2174/1389202916666150707161554.

[15]

F.-F. Xu, Z. Liu, X.-X. Fang, B.-B. Cao, Y. Huang, Y.-P. Peng, Y.-H. Qiu, Microgliaderived exosomal ciRS-7 mediates IL-17A effect of promoting neurodegeneration via miR-7 and SNCA targets in an experimental Parkinson's disease, Int. Immunopharmacol. 148 (2025) 114089, https://doi.org/10.1016/j.intimp.2025.114089.

[16]

H. Wu, X. Liu, Y. Fang, Y. Yang, Y. Huang, X. Pan, H.-B. Shen, Decoding protein binding landscape on circular RNAs with base-resolution transformer models, Comput. Biol. Med. 171 (2024) 108175, https://doi.org/10.1016/j.compbiomed.2024.108175.

[17]

Y. Zhang, X.-O. Zhang, T. Chen, J.-F. Xiang, Q.-F. Yin, Y.-H. Xing, S. Zhu, L. Yang, L.-L. Chen, Circular intronic long noncoding RNAs, Mol. Cell 51 (6) (2013) 792-806, https://doi.org/10.1016/j.molcel.2013.08.017.

[18]

J. Tang, X. Wang, D. Xiao, S. Liu, Y. Tao, The chromatin-associated RNAs in gene regulation and cancer, Mol. Cancer 22 (1) (2023) 27, https://doi.org/10.1186/s12943-023-01724-y.

[19]

Y. Zhang, X.-O. Zhang, T. Chen, J.-F. Xiang, Q.-F. Yin, Y.-H. Xing, S. Zhu, L. Yang, L.-L. Chen, Circular intronic long noncoding RNAs, Mol. Cell 51 (6) (2013) 792-806, https://doi.org/10.1016/j.molcel.2013.08.017.

[20]

Z. Li, C. Huang, C. Bao, L. Chen, M. Lin, X. Wang, G. Zhong, B. Yu, W. Hu, L. Dai, P. Zhu, Z. Chang, Q. Wu, Y. Zhao, Y. Jia, P. Xu, H. Liu, G. Shan, Exon-intron circular RNAs regulate transcription in the nucleus, Nat. Struct. Mol. Biol. 22 (3) (2015) 256-264, https://doi.org/10.1038/nsmb.2959.

[21]

H. Chen, X. Wang, S. Liu, Z. Tang, F. Xie, J. Yin, P. Sun, H. Wang, Circular RNA in pancreatic cancer: biogenesis, mechanism, function and clinical application, Int. J. Med. Sci. 22 (7) (2025) 1612-1629. https://www.medsci.org/v22p1612.htm.

[22]

M. Ron, I. Ulitsky, Context-specific effects of sequence elements on subcellular localization of linear and circular RNAs, Nat. Commun. 13 (1) (2022) 2481, https://doi.org/10.1038/s41467-022-30183-0.

[23]

D. Zhang, Y. Ma, M. Naz, N. Ahmed, L. Zhang, J.-J. Zhou, D. Yang, Z. Chen, Advances in CircRNAs in the past decade: review of CircRNAs biogenesis, regulatory mechanisms, and functions in plants, Genes 15 (7) (2024) 958, https://doi.org/10.3390/genes15070958.

[24]

P. Obi, Y.G. Chen, The design and synthesis of circular RNAs, Methods 196 (2021) 85-103, https://doi.org/10.1016/j.ymeth.2021.02.020.

[25]

S. Petkovic, S. Müller, Synthesis and engineering of circular RNAs, in: A.Papantonis (Eds.), Circular Rnas: Methods and Protocols, Springer New York, New York, NY, 2018, pp. 167-180, https://doi.org/10.1007/978-1-4939-7562-4_14.

[26]

K. Nakamoto, N. Abe, G. Tsuji, Y. Kimura, F. Tomoike, Y. Shimizu, H. Abe, Chemically synthesized circular RNAs with phosphoramidate linkages enable rolling circle translation, Chem. Commun. 56 (46) (2020) 6217-6220, https://doi.org/10.1039/D0CC02140G.

[27]

M.J. Moore,Joining RNA molecules with T4 DNA ligase,in: S. R. Haynes (Ed.), RNA-protein Interaction Protocols, Humana Press, Totowa, NJ, 1999, pp. 11-19, https://doi.org/10.1385/1-59259-676-2:11.

[28]

Y.G. Chen, M.V. Kim, X. Chen, P.J. Batista, S. Aoyama, J.E. Wilusz, A. Iwasaki, H. Y. Chang, Sensing self and foreign circular RNAs by intron identity, Mol. Cell 67 (2) (2017) 228-238.e5, https://doi.org/10.1016/j.molcel.2017.05.022.

[29]

A.M. Zhelkovsky, L.A. McReynolds, Structure-function analysis of methanobacterium thermoautotrophicum RNA ligase - engineering a thermostable ATP independent enzyme, BMC Mol. Biol. 13 (1) (2012) 24, https://doi.org/10.1186/1471-2199-13-24.

[30]

A. Costello, N.T. Lao, N. Barron, M. Clynes, Reinventing the wheel: synthetic circular RNAs for mammalian cell engineering, Trends Biotechnol. 38 (2) (2020) 217-230, https://doi.org/10.1016/j.tibtech.2019.07.008.

[31]

J. Nandakumar, S. Shuman, How an RNA ligase discriminates RNA versus DNA damage, Mol. Cell 16 (2) (2004) 211-221, https://doi.org/10.1016/j.molcel.2004.09.022.

[32]

X. Chen, Y. Lu, Circular RNA: biosynthesis in vitro, Front. Bioeng. Biotechnol. 9 (2021), https://doi.org/10.3389/fbioe.2021.787881.

[33]

H. Chen, K. Cheng, X. Liu, R. An, M. Komiyama, X. Liang, Preferential production of RNA rings by T4 RNA ligase 2 without any splint through rational design of precursor strand, Nucleic Acids Res. 48 (9) (2020), https://doi.org/10.1093/nar/gkaa181e54-e54.

[34]

P. Obi, Y.G. Chen, The design and synthesis of circular RNAs, Methods 196 (2021) 85-103, https://doi.org/10.1016/j.ymeth.2021.02.020.

[35]

M. Puttaraju, M. Been, Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons, Nucleic Acids Res. 20 (20) (1992) 5357-5364, https://doi.org/10.1093/nar/20.20.5357.

