Artificial intelligence in human immunodeficiency virus mutation prediction and drug design: Advancing personalized treatment and prevention

Karamot O. Oyediran , Peace-Ofonabasi O.Bassey , Deborah A.Ogundemuren , Abdullahi Abdulraheem , Chukwuemeka P. Azubuike , Andrew N. Amenaghawon , Margaret O. Ilomunaya

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100080

PDF (1632KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100080 DOI: 10.1016/j.pscia.2025.100080
Review Article
research-article

Artificial intelligence in human immunodeficiency virus mutation prediction and drug design: Advancing personalized treatment and prevention

Author information +
History +
PDF (1632KB)

Abstract

Despite significant advancements in highly active antiretroviral therapy (HAART), Human Immunodeficiency Virus (HIV) remains a global health challenge due to its high mutation rate, drug resistance, and the complexity of treatment optimization. Artificial intelligence (AI) has emerged as a transformative tool in HIV research, offering innovative solutions for predicting viral mutations, optimizing drug discovery and formulation design. However, challenges such as limited access to diverse datasets, ethical concerns, and model interpretability hinder the full potential of AI in HIV research. This review highlights gaps in AI-driven HIV research and explores advancements to address these challenges. AI-driven platforms, such as DeepHIV and geno2pheno, have demonstrated success in forecasting resistance mutations and guiding therapeutic decisions. AI is also revolutionizing drug formulation development by enhancing solubility, bioavailability, and stability, while improving patient adherence through advanced delivery systems. Current applications of AI in HIV mutation prediction, drug discovery, and formulation optimization have highlighted the potential of AI towards HIV management and eradication while addressing gaps in data availability and model transparency. By integrating structural, pharmacological, and clinical data, AI provides a comprehensive framework for rational drug design and personalized treatment strategies. By leveraging AI-driven insights, HIV treatment and prevention can become more personalized, efficient, and sustainable. Future research should focus on overcoming data limitations, enhancing model interpretability, and exploring innovative AI approaches to contribute to the global fight against the HIV epidemic.

Keywords

Artificial intelligence / HIV viral mutation / Drug resistance / Formulation optimization / Personalized treatment

Cite this article

Download citation ▾
Karamot O. Oyediran, Peace-Ofonabasi O.Bassey, Deborah A.Ogundemuren, Abdullahi Abdulraheem, Chukwuemeka P. Azubuike, Andrew N. Amenaghawon, Margaret O. Ilomunaya. Artificial intelligence in human immunodeficiency virus mutation prediction and drug design: Advancing personalized treatment and prevention. Pharmaceutical Science Advances, 2025, 3(1): 100080 DOI:10.1016/j.pscia.2025.100080

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Karamot O. Oyediran: Writing - review & editing, Writing - original draft, Visualization, Validation, Software, Resources, Project administration, Methodology, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Peace-Ofonabasi O. Bassey: Writing - review & editing. Deborah A. Ogundemuren: Writing - review & editing. Abdullahi Abdulraheem: Writing - review & editing. Chukwuemeka P. Azubuike: Writing - review & editing, Supervision, Methodology, Conceptualization. Andrew N. Amenaghawon: Writing - review & editing, Methodology, Conceptualization. Margaret O. Ilomunaya: Writing - review & editing, Supervision, Methodology, Conceptualization.

Ethics approval and consent to participate

Not applicable.

Availability of data and material

The datasets used during the current study are available from the corresponding author on request.

Declaration of generative AI in scientific writing

The authors acknowledge the use of ChatGPT to summarize certain sentences. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Financial support and sponsorship

Not applicable.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

The authors acknowledge the support of the entire staff of Pharmaceutics and Pharmaceutical technology, Faculty of Pharmacy, University of Lagos.

References

[1]

K.N. Ofori, An evaluation of the nature and impact of HIV and AIDS: implications for counselling practice, Asian J. Res. Nursing Health 7 (1) (2024) 276-286, https://doi.org/10.9734/ajrnh/2024/v7i1179.

