Phenol and chromone compounds for in silico inhibition of nsP2 and nsP3 of Chikungunya virus

Joan Petrus Oliveira Lima , Caio Henrique Alexandre Roberto , Matheus Nunes da Rocha , Victor Moreira de Oliveira , Rafael Melo Freire , Ralph Santos-Oliveira , Emmanuel Silva Marinho , Pedro de Lima Neto , Pierre Basílio Almeida Fechine

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100084

PDF (4467KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100084 DOI: 10.1016/j.pscia.2025.100084
Research Article
research-article

Phenol and chromone compounds for in silico inhibition of nsP2 and nsP3 of Chikungunya virus

Author information +
History +
PDF (4467KB)

Abstract

The rising concern about neglected tropical diseases imposes a global challenge, in this sense, this work brings 12 potential candidates based on chromone and phenol compounds to inhibit nsP2 and nsP3 of the Chikungunya virus (CHIKV), through molecular docking and ADMET evaluation. The molecular docking simulations for the nsP2 showed mild binding, in the nsP3 all the derivatives presented -6kcal/mol binding affinity and interacts with crucial residues in the replication cycle of CHIKV, the 5 best were chosen as the main derivatives for absorption, distribution, metabolism, excretion and toxicity (ADMET) evaluation). The ADMET results show high drug-likeness values, with good oral and intestinal absorption, excretion, distribution and toxicity, with moderate (Der9 to Der12) and poor (Der8) metabolism. Therefore, the 5 derivatives are potential candidates to treat chikungunya.

Keywords

Molecular docking / Neglected tropical disease / Chikungunya virus / Natural products / Daldinia

Cite this article

Download citation ▾
Joan Petrus Oliveira Lima, Caio Henrique Alexandre Roberto, Matheus Nunes da Rocha, Victor Moreira de Oliveira, Rafael Melo Freire, Ralph Santos-Oliveira, Emmanuel Silva Marinho, Pedro de Lima Neto, Pierre Basílio Almeida Fechine. Phenol and chromone compounds for in silico inhibition of nsP2 and nsP3 of Chikungunya virus. Pharmaceutical Science Advances, 2025, 3(1): 100084 DOI:10.1016/j.pscia.2025.100084

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Joan Petrus Oliveira Lima: Methodology, Formal analysis, Data curation. Caio Henrique Alexandre Roberto: Software, Methodology, Investigation. Matheus Nunes da Rocha: Software, Methodology, Investigation, Formal analysis. Victor Moreira de Oliveira: Investigation, Formal analysis, Data curation, Conceptualization. Rafael Melo Freire: Visualization, Resources. Ralph Santos-Oliveira: Visualization, Resources, Funding acquisition. Emmanuel Silva Marinho: Writing review & editing, Writing - original draft, Validation, Supervision, Conceptualization. Pedro de Lima Neto: Visualization, Validation, Supervision. Pierre Basílio Almeida Fechine: Writing - review & editing, Visualization, Supervision, Project administration.

Ethics approval

Not applicable.

Declaration of generative AI

The Authors declare that no generative AI have been used throughout the entire writing process of this manuscript.

Funding information

This work was supported by CNPq (308452/2022-4), CAPES (Finance Code 001- PROEX 23038.000509/2020-82) and Fondecyt 11200425, 124117 and AFB220001.

Data availability

The following softwares and webservers were used: PubChem (http s://pubchem.ncbi.nlm.nih.gov/), PDB nsP2 (https://www.rcsb.org/structure/3TRK), PDB nsP3 (https://www.rcsb.org/structure/3GPG), AutoDock Vina (https://vina.scripps.edu/), DoGSiteScorer (htt ps://proteins.plus/), AutoDock Tools (https://autodocksuite.scripps.edu/adt/), MarvinSketch (https://chemaxon.com/marvin), ADMETlab 2.0 (https://admetmesh.scbdd.com/), ADMETboost (https://ai-druglab.smu.edu/admet), SwissADME (http://www.swissadme.ch/), AI Drug Lab (https://ai-druglab.smu.edu/), XenoSite (https://xenosite.org/), pkCSM (https://biosig.lab.uq.edu.au/pkcsm/), ProTox II (https://tox-new.charite.de/protox_II/).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors would like to thank to the Universidade Estadual do Ceará - UECE, the Laboratório de Bioprospecção e Monitoramento de Recursos Naturais - LBMRN and Núcleo de Estudos Ambientais - NEA. The authors used resources of the Centro Nacional de Processamento de Alto Desempenho da UFC (CENAPAD - UFC), that was essential for this work, for which the authors are grateful.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100084.