[36]

L. Wang, C. Dong, W. Zhang, X. Ma, W. Rou, K. Yang, T. Cui, S. Qi, L. Yang, J. Xie, G. Yu, L. Wang, X. Chen, Z. Liu, Developing an enhanced chimeric permuted intron-exon system for circular RNA therapeutics, Theranostics 14 (15) (2024) 5869-5882, https://doi.org/10.7150/thno.98214.

[37]

J.W. Rausch, W.F. Heinz, M.J. Payea, C. Sherpa, M. Gorospe, S.F.J. Le Grice, Characterizing and circumventing sequence restrictions for synthesis of circular RNA in vitro, Nucleic Acids Res. 49 (6) (2021), https://doi.org/10.1093/nar/gkaa1256e35-e35.

[38]

R.A. Wesselhoeft, P.S. Kowalski, F.C. Parker-Hale, Y. Huang, N. Bisaria, D. G. Anderson, RNA circularization diminishes immunogenicity and can extend translation duration in vivo, Mol. Cell 74 (3) (2019) 508-520.e4, https://doi.org/10.1016/j.molcel.2019.02.015.

[39]

S. Mikheeva, M. Hakim-Zargar, D. Carlson, K. Jarrell, Use of an engineered ribozyme to produce a circular human exon, Nucleic Acids Res. 25 (24) (1997) 5085-5094, https://doi.org/10.1093/nar/25.24.5085.

[40]

M. Tong, N. Palmer, A. Dailamy, A. Kumar, H. Khaliq, S. Han, E. Finburgh, M. Wing, C. Hong, Y. Xiang, K. Miyasaki, A. Portell, J. Rainaldi, A. Suhardjo, S. Nourreddine, W.L. Chew, E.J. Kwon, P. Mali, Robust genome and cell engineering via in vitro and in situ circularized RNAs, Nat. Biomed. Eng. 9 (1) (2025) 109-126, https://doi.org/10.1038/s41551-024-01245-z.

[41]

A.D. Branch, H.D. Robertson, A replication cycle for viroids and other small infectious RNA's, Science 223 (4635) (1984) 450-455, https://doi.org/10.1126/science.6197756.

[42]

S. Müller, B. Appel, In vitro circularization of RNA, RNA Biol. 14 (8) (2017) 1018-1027, https://doi.org/10.1080/15476286.2016.1239009.

[43]

C.-I. Su, Z.-S. Chuang, C.-T. Shie, H.-I. Wang, Y.-T. Kao, C.-Y. Yu, A cis-acting ligase ribozyme generates circular RNA in vitro for ectopic protein functioning, Nat. Commun. 15 (1) (2024) 6607, https://doi.org/10.1038/s41467-024-51044y.

[44]

Y. Du, P.K. Zuber, H. Xiao, X. Li, Y. Gordiyenko, V. Ramakrishnan, Efficient circular RNA synthesis for potent rolling circle translation, Nat. Biomed. Eng. (2024), https://doi.org/10.1038/s41551-024-01306-3.

[45]

J. Breuer, O. Rossbach, Production and purification of artificial circular RNA sponges for application in molecular biology and medicine, Methods Protoc. (2020), https://doi.org/10.3390/mps3020042.

[46]

H. Suzuki, Y. Zuo, J. Wang, M.Q. Zhang, A. Malhotra, A. Mayeda, Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing, Nucleic Acids Res. 34 (8) (2006), https://doi.org/10.1093/nar/gkl151e63-e63.

[47]

H.A. Vincent, M.P. Deutscher, Substrate recognition and catalysis by the exoribonuclease RNase R, J. Biol. Chem. 281 (40) (2006) 29769-29775, https://doi.org/10.1074/jbc.M606744200.

[48]

Y. Yang, H. Li, Z. Li, Y. Zhang, S. Zhang, Y. Chen, M. Yu, G. Ma, Z. Su, Sizeexclusion HPLC provides a simple, rapid, and versatile alternative method for quality control of vaccines by characterizing the assembly of antigens, Vaccine 33 (9) (2015) 1143-1150, https://doi.org/10.1016/j.vaccine.2015.01.031.

[49]

R.A. Wesselhoeft, P.S. Kowalski, D.G. Anderson, Engineering circular RNA for potent and stable translation in eukaryotic cells, Nat. Commun. 9 (1) (2018) 2629, https://doi.org/10.1038/s41467-018-05096-6.

[50]

Z. Zhang, W. Li, X. Ren, D. Luo, X. Yuan, L. Yu, D. Wang, Y. Cao, Mitigating cellular dysfunction through contaminant reduction in synthetic circRNA for high-efficiency mRNA-Based cell reprogramming, Adv. Sci. 12 (16) (2025) 2416629, https://doi.org/10.1002/advs.202416629.

[51]

H. Shi, S. Peng, M. Yang, Y. Huang, Engineering circular RNA with Tetrahymena group I intron ribozyme, Chin. Chem. Lett. 36 (9) (2025) 111160, https://doi.org/10.1016/j.cclet.2025.111160.

[52]

L. Stamatatos, R. Leventis, M.J. Zuckermann, J.R. Silvius, Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes, Biochemistry 27 (11) (1988) 3917-3925, https://doi.org/10.1021/bi00411a005.

[53]

A.T. He, J. Liu, F. Li, B.B. Yang, Targeting circular RNAs as a therapeutic approach: current strategies and challenges, Signal Transduct. Targeted Ther. 6 (1) (2021) 185, https://doi.org/10.1038/s41392-021-00569-5.

[54]

S. Xu, Y. Xu, N.C. Solek, J. Chen, F. Gong, A.J. Varley, A. Golubovic, A. Pan, S. Dong, G. Zheng, B. Li, Tumor-tailored ionizable lipid nanoparticles facilitate IL12 circular RNA delivery for enhanced lung cancer immunotherapy, Adv. Mater. 36 (29) (2024) 2400307, https://doi.org/10.1002/adma.202400307.

[55]

J. Wan, C. Wang, Z. Wang, L. Wang, H. Wang, M. Zhou, Z.F. Fu, L. Zhao,CXCL 13 promotes broad immune responses induced by circular RNA vaccines, Proc. Natl. Acad. Sci. 121 (44) (2024) e2406434121, https://doi.org/10.1073/pnas.2406434121.

[56]

Z. Li, L. Amaya, A. Ee, S.K. Wang, A. Ranjan, R.M. Waymouth, H.Y. Chang, P. A. Wender, Organ- and cell-selective delivery of mRNA in vivo using guanidinylated serinol charge-altering releasable transporters, J. Am. Chem. Soc. 146 (21) (2024) 14785-14798, https://doi.org/10.1021/jacs.4c02704.