[2]

L.G. Bekker, G. Alleyne, S. Baral, J. Cepeda, D. Daskalakis, D. Dowdy, et al., Advancing global health and strengthening the HIV response in the era of the sustainable development goals: the international AIDS society-lancet commission, Lancet (2018) 392, https://doi.org/10.1016/S0140-6736[18]31070-5. [10144]: 312-58

[3]

S. Payagala, A. Pozniak, The global burden of HIV, Clin. Dermatol. 42 (2) (2024) 119-127, https://doi.org/10.1016/j.clindermatol.2024.02.001.

[4]

S. Goswami, Veeramachaneni Sai, Prajakta, P. Masurkar, Lenacapavir for HIV PrEP: narrative review of clinical trials and implications for patient access, Curr. Treat. Options Infect. Dis. 17 (1) (2025) 1-7. https://rdcu.be/einqH.

[5]

O.E. Ariyo, C.E. Jones, Use of long-acting injectable antiretroviral agents for human immunodeficiency virus: a review, J. Clin. Virol. 146 (2022) 105032, https://doi.org/10.1016/j.jcv.2021.105032.

[6]

N. Bulled, Prescribing HIV prevention: bringing culture into global health communication. Prescribing HIV Prevention: Bringing Culture into Global Health Communication, first ed., Routledge, 2016, pp. 1-273, https://doi.org/10.4324/9781315421971.

[7]

T. Leka, L. Id, T. Markos, D. Yehualeshet, E. Kefyalew, S.L. Lerangoid, Advanced HIV disease and its predictors among newly diagnosed PLHIV in the Gedeo zone, southern Ethiopia, PLoS One 19 (9) (2024) e0310373, https://doi.org/10.1371/journal.pone.0310373.

[8]

C. Hodgins, J. Stannah, S. Kuchukhidze, L. Zembe, J.W. Eaton, M.C. Boily, et al., Population sizes, HIV prevalence, and HIV prevention among men who paid for sex in Sub-Saharan Africa [ 2000-2020]: a meta-analysis of 87 population-based surveys, PLoS Med. 19 (1) (2022) e1003861, https://doi.org/10.1371/journal.pmed.1003861.

[9]

L. Frescura, P. Godfrey-Faussett, A. Ali Feizzadeh, W. El-Sadr, O. Syarif, P.D. Ghys, et al., Achieving the 959595 targets for all: a pathway to ending AIDS, PLoS One 17 (8) (2022) e0272405, https://doi.org/10.1371/journal.pone.0272405.

[10]

A. Carter, M. Zhang, K.H. Tram, M.K. Walters, D. Jahagirdar, E.D. Brewer, et al., Global, regional, and national burden of HIV/AIDS, 1990-2021, and forecasts to 2050, for 204 countries and territories: the global burden of disease study 2021, Lancet HIV 11 (12) (2024) e807-e822, https://doi.org/10.1016/S2352-3018[24]00212-1.

[11]

E. Kumah, D.S. Boakye, R. Boateng, E. Agyei, Advancing the global fight against HIV/Aids: strategies, barriers, and the road to eradication, Ann. Glob. Health 89 (1) (2023) 83, https://doi.org/10.5334/aogh.4277.

[12]

P.J. McLaren, J. Fellay, HIV-1 and human genetic variation, Nat. Rev. Genet. 22 (10) (2021) 645-657, https://doi.org/10.1038/s41576-021-00378-0.

[13]

E.M. Anderson, F. Maldarelli, The role of integration and clonal expansion in HIV infection: live long and prosper, Retrovirology 15 (1) (2018) 1-22, https://doi.org/10.1186/s12977-018-0448-8.

[14]

A.P. Mahajan, J.N. Sayles, V.A. Patel, R.H. Remien, S.R. Sawires, D.J. Ortiz, et al., Stigma in the HIV/AIDS epidemic: a review of the literature and recommendations for the way forward, AIDS 22 (Suppl 2) (2008) S67-S79, https://doi.org/10.1097/01.aids.0000327438.13291.62.

[15]

E.I. Obeagu, M.C. Igwe, G.U. Obeagu, Groundbreaking HIV prevention innovations in Africa, Elite J. Publ. Health 2 (3) (2024) 37-51. https://www.researchgate.net/publication/378214167.