References

[1]

V. Rougeron, I.C. Sam, M. Caron, D. Nkoghe, E. Leroy, P. Roques, Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk, J. Clin. Virol. 64 (2015) 144-152, https://doi.org/10.1016/j.jcv.2014.08.032.

[2]

S. Sarkar, L. Gardner, Zika: the cost of neglect, Palgrave Commun 2 (May) (2016) 1-6, https://doi.org/10.1057/palcomms.2016.60.

[3]

L.L.G. Ferreira, J. de Moraes, A.D. Andricopulo, Approaches to advance drug discovery for neglected tropical diseases, Drug Discov. Today 27 (8) (2022) 2278-2287, https://doi.org/10.1016/j.drudis.2022.04.004.

[4]

W. Hussain, A. Amir, N. Rasool, Computer-aided study of selective flavonoids against chikungunya virus replication using molecular docking and DFT-based approach, Struct. Chem. 31 (4) (2020) 1363-1374, https://doi.org/10.1007/s11224-020-01507-x.

[5]

S.R. da Silva Neto, T. Tabosa de Oliveira, I.V. Teixiera, L. Medeiros Neto, V. Souza Sampaio, T. Lynn, P.T. Endo, Arboviral disease record data - Dengue and Chikungunya, Brazil, 2013-2020, Sci. Data 9 (1) (2022) 1-11, https://doi.org/10.1038/s41597-022-01312-7.

[6]

E.S. Paixão, M. Costa, C.N. da, L.C. Rodrigues, D. Rasella, L.L. Cardim, A. C. Brasileiro, M.G.L.T. Cruz, Trends and factors associated with dengue mortality and fatality in Brazil, Rev. Soc. Bras. Med. Trop. 48 (4) (2015) 399-405, https://doi.org/10.1590/0037-8682-0145-2015.

[7]

R.V. da Cunha, K.S. Trinta, Mem. Inst. Chikungunya virus: clinical aspects and treatment, Oswaldo Cruz 112 (8) (2017) 523-531, https://doi.org/10.1590/007402760170044.

[8]

A.L. Zara, S.A. de, S. M. Dos Santos, E.S. Fernandes-Oliveira, R.G. Carvalho, G. E. Coelho, Estratégias de Controle Do Aedes Aegypti: uma Revisão, Epidemiol. e Serv. saude Rev. do Sist. Unico Saude do Bras. 25 (2) (2016) 391-404, https://doi.org/10.5123/S1679-49742016000200017.

[9]

A.L.B.M. Ramos, E.H.S.X. Quintela, I.F.R.D. Alves, L.A.F. Melo, I.M.L. Nunes, T.F. R. Moreira, J.V.A. Feitosa, K.F. de O. Bezerra, A Eficiência Das Ações de Combate à Dengue Na Atenção Primária à Saúde No Brasil/The Efficiency of Actions to Combat Dengue in Primary Healthcare in Brazil, Braz. J. Heal. Rev. 4 (3) (2021) 10575-10595, https://doi.org/10.34119/bjhrv4n3-079.

[10]

B.R. Evans, P. Kotsakiozi, A.L. Costa-da-Silva, R.S. Ioshino, L. Garziera, M. C. Pedrosa, A. Malavasi, J.F. Virginio, M.L. Capurro, J.R. Powell, Transgenic Aedes aegypti mosquitoes transfer genes into a natural population, Sci. Rep. 9 (1) (2019) 1-6, https://doi.org/10.1038/s41598-019-49660-6.

[11]

D.O. Carvalho, A.R. McKemey, L. Garziera, R. Lacroix, C.A. Donnelly, L. Alphey, A. Malavasi, M.L. Capurro, Suppression of a field population of Aedes aegypti in Brazil by sustained release of transgenic Male mosquitoes, PLoS Neglected Trop. Dis. 9 (7) (2015) 1-15, https://doi.org/10.1371/journal.pntd.0003864.