[57]

W.W. Du, W. Yang, X. Li, F.M. Awan, Z. Yang, L. Fang, J. Lyu, F. Li, C. Peng, S. N. Krylov, Y. Xie, Y. Zhang, C. He, N. Wu, C. Zhang, M. Sdiri, J. Dong, J. Ma, C. Gao, S. Hibberd, B.B. Yang, A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy, Oncogene 37 (44) (2018) 5829-5842, https://doi.org/10.1038/s41388-018-0369-y.

[58]

Z.-G. Yang, F.M. Awan, W.W. Du, Y. Zeng, J. Lyu, D. Wu, S. Gupta, W. Yang, B. B. Yang, The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function, Mol. Ther. 25 (9) (2017) 2062-2074, https://doi.org/10.1016/j.ymthe.2017.05.022.

[59]

O.-J. Isaac, C. Joan, G.-F. Lorena, A.M. Zoe, C. Eudald, F.P. Victor, Engineered inorganic nanoparticles for drug delivery applications, Curr. Drug Metabol. 14 (5) (2013) 518-530, https://doi.org/10.2174/13892002113149990008.

[60]

M.-F. Feng, L.-M. Qin, B. Sun, X. Yu, Y. Wu, Harnessing HPV virus-like nanoparticles for efficient circular RNA delivery, ACS Appl. Nano Mater. 8 (1) (2025) 39-49, https://doi.org/10.1021/acsanm.4c03770.

[61]

J. Skog, T. Würdinger, S. van Rijn, D.H. Meijer, L. Gainche, W.T. Curry, B. S. Carter, A.M. Krichevsky, X.O. Breakefield, Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat. Cell Biol. 10 (12) (2008) 1470-1476, https://doi.org/10.1038/ncb1800.

[62]

L. Fan, L. Yao, Z. Li, Z. Wan, W. Sun, S. Qiu, W. Zhang, D. Xiao, L. Song, G. Yang, Y. Zhang, M. Wei, X. Yang, Exosome-based mitochondrial delivery of circRNA mSCAR alleviates sepsis by orchestrating macrophage activation, Adv. Sci. (Weinh.) 10 (14) (2023) e2205692, https://doi.org/10.1002/advs.202205692.

[63]

W.W. Du, W. Yang, X. Li, F.M. Awan, Z. Yang, L. Fang, J. Lyu, F. Li, C. Peng, S. N. Krylov, Y. Xie, Y. Zhang, C. He, N. Wu, C. Zhang, M. Sdiri, J. Dong, J. Ma, C. Gao, S. Hibberd, B.B. Yang, A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy, Oncogene 37 (44) (2018) 5829-5842, https://doi.org/10.1038/s41388-018-0369-y.

[64]

M. Kalmouni, S. Al-Hosani, M. Magzoub, Cancer targeting peptides, Cell. Mol. Life Sci. 76 (11) (2019) 2171-2183, https://doi.org/10.1007/s00018-019-03061-0.

[65]

G. Hultqvist, S. Syvänen, X.T. Fang, L. Lannfelt, D. Sehlin, Bivalent brain shuttle increases antibody uptake by monovalent binding to the transferrin receptor, Theranostics 7 (2) (2017) 308-318. https://www.thno.org/v07p0308.htm.

[66]

K. Hu, J. Li, Y. Shen, W. Lu, X. Gao, Q. Zhang, X. Jiang, Lactoferrin-conjugated PEG-PLA nanoparticles with improved brain delivery: in vitro and in vivo evaluations, J. Contr. Release 134 (1) (2009) 55-61, https://doi.org/10.1016/j.jconrel.2008.10.016.

[67]

G. Toccaceli, G. Barbagallo, S. Peschillo, Low-intensity focused ultrasound for the treatment of brain diseases: safety and feasibility, Theranostics 9 (2) (2019) 537-539, https://doi.org/10.7150/thno.31765.

[68]

T.B. Hansen, T.I. Jensen, B.H. Clausen, J.B. Bramsen, B. Finsen, C.K. Damgaard, J. Kjems, Natural RNA circles function as efficient microRNA sponges, Nature 495 (7441) (2013) 384-388, https://doi.org/10.1038/nature11993.

[69]

S. Petkovic, S. Müller, RNA circularization strategies in vivo and in vitro, Nucleic Acids Res. 43 (4) (2015) 2454-2465, https://doi.org/10.1093/nar/gkv045.

[70]

A. Lavenniah, T.D.A. Luu, Y.P. Li, T.B. Lim, J. Jiang, M. Ackers-Johnson, R.S. Y. Foo, Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy, Mol. Ther. 28 (6) (2020) 1506-1517, https://doi.org/10.1016/j.ymthe.2020.04.006.

[71]

L. Zhang, X. Song, X. Chen, Q. Wang, X. Zheng, C. Wu, J. Jiang, Circular RNA CircCACTIN promotes gastric cancer progression by sponging MiR-331-3p and regulating TGFBR1 expression, Int. J. Biol. Sci. 15 (5) (2019) 1091-1103, https://doi.org/10.7150/ijbs.31533.

[72]

M. Piwecka, P. Glažar, L.R. Hernandez-Miranda, S. Memczak, S.A. Wolf, A. Rybak-Wolf, A. Filipchyk, F. Klironomos, C.A. Cerda Jara, P. Fenske, T. Trimbuch, V. Zywitza, M. Plass, L. Schreyer, S. Ayoub, C. Kocks, R. Kühn, C. Rosenmund, C. Birchmeier, N. Rajewsky, Loss of a Mammalian circular RNA locus causes miRNA deregulation and affects brain function, Science 357 (6357) (2017), https://doi.org/10.1126/science.aam8526eaam8526.

[73]

W. Wang, C. Liu, D. He, G. Shi, P. Song, B. Zhang, T. Li, J. Wei, Y. Jiang, L. Ma, CircRNA CDR1as affects functional repair after spinal cord injury and regulates fibrosis through the SMAD pathway, Pharmacol. Res. 204 (2024) 107189, https://doi.org/10.1016/j.phrs.2024.107189.

[74]

X. Shi, S. Pang, J. Zhou, G. Yan, R. Gao, H. Wu, Z. Wang, Y. Wei, X. Liu, W. Tan,Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs, Mol. Cancer 23 (1) (2024) 52, https://doi.org/10.1186/s12943-024-01968-2.