[16]

Ramírez JG. Carrasco, AI in healthcare: revolutionizing patient care with predictive analytics and decision support systems, J. Artificial Intell. General Sci. [JAIGS] 1 (1) (2024) 31-37, https://doi.org/10.60087/jaigs.v1i1.p37.

[17]

S.A. Alowais, S.S. Alghamdi, N. Alsuhebany, T. Alqahtani, A.I. Alshaya, S. N. Almohareb, et al., Revolutionizing healthcare: the role of artificial intelligence in clinical practice, BMC Med. Educ. 23 (1) (2023) 689, https://doi.org/10.1186/s12909-023-04698-z.

[18]

J. Bajwa, U. Munir, A. Nori, B. Williams, Artificial intelligence in healthcare: transforming the practice of medicine, Future Healthc J 8 (2) (2021) e188, https://doi.org/10.7861/fhj.2021-0095.

[19]

M.T. Hosain, J.R. Jim, M.F. Mridha, M.M. Kabir, Explainable AI approaches in deep learning: advancements, applications and challenges, Comput. Electr. Eng. 117 (2024) 109246, https://doi.org/10.1016/j.compeleceng.2024.109246.

[20]

N. Patidar, S. Mishra, R. Jain, D. Prajapati, A. Solanki, R. Suthar, et al., Transparency in AI decision making: a survey of explainable AI methods and applications, Adv. Robot. Technol. 2 (1) (2024) 1-10, https://doi.org/10.23880/art-16000110.

[21]

M.M. Johnson, C.E. Jones, D.N. Clark, The effect of treatment-associated mutations on HIV replication and transmission cycles, Viruses 15 (1) (2022) 107, https://doi.org/10.3390/v15010107.

[22]

J. Martínez del Río, E. Frutos-Beltrán, A. Sebastián-Martín, F. Lasala, K. Yasukawa, R. Delgado, et al., HIV-1 reverse transcriptase error rates and transcriptional thresholds based on single-strand consensus sequencing of target RNA derived from in vitro-transcription and HIV-Infected cells, J. Mol. Biol. 436 (22) (2024) 168815, https://doi.org/10.1016/j.jmb.2024.168815.

[23]

S.G. Sarafianos, B. Marchand, K. Das, D.M. Himmel, M.A. Parniak, S.H. Hughes, et al., Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition, J. Mol. Biol. 385 (3) (2008) 693-713, https://doi.org/10.1016/j.jmb.2008.10.071.

[24]

C. Beyrer, A. Pozniak, HIV drug resistance - an emerging threat to epidemic control, N. Engl. J. Med. 377 (17) (2017) 1605-1607, https://doi.org/10.1056/NEJMp1710608.

[25]

M.M. Zdanowicz, The pharmacology of HIV drug resistance, Am. J. Pharmaceut. Educ. 70 (5) (2006) 100, https://doi.org/10.5688/aj7005100.

[26]

P.E. Oluniyi, F.V. Ajogbasile, S. Zhou, I. Fred-Akintunwa, C.S. Polyak, J.A. Ake, et al., HIV-1 drug resistance and genetic diversity in a cohort of people with HIV-1 in Nigeria, AIDS 36 (1) (2022) 137-146, https://doi.org/10.1097/QAD.0000000000003098.

[27]

W.H. Shaw, Q. Lin, Z.Z.B.R. Muhammad, J.J. Lee, W.X. Khong, O.T. Ng, et al., Identification of HIV mutation as diagnostic biomarker through next generation sequencing, J. Clin. Diagn. Res. 10 (7) (2016) DC04-DC08, https://doi.org/10.7860/JCDR/2016/19760.8140.

[28]

A.P. Zhao, S. Li, Z. Cao, P.J.H. Hu, J. Wang, Y. Xiang, et al., AI for science: predicting infectious diseases, J. Safety Sci. Resilience 5 (2) (2024) 130-146, https://doi.org/10.1016/j.jnlssr.2024.02.002.

[29]

S. Quazi, Artificial intelligence and machine learning in precision and genomic medicine, Med. Oncol. 39 (8) (2022) 120, https://doi.org/10.1007/s12032-022-01711-1.