[12]

H. Ly, Ixchiq (VLA1553): the first FDA-approved vaccine to prevent disease caused by chikungunya virus infection, Virulence 15 (1) (2024) 1-2, https://doi.org/10.1080/21505594.2023.2301573.

[13]

A.M. Powers, Vaccine and therapeutic options to control chikungunya virus, Clin. Microbiol. Rev. 31 (1) (2018) 1-29, https://doi.org/10.1128/CMR.00104-16.

[14]

S.D. Thiberville, N. Moyen, L. Dupuis-Maguiraga, A. Nougairede, E.A. Gould, P. Roques, X. de Lamballerie, Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy, Antivir. Res. 99 (3) (2013) 345-370, https://doi.org/10.1016/j.antiviral.2013.06.009.

[15]

M.C. Locke, L.E. Fox, B.F. Dunlap, A.R. Young, K. Monte, D.J. Lenschow, Interferon alpha, but not interferon beta, acts early to control chronic chikungunya virus pathogenesis, J. Virol. 96 (1) (2022) 1-16, https://doi.org/10.1128/jvi.01143-21.

[16]

V. Battisti, E. Urban, T. Langer, Antivirals against the chikungunya virus, Viruses 13 (7) (2021), https://doi.org/10.3390/v13071307.

[17]

Y. Gao, N. Goonawardane, J. Ward, A. Tuplin, M. Harris, Multiple roles of the nonstructural protein 3 (NsP3) alphavirus unique domain (AUD) during chikungunya virus genome replication and transcription, PLoS Pathog. 15 (1) (2019) 1-28, https://doi.org/10.1371/journal.ppat.1007239.

[18]

R. Singh, V.K. Bhardwaj, R. Purohit, Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: a computational insight, Cell Biochem. Funct. 40 (8) (2022) 926-934, https://doi.org/10.1002/cbf.3753.

[19]

N.V. Puranik, R. Rani, V.A. Singh, S. Tomar, H.M. Puntambekar, P. Srivastava, Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with Nsp3 protein of chikungunya virus (chikv), ACS Omega 4 (23) (2019) 20335-20345, https://doi.org/10.1021/acsomega.9b02900.

[20]

P. Indu, N. Arunagirinathan, M.R. Rameshkumar, K. Sangeetha, S. Rajarajan, R. M. Aljowaie, S.M. Almutairi, K. Palaniselvam, Exploring potential antichikungunya virus activity of phytocompounds: computational docking and in vitro studies, J. King Saud Univ. Sci. 34 (6) (2022) 102157, https://doi.org/10.1016/j.jksus.2022.102157.

[21]

D. Zhang, G. Gu, B. Zhang, Y. Wang, J. Bai, Y. Fang, T. Zhang, S. Dai, S. Cen, L. Yu, New phenol and chromone derivatives from the endolichenic FungusDaldiniaspecies and their antiviral activities, RSC Adv. 11 (36) (2021) 22489-22494, https://doi.org/10.1039/d1ra03754d.

[22]

S. Zhang, A. Garzan, N. Haese, R. Bostwick, Y. Martinez-Gzegozewska, L. Rasmussen, D.N. Streblow, M.T. Haise, A.K. Pathak, C.E. Augelli-Szafran, M. Wu, Pyrimidone inhibitors targeting chikungunya virus NsP3 macrodomain by fragment-based drug design, PLoS One 16 (1 January) (2021) 1-17, https://doi.org/10.1371/journal.pone.0245013.

[23]

M.B. Plotnikov, T.M. Plotnikova, Tyrosol as a neuroprotector: strong effects of a "weak" antioxidant, Curr. Neuropharmacol. 19 (4) (2020) 434-448, https://doi.org/10.2174/1570159x18666200507082311.

[24]

H. Liu, P. Lv, Y. Zhu, H. Wu, K. Zhang, F. Xu, L. Zheng, J. Zhao, Salidroside promotes peripheral nerve regeneration based on tissue engineering strategy using schwann cells and PLGA: in vitro and in vivo, Sci. Rep. 7 (July 2016) (2017) 1-11, https://doi.org/10.1038/srep39869.

[25]

V. Loaiza-Cano, L.M. Monsalve-Escudero, C. da S. M. B. Filho, M. MartinezGutierrez, D.P. de Sousa, Antiviral role of phenolic compounds against dengue virus: a review, Biomolecules 11 (1) (2021) 1-28, https://doi.org/10.3390/biom11010011.