[75]

M.W. Hentze, T. Preiss, Circular RNAs: splicing's enigma variations, EMBO J. 32 (7) (2013) 923-925, https://doi.org/10.1038/emboj.2013.53.

[76]

P.W. Hinds, S. Mittnacht, V. Dulic, A. Arnold, S.I. Reed, R.A. Weinberg, Regulation of retinoblastoma protein functions by ectopic expression of human cyclins, Cell 70 (6) (1992) 993-1006, https://doi.org/10.1016/0092-8674(92)90249-C.

[77]

J.W. Harper, G.R. Adami, N. Wei, K. Keyomarsi, S.J. Elledge, The p21 Cdkinteracting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases, Cell 75 (4) (1993) 805-816, https://doi.org/10.1016/0092-8674(93)90499-g.

[78]

W.W. Du, W. Yang, E. Liu, Z. Yang, P. Dhaliwal, B.B. Yang, Foxo 3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2, Nucleic Acids Res. 44 (6) (2016) 2846-2858, https://doi.org/10.1093/nar/gkw027.

[79]

R. Su, M. Zhou, J. Lin, G. Shan, C. Huang, A circular RNA-gawky-chromatin regulatory axis modulates stress-induced transcription, Nucleic Acids Res. 52 (7) (2024) 3702-3721, https://doi.org/10.1093/nar/gkae157.

[80]

M. Peng, S. Zhang, P. Wu, X. Hou, D. Wang, J. Ge, H. Qu, C. Fan, Y. Zhou, B. Xiang, Q. Liao, M. Zhou, M. Tan, G. Li, W. Xiong, P. Chen, Z. Zeng, Z. Gong, Circular RNA circCLASP2 promotes nasopharyngeal carcinoma progression through binding to DHX9 to enhance PCMT1 translation, Mol. Cancer 24 (1) (2025) 67, https://doi.org/10.1186/s12943-025-02272-3.

[81]

N. Zhang, X. Wang, Y. Li, Y. Lu, C. Sheng, Y. Sun, N. Ma, Y. Jiao, Mechanisms and therapeutic implications of gene expression regulation by circRNA-protein interactions in cancer, Commun. Biol. 8 (1) (2025) 77, https://doi.org/10.1038/s42003-024-07383-z.

[82]

T. Chen, X. Wang, C. Li, H. Zhang, Y. Liu, D. Han, Y. Li, Z. Li, D. Luo, N. Zhang, M. Zheng, B. Chen, L. Wang, W. Zhao, Q. Yang, CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and translocation, Oncogene 40 (15) (2021) 2756-2771, https://doi.org/10.1038/s41388-021-01739-z.

[83]

L.-L. Chen, The biogenesis and emerging roles of circular RNAs, Nat. Rev. Mol. Cell Biol. 17 (4) (2016) 205-211, https://doi.org/10.1038/nrm.2015.32.

[84]

Y. Zhang, X.-O. Zhang, T. Chen, J.-F. Xiang, Q.-F. Yin, Y.-H. Xing, S. Zhu, L. Yang, L.-L. Chen, Circular intronic long noncoding RNAs, Mol. Cell 51 (6) (2013) 792-806, https://doi.org/10.1016/j.molcel.2013.08.017.

[85]

L. Ding, Y. Zhao, S. Dang, Y. Wang, X. Li, X. Yu, Z. Li, J. Wei, M. Liu, G. Li, Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4, Mol. Cancer 18 (1) (2019) 45, https://doi.org/10.1186/s12943-019-1006-2.

[86]

V.M. Conn, A.M. Chinnaiyan, S.J. Conn, Circular RNA in cancer, Nat. Rev. Cancer 24 (9) (2024) 597-613, https://doi.org/10.1038/s41568-024-00721-7.

[87]

X. Xu, J. Zhang, Y. Tian, Y. Gao, X. Dong, W. Chen, X. Yuan, W. Yin, J. Xu, K. Chen, C. He, L. Wei, CircRNA inhibits DNA damage repair by interacting with host gene, Mol. Cancer 19 (1) (2020) 128, https://doi.org/10.1186/s12943-020-01246-x.

[88]

I. Legnini, G. Di Timoteo, F. Rossi, M. Morlando, F. Briganti, O. Sthandier, A. Fatica, T. Santini, A. Andronache, M. Wade, P. Laneve, N. Rajewsky, I. Bozzoni, Circ-ZNF 609 is a circular RNA that can be translated and functions in myogenesis, Mol. Cell 66 (1) (2017) 22-37.e9, https://doi.org/10.1016/j.molcel.2017.02.017.

[89]

N.R. Pamudurti, O. Bartok, M. Jens, R. Ashwal-Fluss, C. Stottmeister, L. Ruhe, M. Hanan, E. Wyler, D. Perez-Hernandez, E. Ramberger, S. Shenzis, M. Samson, G. Dittmar, M. Landthaler, M. Chekulaeva, N. Rajewsky, S. Kadener, Translation of CircRNAs, Mol. Cell 66 (1) (2017) 9-21.e7, https://doi.org/10.1016/j.molcel.2017.02.021.

[90]

S. Bonnal, C. Boutonnet, L. Prado-Lourenço, S. Vagner, IRESdb: the internal ribosome entry site database, Nucleic Acids Res. 31 (1) (2003) 427-428, https://doi.org/10.1093/nar/gkg003.

[91]

C.-y. Chen, P. Sarnow, Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs, Science 268 (5209) (1995) 415-417, https://doi.org/10.1126/science.7536344.

[92]

J. Cheng, G. Li, W. Wang, D.B. Stovall, G. Sui, D. Li, Circular RNAs with proteincoding ability in oncogenesis, Biochim. Biophys. Acta Rev. Canc 1878 (4) (2023) 188909, https://doi.org/10.1016/j.bbcan.2023.188909.

[93]

C.-K. Chen, R. Cheng, J. Demeter, J. Chen, S. Weingarten-Gabbay, L. Jiang, M. P. Snyder, J.S. Weissman, E. Segal, P.K. Jackson, H.Y. Chang, Structured elements drive extensive circular RNA translation, Mol. Cell 81 (20) (2021) 4300-4318. e13, https://doi.org/10.1016/j.molcel.2021.07.042.