[30]

S. Yilmaz, H. Tunc, M. Sari,Multi-drug artificial neural network models for predicting HIV-1 RTI resistance, bioRxiv (2024), https://doi.org/10.1101/2024.05.03.592325.

[31]

F.G. Al-Amran, A.M. Hezam, S. Rawaf, M.G. Yousif, Genomic analysis and artificial intelligence: predicting viral mutations and future pandemics, arXiv (2023) arXiv: 2309.15936v1.

[32]

G. Di Teodoro, F. Siciliano, V. Guarrasi, A.M. Vandamme, V. Ghisetti, A. Sönnerborg, et al., A graph neural network-based model with out-of-distribution robustness for enhancing antiretroviral therapy outcome prediction for HIV-1, arXiv (2023). DOI: arXiv:2312.17506v1.

[33]

G. Di Teodoro, M. Pirkl, F. Incardona, I. Vicenti, A. Sönnerborg, R. Kaiser, et al., Incorporating temporal dynamics of mutations to enhance the prediction capability of antiretroviral therapy's outcome for HIV-1, Bioinformatics 40 (6) (2023), https://doi.org/10.1093/bioinformatics/btae327.

[34]

L. Blassel, A. Tostevin, C.J. Villabona-Arenas, M. Peeters, S. Hué, O. Gascuel, Using machine learning and big data to explore the drug resistance landscape in HIV, PLoS Comput. Biol. 17 (8) (2021) e1008873, https://doi.org/10.1371/journal.pcbi.1008873.

[35]

B. Hie, E.D. Zhong, B. Berger, B. Bryson, Learning the language of viral evolution and escape, Science 371 (6526) (2021) 284-288, https://doi.org/10.1126/science.abd7331.

[36]

M.C. Steiner, K.M. Gibson, K.A. Crandall, Drug resistance prediction using deep learning techniques on HIV-1 sequence data, Viruses 12 (5) (2020) 560, https://doi.org/10.3390/v12050560.

[37]

O. Sheik Amamuddy, N.T. Bishop, Ö. Tastan Bishop, Improving fold resistance prediction of HIV-1 against protease and reverse transcriptase inhibitors using artificial neural networks, BMC Bioinf. 18 (1) (2017) 1-7, https://doi.org/10.1186/s12859-017-1782-x.

[38]

D. Heider, R. Senge, W. Cheng, E. Hüllermeier, Multilabel classification for exploiting cross-resistance information in HIV-1 drug resistance prediction, Bioinformatics 29 (16) (2013) 1946-1952, https://doi.org/10.1093/bioinformatics/btt331.

[39]

W.H. Kibibi, Harnessing artificial intelligence for HIV drug resistance prediction and personalized treatment, Newport Int. J. Res. Med. Sci. 5 (3) (2024) 59-64, https://doi.org/10.59298/NIJRMS/2024/5.3.5964.

[40]

Charles Chukwudalu Ebulue, Ogochukwu Virginia Ekkeh, Ogochukwu Roseline Ebulue, Chukwunonso Sylvester Ekesiobi, Developing predictive models for HIV drug resistance: a genomic and AI approach, Int. Med. Sci. Res.J. 4 (5) (2024) 521-543, https://doi.org/10.51594/imsrj.v4i5.1119.

[41]

Y. Xiang, J. Du, K. Fujimoto, F. Li, J. Schneider, C. Tao, Application of artificial intelligence and machine learning for HIV prevention interventions, Lancet HIV 9 (1) (2022) e54-e62, https://doi.org/10.1016/S2352-3018[21]00247-2.

[42]

N. Singh, P. Vayer, S. Tanwar, J.L. Poyet, K. Tsaioun, B.O. Villoutreix, et al., Drug discovery and development: introduction to the general public and patient groups, Front. Drug Discov. 3 (2023) 1201419, https://doi.org/10.3389/fddsv.2023.1201419.

[43]

D.H. Hagos, R. Battle, D.B. Rawat, Recent advances in generative AI and large language models: current status, challenges, and perspectives, arXiv (2024) arXiv: 2407.14962v5.