[26]

R. P. D. Bank, Rcsb PDB - 3TRK: structre of the chikungunya virus nsP2 protease. https://www.rcsb.org/structure/3TRK. (Accessed 4 October 2023).

[27]

H. Malet, B. Coutard, S. Jamal, H. Dutartre, N. Papageorgiou, M. Neuvonen, T. Ahola, N. Forrester, E.A. Gould, D. Lafitte, F. Ferron, J. Lescar, A.E. Gorbalenya, X. de Lamballerie, B. Canard, The crystal structures of chikungunya and Venezuelan equine encephalitis virus NsP3 macro domains define a conserved adenosine binding pocket, J. Virol. 83 (13) (2009) 6534-6545, https://doi.org/10.1128/jvi.00189-09.

[28]

J. Fuhrmann, A. Rurainski, H.-P. Lenhof, D. Neumann, A new lamarckian genetic algorithm for flexible ligand-receptor docking, J. Comput. Chem. 31 (January 2010) (2010) 1911-1918, https://doi.org/10.1002/jcc.21478.

[29]

A. Volkamer, D. Kuhn, T. Grombacher, F. Rippmann, M. Rarey, Combining global and local measures for structure-based druggability predictions, J. Chem. Inf. Model. 52 (2) (2012) 360-372, https://doi.org/10.1021/ci200454v.

[30]

A. Volkamer, A. Griewel, T. Grombacher, M. Rarey, Analyzing the topology of active sites: on the prediction of pockets and subpockets, J. Chem. Inf. Model. 50 (11) (2010) 2041-2052, https://doi.org/10.1021/ci100241y.

[31]

A.M. da Fonseca, N.B. Soares, R.P. Colares, M. Macedo de Oliveira, L. Santos Oliveira, G.S. Marinho, M. Raya Paula de Lima, M.N. da Rocha, H.S. dos Santos, E. S. Marinho, Naphthoquinones biflorin and bis-biflorin (Capraria biflora) as possible inhibitors of the fungus Candida auris polymerase: molecular docking, molecular dynamics, MM/GBSA calculations and in silico drug-likeness study, J. Biomol. Struct. Dyn. 41 (21) (2022) 11564-11577, https://doi.org/10.1080/07391102.2022.2163702.

[32]

J. Yan, G. Zhang, J. Pan, Y. Wang, α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking, Int. J. Biol. Macromol. 64 (2014) 213-223, https://doi.org/10.1016/j.ijbiomac.2013.12.007.

[33]

G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, A. J. Olson, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem. 30 (16) (2009) 2785-2791, https://doi.org/10.1002/jcc.21256.

[34]

D.D. Nguyen, T. Xiao, M. Wang, G.W. Wei, J. Chem. Inf. Rigidity strengthening: a mechanism for protein-ligand binding, Model. 57 (7) (2017) 1715-1721, https://doi.org/10.1021/acs.jcim.7b00226.

[35]

D. Yusuf, A.M. Davis, G.J. Kleywegt, S. Schmitt, An alternative method for the evaluation of docking performance: RSR vs RMSD, J. Chem. Inf. Model. 48 (7) (2008) 1411-1422, https://doi.org/10.1021/ci800084x.

[36]

S. Shityakov, C. Förster, In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter, Adv. Appl. Bioinforma. Chem. 7 (1) (2014) 23-36, https://doi.org/10.2147/AABC.S63749.

[37]

M. Nunes da Rocha, M.M. Marinho, A. Magno Rodrigues Teixeira, E.S. Marinho, H. S. dos Santos, Predictive ADMET study of Rhodanine-3-Acetic acid chalcone derivatives, J. Indian Chem. Soc. 99 (7) (2022), https://doi.org/10.1016/j.jics.2022.100535.

[38]

J. Lima, R. dos, M.K.A. Ferreira, K.V.B. Sales, A.W. da Silva, E.M. Marinho, F.E. A. Magalhães, E.S. Marinho, M.M. Marinho, M.N. da Rocha, P.N. Bandeira, A.M. R. Teixeira, J.E.S.A. de Menezes, H.S. dos Santos, Diterpene sonderianin isolated from Croton blanchetianus exhibits acetylcholinesterase inhibitory action and anxiolytic effect in adult zebrafish (Danio rerio) by 5-HT system, J. Biomol. Struct. Dyn. 40 (24) (2022) 13625-13640, https://doi.org/10.1080/07391102.2021.1991477.