[94]

Y. Li, Z. Wang, P. Su, Y. Liang, Z. Li, H. Zhang, X. Song, D. Han, X. Wang, Y. Liu, J. Yang, B. Chen, L. Wang, W. Zhao, Q. Yang circ-EIF 6 encodes EIF6-224 aa to promote TNBC progression via stabilizing MYH9 and activating the wnt/BetaCatenin pathway, Mol. Ther. 30 (1) (2022) 415-430, https://doi.org/10.1016/j.ymthe.2021.08.026.

[95]

Y. Fu, D. Dominissini, G. Rechavi, C. He, Gene expression regulation mediated through reversible m6A RNA methylation, Nat. Rev. Genet. 15 (5) (2014) 293-306, https://doi.org/10.1038/nrg3724.

[96]

K.D. Meyer, m6A-mediated translation regulation, Biochim. Biophys. Acta (BBA) Gene Reg. Mech. 1862 (3) (2019) 301-309, https://doi.org/10.1016/j.bbagrm.2018.10.006.

[97]

X. Jiang, B. Liu, Z. Nie, L. Duan, Q. Xiong, Z. Jin, C. Yang, Y. Chen, The role of m6A modification in the biological functions and diseases, Signal Transduct. Targeted Ther. 6 (1) (2021) 74, https://doi.org/10.1038/s41392-020-00450-x.

[98]

Y. Yang, X. Fan, M. Mao, X. Song, P. Wu, Y. Zhang, Y. Jin, Y. Yang, L.-L. Chen, Y. Wang, C.C.L. Wong, X. Xiao, Z. Wang, Extensive translation of circular RNAs driven by N6-methyladenosine, Cell Res. 27 (5) (2017) 626-641, https://doi.org/10.1038/cr.2017.31.

[99]

J. Zhao, E.E. Lee, J. Kim, R. Yang, B. Chamseddin, C. Ni, E. Gusho, Y. Xie, C.M. Chiang, M. Buszczak, X. Zhan, L. Laimins, R.C. Wang, Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus, Nat. Commun. 10 (1) (2019) 2300, https://doi.org/10.1038/s41467-019-10246-5.

[100]

C. Tang, Y. Xie, T. Yu, N. Liu, Z. Wang, R.J. Woolsey, Y. Tang, X. Zhang, W. Qin, Y. Zhang, G. Song, W. Zheng, J. Wang, W. Chen, X. Wei, Z. Xie, R. Klukovich, H. Zheng, D.R. Quilici, W. Yan, m6A-dependent biogenesis of circular RNAs in Male germ cells, Cell Res. 30 (3) (2020) 211-228, https://doi.org/10.1038/s41422-020-0279-8.

[101]

H.J. Hwang, Y.K. Kim, Molecular mechanisms of circular RNA translation, Exp. Mol. Med. 56 (6) (2024) 1272-1280, https://doi.org/10.1038/s12276-024-01220-3.

[102]

Z. Wang, C. Huang, A. Zhang, C. Lu, L. Liu, Overexpression of circRNA_100290 promotes the progression of laryngeal squamous cell carcinoma through the miR-136-5p/RAP2C axis, Biomed. Pharmacother. 125 (2020) 109874, https://doi.org/10.1016/j.biopha.2020.109874.

[103]

R.S. Zheng, R. Chen, B.F. Han, S.M. Wang, L. Li, K.X. Sun, H.M. Zeng, W.W. Wei, J. He, Cancer incidence and mortality in China, 2022, Zhonghua Zhongliu Zazhi 46 (3) (2024) 221-231, https://doi.org/10.3760/cma.j.cn112152-2024011900035.

[104]

T. Zhou, Z. Li, Y. Jiang, K. Su, C. Xu, H. Yi, Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer, Cancer Gene Ther. 31 (4) (2024) 507-516, https://doi.org/10.1038/s41417-024-00736-0.

[105]

H. Zhang, X.P. Ma, X. Li, F.S. Deng, Circular RNA circ_0067934 exhaustion expedites cell apoptosis and represses cell proliferation, migration and invasion in thyroid cancer via sponging miR-1304 and regulating CXCR1 expression, Eur. Rev. Med. Pharmacol. Sci. 23 (24) (2019) 10851-10866, https://doi.org/10.26355/eurrev_201912_19789.

[106]

M.Y. Long, J.W. Chen, Y. Zhu, D.Y. Luo, S.J. Lin, X.Z. Peng, L.P. Tan, H.H. Li, Comprehensive circular RNA profiling reveals the regulatory role of circRNA_ 0007694 in papillary thyroid carcinoma, Am. J. Tourism Res. 12 (4) (2020) 1362-1378.

[107]

T. Zhou, Z. Li, Y. Jiang, K. Su, C. Xu, H. Yi, Emerging roles of circular RNAs in regulating the hallmarks of thyroid cancer, Cancer Gene Ther. 31 (4) (2024) 507-516, https://doi.org/10.1038/s41417-024-00736-0.

[108]

A. Ferro, B. Peleteiro, M. Malvezzi, C. Bosetti, P. Bertuccio, F. Levi, E. Negri, C. La Vecchia, N. Lunet, Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype, Eur. J. Cancer 50 (7) (2014) 1330-1344, https://doi.org/10.1016/j.ejca.2014.01.029.

[109]

W. Sui, Z. Shi, W. Xue, M. Ou, Y. Zhu, J. Chen, H. Lin, F. Liu, Y. Dai, Circular RNA and gene expression profiles in gastric cancer based on microarray chip technology, Oncol. Rep. 37 (3) (2017) 1804-1814, https://doi.org/10.3892/or.2017.5415.

[110]

Y. Guo, S. Luo, S. Liu, C. Yang, W. Lv, Y. Liang, T. Ji, W. Li, C. Liu, X. Li, L. Zheng, Y. Zhang, Bimodal in situ analyzer for circular RNA in extracellular vesicles combined with machine learning for accurate gastric cancer detection, Adv. Sci. (2025) 2409202, https://doi.org/10.1002/advs.202409202.

[111]

H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 71 (3) (2021) 209-249, https://doi.org/10.3322/caac.21660.

[112]

R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, 2022, CA Cancer J. Clin. 72 (1) (2022) 7-33, https://doi.org/10.3322/caac.21708.

[113]

T. Shibue, R.A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications, Nat. Rev. Clin. Oncol. 14 (10) (2017) 611-629, https://doi.org/10.1038/nrclinonc.2017.44.