[44]

J. Chubb, P. Cowling, D. Reed, Speeding up to keep up: exploring the use of AI in the research process, AI Soc. 37 (4) (2022) 1439-1457, https://doi.org/10.1007/s00146-021-01259-0.

[45]

K. Huanbutta, K. Burapapadh, P. Kraisit, P. Sriamornsak, T. Ganokratanaa, K. Suwanpitak, et al., Artificial intelligence-driven pharmaceutical industry: a paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance, Eur. J. Pharmaceut. Sci. 203 (2024) 106938, https://doi.org/10.1016/j.ejps.2024.106938.

[46]

S. Singh, H. Gupta, P. Sharma, S. Sahi, Advances in artificial intelligence [AI]Assisted approaches in drug screening, Artificial Intell. Chem. 2 (1) (2024) 100039, https://doi.org/10.1016/j.aichem.2023.10003.

[47]

G. Turon, J. Hlozek, J.G. Woodland, A. Kumar, K. Chibale, M. Duran-Frigola, First fully-automated AI/ML virtual screening Cascade implemented at a drug discovery centre in Africa, Nat. Commun. 14 (1) (2023) 5736, https://doi.org/10.1038/s41467-023-41512-2.

[48]

G. Zhou, D.V. Rusnac, H. Park, D. Canzani, H.M. Nguyen, L. Stewart, et al., An artificial intelligence accelerated virtual screening platform for drug discovery, Nat. Commun. 15 (1) (2024), https://doi.org/10.1038/s41467-024-52061-7.

[49]

F. Shiri, S. Pirhadi, A. Rahmani, Identification of new potential HIV-1 reverse transcriptase inhibitors by QSAR modeling and structure-based virtual screening, J. Recept. Signal Transduction 38 (1) (2018) 37-47, https://doi.org/10.1080/10799893.2017.1414844.

[50]

J. Lyu, C. Chen, B. Liang, Y. Zhang,Diff4VS: HIV-Inhibiting molecules generation with classifier guidance diffusion for virtual screening, arXiv (2024). https://arxiv.org/abs/2407.15880v.

[51]

M. Nand, P. Maiti, T. Joshi, S. Chandra, V. Pande, J.C. Kuniyal, et al., Virtual screening of anti-HIV1 compounds against SARS-CoV-2: machine learning modeling, chemoinformatics and molecular dynamics simulation-based analysis, Sci. Rep. 10 (1) (2020), https://doi.org/10.1038/s41598-020-77524-x.

[52]

T. Zhang, G. Sun, X. Cheng, C. Cao, Z. Cai, J. Zhou, Screening for potential antiviral compounds from cyanobacterial secondary metabolites using machine learning, Mar. Drugs 22 (11) (2024), https://doi.org/10.3390/md22110501.

[53]

A. Kurczyk, D. Warszycki, R. Musiol, R. Kafel, A.J. Bojarski, J. Polanski, Ligandbased virtual screening in a search for novel Anti-HIV-1 chemotypes, J. Chem. Inf. Model. 55 (10) (2015) 2168-2177, https://doi.org/10.1021/acs.jcim.5b00295.

[54]

K. Boonpalit, H. Chuntakaruk, J. Kinchagawat, P. Wolschann, S. Hannongbua, T. Rungrotmongkol, et al., Pre-training strategy for antiviral drug screening with low-data graph neural network: a case study in HIV-1 K103N reverse transcriptase, J. Comput. Chem. 46 (1) (2025) e27514, https://doi.org/10.1002/jcc.27514.

[55]

A.K. Gao, T.B. Chen, V.L. Kouznetsova, I.F. Tsigelny, Machine-learning-based virtual screening and ligand docking identify potent HIV-1 protease inhibitors, Artificial Intell. Chem. 1 (2) (2023 Dec 1)100014, https://doi.org/10.1016/j.aichem.2023.100014.

[56]

A. de F. Cobre A. Ara A.C. Alves, M. Maia Neto, M.M. Fachi, L.S. Beca, et al., Identifying 124 new anti-HIV drug candidates in a 37 billion-compound database: an integrated approach of machine learning [QSAR], molecular docking, and molecular dynamics simulation, Chemometr. Intell. Lab. Syst. 250 (2024) 105145, https://doi.org/10.1016/j.chemolab.2024.105145.