[39]

J.P.O. Lima, A.M. da Fonseca, G.S. Marinho, M.N. da Rocha, E.M. Marinho, H. S. dos Santos, R.M. Freire, E.S. Marinho, P. de Lima-Neto, P.B.A. Fechine, De Novo Design of Bioactive Phenol and Chromone Derivatives for Inhibitors of Spike Glycoprotein of SARS-CoV-2 in silico, 3 Biotech 13 (9) (2023) 301, https://doi.org/10.1007/s13205-023-03695-9.

[40]

H. Tian, R. Ketkar, P. Tao, ADMETboost: a web server for accurate ADMET prediction, J. Mol. Model. 28 (12) (2022) 1-6, https://doi.org/10.1007/s00894-022-05373-8.

[41]

J.D. Hughes, J. Blagg, D.A. Price, S. Bailey, G.A. Decrescenzo, R.V. Devraj, E. Ellsworth, Y.M. Fobian, M.E. Gibbs, R.W. Gilles, N. Greene, E. Huang, T. KriegerBurke, J. Loesel, T. Wager, L. Whiteley, Y. Zhang, Physiochemical drug properties associated with in vivo toxicological outcomes, Bioorg. Med. Chem. Lett. 18 (17) (2008) 4872-4875, https://doi.org/10.1016/j.bmcl.2008.07.071.

[42]

M.P. Gleeson, Generation of a set of simple, interpretable ADMET rules of thumb, J. Med. Chem. 51 (4) (2008) 817-834, https://doi.org/10.1021/jm701122q.

[43]

T.W. Johnson, K.R. Dress, M. Edwards, Using the golden triangle to optimize clearance and oral absorption, Bioorg. Med. Chem. Lett. 19 (19) (2009) 5560-5564, https://doi.org/10.1016/j.bmcl.2009.08.045.

[44]

M. Bassetto, T. De Burghgraeve, L. Delang, A. Massarotti, A. Coluccia, N. Zonta, V. Gatti, G. Colombano, G. Sorba, R. Silvestri, G.C. Tron, J. Neyts, P. Leyssen, A. Brancale, Computer-aided identification, design and synthesis of a novel series of compounds with selective antiviral activity against chikungunya virus, Antivir. Res. 98 (1) (2013) 12-18, https://doi.org/10.1016/j.antiviral.2013.01.002.

[45]

P.K. Das, L. Puusepp, F.S. Varghese, A. Utt, T. Ahola, D.G. Kananovich, M. Lopp, A. Merits, M. Karelson, Design and validation of novel chikungunya virus protease inhibitors, Antimicrob. Agents Chemother. 60 (12) (2016) 7382-7395, https://doi.org/10.1128/AAC.01421-16.

[46]

S.S. Seyedi, M. Shukri, P. Hassandarvish, A. Oo, E.M. Shankar, S. Abubakar, K. Zandi, Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids, Sci. Rep. 6 (2016), https://doi.org/10.1038/srep24027.

[47]

A. Volkamer, D. Kuhn, F. Rippmann, M. Rarey, Dogsitescorer: a web server for automatic binding site prediction, analysis and druggability assessment, Bioinformatics 28 (15) (2012) 2074-2075, https://doi.org/10.1093/bioinformatics/bts310.

[48]

T.T. Wager, X. Hou, P.R. Verhoest, A. Villalobos, Central nervous system multiparameter optimization desirability: application in drug discovery, ACS Chem. Neurosci. 7 (6) (2016) 767-775, https://doi.org/10.1021/acschemneuro.6b00029.

[49]

T.T. Wager, R.Y. Chandrasekaran, X. Hou, M.D. Troutman, P.R. Verhoest, A. Villalobos, Y. Will, Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes, ACS Chem. Neurosci. 1 (6) (2010) 420-434, https://doi.org/10.1021/cn100007x.

[50]

BRASIL, Portaria № 344, De 12 De Maio De 1998, 1998.