[114]

J. Meng, S. Chen, J.-X. Han, B. Qian, X.-R. Wang, W.-L. Zhong, Y. Qin, H. Zhang, W.-F. Gao, Y.-Y. Lei, W. Yang, L. Yang, C. Zhang, H.-J. Liu, Y.-R. Liu, H.-G. Zhou, T. Sun, C. Yang, Twist 1 regulates vimentin through Cul2 circular RNA to promote EMT in hepatocellular carcinoma, Cancer Res. 78 (15) (2018) 4150-4162, https://doi.org/10.1158/0008-5472.CAN-17-3009.

[115]

D. Fei, F. Wang, Y. Wang, J. Chen, S. Chen, L. Fan, L. Yang, Q. Ren, S. Duangmano, F. Du, H. Liu, J. Zhou, J. Sheng, Y. Zhao, X. Wu, M. Li, Z. Xiao, Z. Zhang, X. Jiang, Circular RNA ACVR2A promotes the progression of hepatocellular carcinoma through mir-511-5p targeting PI3K-Akt signaling pathway, Mol. Cancer 23 (1) (2024) 159, https://doi.org/10.1186/s12943-024-02074-z.

[116]

K.J. Barnham, C.L. Masters, A.I. Bush, Neurodegenerative diseases and oxidative stress, Nat. Rev. Drug Discov. 3 (3) (2004) 205-214, https://doi.org/10.1038/nrd1330.Masters,C.&Bush,A.

[117]

B. Prusiner Stanley, Neurodegenerative diseases and prions, N. Engl. J. Med. 344 (20) (2001) 1516-1526, https://doi.org/10.1056/NEJM200105173442006.

[118]

E.M. Reiman, Putting AD treatments and biomarkers to the test, Nat. Rev. Neurol. 13 (2) (2017) 74-76, https://doi.org/10.1038/nrneurol.2017.1.

[119]

P. Scheltens, B. De Strooper, M. Kivipelto, H. Holstege, G. Chételat, C. E. Teunissen, J. Cummings, W.M. van der Flier, Alzheimer's disease, Lancet 397 (10284) (2021) 1577-1590, https://doi.org/10.1016/S0140-6736(20)32205-4.

[120]

J. Van Swieten, M.G. Spillantini, Hereditary frontotemporal dementia caused by tau gene mutations, Brain Pathol. 17 (1) (2007) 63-73, https://doi.org/10.1111/j.1750-3639.2007.00052.x.

[121]

J.R. Welden, J. van Doorn, P.T. Nelson, S. Stamm, The human MAPT locus generates circular RNAs, Biochim. Biophys. Acta Mol. Basis Dis. 1864 (9, Part B) (2018) 2753-2760, https://doi.org/10.1016/j.bbadis.2018.04.023.

[122]

R.B. Schneider, J. Iourinets, I.H. Richard, Parkinson's disease psychosis: presentation, diagnosis and management, Neurodegener. Dis. Manag. 7 (6) (2017) 365-376, https://doi.org/10.2217/nmt-2017-0028.

[123]

L. Kumar, Shamsuzzama, P. Jadiya, R. Haque, S. Shukla, A. Nazir, Functional characterization of novel circular RNA molecule, circzip-2 and its synthesizing gene zip-2 in C. elegans model of parkinson's disease, Mol. Neurobiol. 55 (8) (2018) 6914-6926, https://doi.org/10.1007/s12035-018-0903-5.

[124]

D. Yang, T. Li, Y. Wang, Y. Tang, H. Cui, Y. Tang, X. Zhang, D. Chen, N. Shen, W. Le, miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression, J. Cell Sci. 125 (7) (2012) 1673-1682, https://doi.org/10.1242/jcs.086421.

[125]

S.M. Hernandez, E.B. Tikhonova, K.R. Baca, F. Zhao, X. Zhu, A.L. Karamyshev, Unexpected implication of SRP and AGO2 in parkinson's disease: involvement in alpha-synuclein biogenesis, Cells 10 (10) (2021) 2792, https://doi.org/10.3390/cells10102792.

[126]

D.-P. Wu, Y.-D. Zhao, Q.-Q. Yan, L.-L. Liu, Y.-S. Wei, J.-L. Huang, Circular RNAs: emerging players in brain aging and neurodegenerative diseases, J. Pathol. 259 (1) (2023) 1-9, https://doi.org/10.1002/path.6021.

[127]

X. Mei, S.-Y. Chen, Circular RNAs in cardiovascular diseases, Pharmacol. Ther. 232 (2022) 107991, https://doi.org/10.1016/j.pharmthera.2021.107991.

[128]

S. Mei, X. Ma, L. Zhou, Q. Wuyun, Z. Cai, J. Yan, H. Ding, Circular RNA in cardiovascular diseases: biogenesis, function and application, Biomolecules (2024), https://doi.org/10.3390/biom14080952.

[129]

M. Li, W. Ding, M.A. Tariq, W. Chang, X. Zhang, W. Xu, L. Hou, Y. Wang, J. Wang, A circular transcript of gene mediates ischemic myocardial injury by targeting miR-133a-3p, Theranostics 8 (21) (2018) 5855-5869. https://www.thno.org/v08p5855.htm.

[130]

C. Zhang, S.T. Huo, Z. Wu, L. Chen, C. Wen, H. Chen, W.W. Du, N. Wu, D. Guan, S. Lian, B.B. Yang, Rapid development of targeting circRNAs in cardiovascular diseases, Mol. Ther. Nucleic Acids 21 (2020) 568-576, https://doi.org/10.1016/j.omtn.2020.06.022.

[131]

W.L.W. Tan, B.T.S. Lim, C.G.O. Anene-Nzelu, M. Ackers-Johnson, A. Dashi, K. See, Z. Tiang, D.P. Lee, W.W. Chua, T.D.A. Luu, P.Y.Q. Li, A.M. Richards, R.S.Y. Foo, A landscape of circular RNA expression in the human heart, Cardiovasc. Res. 113 (3) (2017) 298-309, https://doi.org/10.1093/cvr/cvw250.

[132]

Z. Yi, L. Qu, H. Tang, Z. Liu, Y. Liu, F. Tian, C. Wang, X. Zhang, Z. Feng, Y. Yu, P. Yuan, Z. Yi, Y. Zhao, W. Wei, Engineered circular ADAR-Recruiting RNAs increase the efficiency and fidelity of RNA editing in vitro and in vivo, Nat. Biotechnol. 40 (6) (2022) 946-955, https://doi.org/10.1038/s41587-021-011803.