[57]

T.L. Phan, T.C. Trinh, V.T. To, T.A. Pham, P.C. Van Nguyen, T.M. Phan, et al., Novel machine learning approach toward classification model of HIV-1 integrase inhibitors, RSC Adv. 14 (21) (2024) 14506-14513, https://doi.org/10.1039/D4RA02231A.

[58]

M. Ziyaul-Haque, R. Ayub, M.U. Mohd Siddique, A. Gangwal, A. Ansari, M. Shahid, et al., Machine learning approaches in designing anti-HIV nitroimidazoles: 2D/3D QSAR, kNN-MFA, docking, dynamics, PCA analysis and MMGBSA studies, Arab. J. Chem. 17 (11) (2024) 105995, https://doi.org/10.1016/j.arabjc.2024.105995.

[59]

Enchant white paper, Breaking the data wall between lab and clinic. https://www.iambic.ai/post/enchant. (Accessed 18 February 2025).

[60]

Introducing evo: a generative AI model for genetic code -, Yesil Science (2024). https://yesilscience.com/introducing-evo-a-generative-ai-model-for-genetic-code/. (Accessed 18 February 2025). Assessed.

[61]

P. Bannigan, M. Aldeghi, Z. Bao, F. Häse, A. Aspuru-Guzik, C. Allen, Machine learning directed drug formulation development, Adv. Drug Deliv. Rev. 175 (2021) 113806, https://doi.org/10.1016/j.addr.2021.05.016.

[62]

L.K. Vora, A.D. Gholap, K. Jetha, R.R.S. Thakur, H.K. Solanki, V.P. Chavda, Artificial intelligence in pharmaceutical technology and drug delivery design, Pharmaceutics 15 (7) (2023) 1916, https://doi.org/10.3390/pharmaceutics15071916.

[63]

V. Srivastaava Noorain, B. Parveen, R. Parveen, Artificial intelligence in drug formulation and development: applications and future prospects, Curr. Drug Metabol. 24 (9) (2023) 622-634, https://doi.org/10.2174/0113892002265786230921062205.

[64]

S. Wang, J. Di, D. Wang, X. Dai, Y. Hua, X. Gao, A. Zheng, J. Gao, State-of-the-Art review of artificial neural networks to predict, characterize and optimize pharmaceutical formulation, Pharmaceutics 14 (1) (2022) 183, https://doi.org/10.3390/pharmaceutics14010183.

[65]

M.K. Ananthu, P.K. Chintamaneni, S.B. Shaik, R. Thadipatri, N. Mahammed Artificial neural networks in optimization of pharmaceutical formulations. Saudi J. Med. Pharm. Sci. 7 (8) 368-378, https://doi.org/10.36348/sjmps.2021.v07i08.004.

[66]

J. Dong, Z. Wu, H. Xu, D. Ouyang, FormulationAI: a novel web-based platform for drug formulation design driven by artificial intelligence, Briefings Bioinf. 25 (1) (2023) bbad419, https://doi.org/10.1093/bib/bbad419.

[67]

D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, R.K. Tekade, Artificial intelligence in drug discovery and development, Drug Discov. Today 26 (1) (2020) 80-93, https://doi.org/10.1016/j.drudis.2020.10.010.

[68]

M.O. Ilomuanya, R.F. Elesho, A.N. Amenaghawon, A.O. Adetuyi, V. Velusamy, A. S. Akanmu, Development of trigger sensitive hyaluronic acid/palm oil-based organogel for in vitro release of HIV/AIDS microbicides using artificial neural networks, Future J. Pharmaceut. Sci. 6 (1) (2020) 1-14, https://doi.org/10.1186/s43094-019-0015-8.

[69]

K. Kay, D.K. Shah, L. Rohan, R. Bies, Physiologically based pharmacokinetic model of vaginally administered dapivirine ring and film formulations, Br. J. Clin. Pharmacol. 84 (9) (2018) 1950-1969, https://doi.org/10.1111/bcp.13625.