[51]

Y.A. Ivanenkov, B.A. Zagribelnyy, V.A. Aladinskiy, Are we opening the door to a new era of medicinal chemistry or being collapsed to a chemical singularity? J. Med. Chem. 62 (22) (2019) 10026-10043, https://doi.org/10.1021/acs.jmedchem.9b00004.

[52]

T.B. Hughes, G.P. Miller, S.J. Swamidass, Modeling epoxidation of drug-like molecules with a deep machine learning network, ACS Cent. Sci. 1 (4) (2015) 168-180, https://doi.org/10.1021/acscentsci.5b00131.

[53]

M. Seidenstuecker, J. Ruehe, N.P. Suedkamp, A. Serr, A. Wittmer, M. Bohner, A. Bernstein, H.O. Mayr, Composite material consisting of microporous β-TCP ceramic and alginate for delayed release of antibiotics, Acta Biomater. 51 (2017) 433-446, https://doi.org/10.1016/j.actbio.2017.01.045.

[54]

D.H. Lee, Y.J. Kim, M.J. Kim, J. Ahn, T.Y. Ha, S.H. Lee, Y.J. Jang, C.H. Jung, Pharmacokinetics of tyrosol metabolites in rats, Molecules 21 (1) (2016) 1-9, https://doi.org/10.3390/molecules21010128.

[55]

L. Rubió, A. MacIà, R.M. Valls, A. Pedret, M.P. Romero, R. Solà, M.J. Motilva, A new hydroxytyrosol metabolite identified in human plasma: Hydroxytyrosol acetate sulphate, Food Chem. 134 (2) (2012) 1132-1136, https://doi.org/10.1016/j.foodchem.2012.02.192.

[56]

A.K. Marković, J. Torić, M. Barbarić, C.J. Brala, Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health, Molecules 24 (10) (2019), https://doi.org/10.3390/molecules24102001.

[57]

M. Robles-Almazan, M. Pulido-Moran, J. Moreno-Fernandez, C. Ramirez-Tortosa, C. Rodriguez-Garcia, J.L. Quiles, Mc Ramirez-Tortosa, Hydroxytyrosol: bioavailability, toxicity, and clinical applications, Food Res. Int. 105 (November 2017) (2018) 654-667, https://doi.org/10.1016/j.foodres.2017.11.053.

[58]

S.K. Mishra, M.M. Shaheen, S. Sultana, A.M. Al-Dies, J.Z. Tayyeb, T. Alqahtani, K. T. Yewulsew, G.C.F. Morais, J.I.N. Oliveira, M.E.A. Zaki, Computational analysis of lupenove derivatives as potential inhibitor of human papillomavirus oncoprotein E6 associated cervical cancer, Sci. Rep. 15 (2025), https://doi.org/10.1038/s41598-025-96667-3.

[59]

J.Z. Tayyeb, I. Bayıl, T. Alqahtani, G.V.R. Silva, G.B. Alves, A.M. Al-Dies, A. Guendouzi, J.I.N. Oliveira, M.E.A. Zaki, Identification of therapeutic compounds targeting phosphatidylinositol 3-Kinase (PI3K) through molecular docking, dynamics simulation, and DFT calculations, Comput. Biol. Chem. 108 (2025), https://doi.org/10.1016/j.compbiolchem.2025.108433.

[60]

K.S. Bezerra, J.F. Vianna, J.X.I. Neto, J.I.N. Oliveira, E.L. Albuquerque, U.L. Fulco, Interaction energies between two antiandrogenic and one androgenic agonist receptor in the presence of a T877A mutation in prostate cancer: a quantum chemistry analysis, New J. Chem. 15 (2020), https://doi.org/10.1039/C9NJ06276A.

[61]

J.M. Rocha, D.M.O. Campos, S.C. Esmaile, G.L. Menezes, K.S. Bezerra, R.A. Silva, E. D.S. Junior, J.Z. Tayyeb, S. Akash, U.L. Fulco, T. Alqahtani, J.I.N. Oliveira, Quantum biochemical analysis of the binding interactions between a potential inhibitory drug and the ebola viral glycoprotein, J. Biomol. Struct. Dynam. 43 (9) (2025), https://doi.org/10.1080/07391102.2024.2305314.

AI Summary AI Mindmap
PDF (4467KB)

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/