[133]

Z. Yi, Y. Zhao, Z. Yi, Y. Zhang, G. Tang, X. Zhang, H. Tang, W. Zhang, Y. Zhao, H. Xu, Y. Nie, X. Sun, L. Xing, L. Dai, P. Yuan, W. Wei, Utilizing AAV-Mediated LEAPER 2.0 for programmable RNA editing in non-human Primates and nonsense mutation correction in humanized Hurler syndrome mice, Genome Biol. 24 (1) (2023) 243, https://doi.org/10.1186/s13059-023-03086-6.

[134]

Z. Yi, X. Zhang, W. Tang, Y. Yu, X. Wei, X. Zhang, W. Wei, Strand-selective base editing of human mitochondrial DNA using mitoBEs, Nat. Biotechnol. 42 (3) (2024) 498-509, https://doi.org/10.1038/s41587-023-01791-y.

[135]

X. Zhang, X. Zhang, J. Ren, J. Li, X. Wei, Y. Yu, Z. Yi, W. Wei, Precise modelling of mitochondrial diseases using optimized mitoBEs, Nature 639 (8055) (2025) 735-745, https://doi.org/10.1038/s41586-024-08469-8.

[136]

R. Liang, S. Wang, Y. Cai, Z. Li, K.M. Li, J. Wei, C. Sun, H. Zhu, K. Chen, C. Gao, Circular RNA-Mediated inverse prime editing in human cells, Nat. Commun. 16 (1) (2025) 5057, https://doi.org/10.1038/s41467-025-59120-7.

[137]

B. Li, W.-W. Bai, T. Guo, Z.-Y. Tang, X.-J. Jing, T.-C. Shan, S. Yin, Y. Li, F. Wang, M.-L. Zhu, J.-X. Lu, Y.-P. Bai, B. Dong, P. Li, S.-X. Wang, Statins improve cardiac endothelial function to prevent heart failure with preserved ejection fraction through upregulating circRNA-RBCK1, Nat. Commun. 15 (1) (2024) 2953, https://doi.org/10.1038/s41467-024-47327-z.

[138]

S.A. Giusti, N.S. Pino, C. Pannunzio, M.B. Ogando, N.G. Armando, L. Garrett, A. Zimprich, L. Becker, M.L. Gimeno, J. Lukin, F.L. Merino, M.B. Pardi, O. Pedroncini, G.C. Di Mauro, V.G. Durner, H. Fuchs, M.H. de Angelis, I.L. Patop, C.W. Turck, J.M. Deussing, D.M. Vogt Weisenhorn, O. Jahn, S. Kadener, S. M. Hölter, N. Brose, F. Giesert, W. Wurst, A. Marin-Burgin, D. Refojo, A brainenriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli, Sci. Adv. 10 (21) (2024) eadj8769, https://doi.org/10.1126/sciadv.adj8769.

[139]

Y. Jia, L. Xu, S. Leng, Y. Sun, X. Huang, Y. Wang, H. Ren, G. Li, Y. Bai, Z. Zhang, B. Han, L. Shen, M. Ju, L. Chen, H. Yao, Nose-to-Brain delivery of circular RNA SCMH1-Loaded lipid nanoparticles for ischemic stroke therapy, Adv. Mater. (2025) 2500598, https://doi.org/10.1002/adma.202500598.

[140]

M. Teng, J. Guo, X. Xu, X. Ci, Y. Mo, Y. Kohen, Z. Ni, S. Chen, W.Y. Guo, M. Bakht, S. Ku, M. Sigouros, W. Luo, C.M. Macarios, Z. Xia, M. Chen, S. Ul Haq, W. Yang, A. Berlin, T. van der Kwast, L. Ellis, A. Zoubeidi, G. Zheng, J. Ming, Y. Wang, H. Cui, B.H. Lok, B. Raught, H. Beltran, J. Qin, H.H. He, Circular RMST cooperates with lineage-driving transcription factors to govern neuroendocrine transdifferentiation, Cancer Cell 43 (5) (2025) 891-904.e10, https://doi.org/10.1016/j.ccell.2025.03.027.

[141]

X. Feng, B.-W. Jiang, S.-N. Zhai, C.-X. Liu, H. Wu, B.-Q. Zhu, M.-Y. Wei, J. Wei, L. Yang, L.-L. Chen, Circular RNA aptamers targeting neuroinflammation ameliorate alzheimer disease phenotypes in mouse models, Nat. Biotechnol. (2025), https://doi.org/10.1038/s41587-025-02624-w.

[142]

Q. Yao, X. Wu, C. Tao, W. Gong, M. Chen, M. Qu, Y. Zhong, T. He, S. Chen, G. Xiao, Osteoarthritis: pathogenic signaling pathways and therapeutic targets, Signal Transduct. Targeted Ther. 8 (1) (2023) 56, https://doi.org/10.1038/s41392-023-01330-w.

[143]

K. Huang, X. Liu, H. Qin, Y. Li, J. Zhu, B. Yin, Q. Zheng, C. Zuo, H. Cao, Z. Tong, Z. Sun, FGF 18 encoding circular mRNA-LNP based on glycerolipid engineering of mesenchymal stem cells for efficient amelioration of osteoarthritis, Biomater. Sci. 12 (17) (2024) 4427-4439, https://doi.org/10.1039/D4BM00668B.

[144]

L. Amaya, L. Grigoryan, Z. Li, A. Lee, P.A. Wender, B. Pulendran, H.Y. Chang, Circular RNA vaccine induces potent T cell responses, Proc. Natl. Acad. Sci. 120 (20) (2023) e2302191120, https://doi.org/10.1073/pnas.2302191120.

[145]

H. Li, K. Peng, K. Yang, W. Ma, S. Qi, X. Yu, J. He, X. Lin, G. Yu, Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies, Theranostics 12 (14) (2022) 6422-6436, https://doi.org/10.7150/thno.77350.

[146]

P. Piątkiewicz, T. Miłek, M. Bernat-Karpińska, M. Ohams, A. Czech, P. Ciostek, The dysfunction of NK cells in patients with type 2 diabetes and Colon cancer, Arch. Immunol. Ther. Exp. 61 (3) (2013) 245-253, https://doi.org/10.1007/s00005-013-0222-5.

[147]

Y. Zhang, X. Liu, T. Shen, Q. Wang, S. Zhou, S. Yang, S. Liao, T. Su, L. Mei, B. Zhang, K. Huynh, L. Xie, Y. Guo, C. Guo, K.M. Tyc, X. Qu, X.-Y. Wang, J. Liu, G. Zhu, Small circular RNAs as vaccines for cancer immunotherapy, Nat. Biomed. Eng. 9 (2) (2025) 249-267, https://doi.org/10.1038/s41551-025-01344-5.