[70]

V. Arabzadeh, M.R. Sohrabi, N. Goudarzi, M. Davallo, Using artificial neural network and multivariate calibration methods for simultaneous spectrophotometric analysis of emtricitabine and tenofovir alafenamide fumarate in pharmaceutical formulation of HIV drug, Spectrochim. Acta Mol. Biomol. Spectrosc. 215 (2019) 266-275, https://doi.org/10.1016/j.saa.2019.02.077.

[71]

Akanksha Mishra, A comprehensive review of artificial intelligence and machine learning : concepts, trends, and applications, Int. J. Sci. Res. Sci. Technol. 11 (5) (2024) 126-142, https://doi.org/10.32628/IJSRST2411587.

[72]

P. Slattery, A.K. Saeri, E.A.C. Grundy, J. Graham, M. Noetel, R. Uuk, et al., The AI risk repository: a comprehensive meta-review, database, and taxonomy of risks from artificial intelligence, Arxiv (2024). https://arxiv.org/abs/2408.12622v1.

[73]

Yaqing Wang, Quanming Yao, James Kwok, Lionel M. Ni, Generalizing from a few examples: a survey on few-shot learning, arXiv (2019), https://doi.org/10.48550/arXiv.1904.05046,1904.05046.

[74]

L. Enamoto, G.P. Rocha Filho, L. Weigang, Empowering few-shot learning: a multimodal optimization framework, Neural Comput. Appl. 37 (5) (2024) 3539-3560, https://doi.org/10.1007/s00521-024-10780-4.

[75]

J.N. Acosta, G.J. Falcone, P. Rajpurkar, E.J. Topol, Multimodal biomedical AI, Nat. Med. 28 (9) (2022) 1773-1784, https://doi.org/10.1038/s41591-022-01981-2.

[76]

V. Rani, S.T. Nabi, M. Kumar, A. Mittal, K. Kumar, Self-supervised learning: a succinct review, Arch. Comput. Methods Eng. 30 (4) (2023) 2761-2775, https://doi.org/10.1007/s11831-023-09884-2.

[77]

Y. Zhu, K. Yu, Artificial intelligence [AI] for quantum and quantum for AI, Opt. Quant. Electron. 55 (8) (2023) 1-26, https://doi.org/10.1007/s11082-023-049146.

[78]

R. Singh, S.S. Gill, Edge AI: a survey, Internet Things Cyber-Phys. Syst. 3 (2023) 71-92, https://doi.org/10.1016/j.iotcps.2023.02.004.

[79]

N.N. Botha, E. Ansah, C. Segbedzi, V. Dumahasi, S. Maneen, I. Tsedze, L. Akoto, F. ATSU, O. Lasim, Artificial intelligence in healthcare: a scoping review of perceived threats to patient rights and safety, Arch. Public Health 82 (2024) 188, https://doi.org/10.1186/s13690-024-01414-1.

[80]

N. Norori, Q. Hu, F.M. Aellen, F.D. Faraci, A. Tzovara, Addressing bias in big data and AI for health care: a call for open science, Patterns (N Y) 2 (10) (2021) 100347, https://doi.org/10.1016/j.patter.2021.100347.

[81]

S.Y. Mohammed, A.S. Khalaf, M. Aljanabi, M.M. Mijwil, Challenges and opportunities in translation studies: the evolving role of generative AI in translation development,in: L.M. BujosaVadell (Eds.), Sustainability and Financial Services in the Digital Age. Eurocrypt 1988. Springer Proceedings in Business and Economics, Springer, Cham, 2024, https://doi.org/10.1007/978-3-031-67511-9_7.

[82]

R. González-Sendino, E. Serrano, J. Bajo, Mitigating bias in artificial intelligence: fair data generation via causal models for transparent and explainable decisionmaking, Future Gener. Comput. Syst. 155 (2024) 384-401, https://doi.org/10.1016/j.future.2024.02.023.

[83]

A. Jobin, M. Ienca, E. Vayena, Artificial intelligence: the global landscape of ethics guidelines, ArXiv (2019), https://doi.org/10.48550/arXiv.1906.11668.

AI Summary AI Mindmap
PDF (1632KB)

403

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/