[148]

H. Li, Y. Hu, J. Li, J. He, G. Yu, J. Wang, X. Lin, Intranasal prime-boost RNA vaccination elicits potent T cell response for lung cancer therapy, Signal Transduct. Targeted Ther. 10 (1) (2025) 101, https://doi.org/10.1038/s41392-025-02191-1.

[149]

D. Huang, X. Zhu, S. Ye, J. Zhang, J. Liao, N. Zhang, X. Zeng, J. Wang, B. Yang, Y. Zhang, L. Lao, J. Chen, M. Xin, Y. Nie, P.E. Saw, S. Su, E. Song, Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides, Nature 625 (7995) (2024) 593-602, https://doi.org/10.1038/s41586-023-06834-7.

[150]

L. Qu, Z. Yi, Y. Shen, L. Lin, F. Chen, Y. Xu, Z. Wu, H. Tang, X. Zhang, F. Tian, C. Wang, X. Xiao, X. Dong, L. Guo, S. Lu, C. Yang, C. Tang, Y. Yang, W. Yu, J. Wang, Y. Zhou, Q. Huang, A. Yisimayi, S. Liu, W. Huang, Y. Cao, Y. Wang, Z. Zhou, X. Peng, J. Wang, X.S. Xie, W. Wei, Circular RNA vaccines against SARS-CoV-2 and emerging variants, Cell 185 (10) (2022) 1728-1744.e16, https://doi.org/10.1016/j.cell.2022.03.044.

[151]

W. Wei, L. Qu,Y. Zongyi, Circular Rna Vaccines and Methods of Use Thereof, US20230346921A1, 2023.

[152]

J. Zhou, T. Ye, Y. Yang, E. Li, K. Zhang, Y. Wang, S. Chen, J. Hu, K. Zhang, F. Liu, R. Gong, X. Chuai, Z. Wang, S. Chiu, Circular RNA vaccines against monkeypox virus provide potent protection against vaccinia virus infection in mice, Mol. Ther. 32 (6) (2024) 1779-1789, https://doi.org/10.1016/j.ymthe.2024.04.028.

[153]

X. Liu, Z. Li, X. Li, W. Wu, H. Jiang, Y. Zheng, J. Zhou, X. Ye, J. Lu, W. Wang, L. Yu, Y. Li, L. Qu, J. Wang, F. Li, L. Chen, L. Wu, L. Feng, A single-dose circular RNA vaccine prevents zika virus infection without enhancing dengue severity in mice, Nat. Commun. 15 (1) (2024) 8932, https://doi.org/10.1038/s41467-024-53242-0.

[154]

Y. Zhang, X. Liu, T. Shen, Q. Wang, S. Zhou, S. Yang, S. Liao, T. Su, L. Mei, B. Zhang, K. Huynh, L. Xie, Y. Guo, C. Guo, K.M. Tyc, X. Qu, X.-Y. Wang, J. Liu, G. Zhu, Small circular RNAs as vaccines for cancer immunotherapy, Nat. Biomed. Eng. 9 (2) (2025) 249-267, https://doi.org/10.1038/s41551-025-01344-5.

[155]

Z. Li, L. Amaya, A. Ee, S.K. Wang, A. Ranjan, R.M. Waymouth, H.Y. Chang, P. A. Wender, Organ- and cell-selective delivery of mRNA in vivo using guanidinylated serinol charge-altering releasable transporters, J. Am. Chem. Soc. 146 (21) (2024) 14785-14798, https://doi.org/10.1021/jacs.4c02704.

[156]

J. Liu, Y. Zhang, C. Liu, Y. Jiang, Z. Wang, Z. Guo, X. Li, A single dose of VEGF-A circular RNA sustains in situ long-term expression of protein to accelerate diabetic wound healing, J. Contr. Release 373 (2024) 319-335, https://doi.org/10.1016/j.jconrel.2024.07.018.

[157]

W. Jiang, D. Xiao, C. Wu, J. Yang, X. Peng, L. Chen, J. Zhang, G. Zha, W. Li, R. Ju, M. Xiang, Z. Xie, Circular RNA-based therapy provides sustained and robust neuroprotection for retinal ganglion cells, Mol. Ther. Nucleic Acids 35 (3) (2024), https://doi.org/10.1016/j.omtn.2024.102258.

[158]

D.-w. Zhao, J. Zhang, C. Chen, W. Sun, Y. Liu, M. Han, Y. Zhang, Z. Fu, C. Shi, X. Zhao, Z. Yang, C. Tang, K. Zhao, D. Zhu, Y. Zhang, L. Cheng, X. Jiang, Rejuvenation modulation of nucleus pulposus progenitor cells reverses senescence-associated intervertebral disc degeneration, Adv. Mater. 37 (7) (2025) 2409979, https://doi.org/10.1002/adma.202409979.

[159]

W. Jing, M. Han, G. Wang, Z. Kong, X. Zhao, Z. Fu, X. Jiang, C. Shi, C. Chen, J. Zhang, Z. Zheng, J. Gao, W. Sun, C. Tang, Z. Yang, Y. Wang, Y. Liu, K. Zhao, D. Zhu, B. Shi, X. Jiang, An in situ engineered chimeric IL-2 receptor potentiates the tumoricidal activity of proinflammatory CAR macrophages in renal cell carcinoma, Nat. Cancer 6 (5) (2025) 838-853, https://doi.org/10.1038/s43018-025-00950-1.

[160]

J. Tai, Y.G. Chen, Differences in the immunogenicity of engineered circular RNAs, J. Mol. Cell Biol. 15 (1) (2023), https://doi.org/10.1093/jmcb/mjad002.

[161]

W. Zhang, M. Zheng, S. Kong, X. Li, S. Meng, X. Wang, F. Wang, C. Tang, S. Ju, Circular RNA hsa_circ_0007507 may serve as a biomarker for the diagnosis and prognosis of gastric cancer, Front. Oncol. 11 (2021) 699625, https://doi.org/10.3389/fonc.2021.699625.

[162]

S. Guo, C. Hu, X. Zhai, D. Sun, Circular RNA 0006602 in plasma exosomes: a new potential diagnostic biomarker for hepatocellular carcinoma, Am. J. Tourism Res. 13 (6) (2021) 6001-6015.

AI Summary AI Mindmap
PDF (7524KB)

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/