Artificial neural network guided optimization of tenofovir and Cyanovirin-N multipurpose preventive hydrogel formulation developed using the Box Behnken design model

Karamot O. Oyediran , Ibilola M. Cardoso-Daodu , Peace Ofonabasi Bassey , Deborah A. Ogundemuren , Ridwan Muhammed , Olusola E. Ojo , Andrew N. Amenaghawon , Chukwuemeka P. Azubuike , Rachna Agarwal , Kondoru Haritha , Margaret O. Ilomunaya

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100079

PDF (8427KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100079 DOI: 10.1016/j.pscia.2025.100079
Research Article
research-article

Artificial neural network guided optimization of tenofovir and Cyanovirin-N multipurpose preventive hydrogel formulation developed using the Box Behnken design model

Author information +
History +
PDF (8427KB)

Abstract

Tenofovir (TNF) is an antiretroviral drug that has being used as a topical microbicide to prevent human immunodeficiency virus transmission (HIV). Cyanovirin-N (CV-N) is a lectin protein that can bind to the HIV envelope glycoprotein and inhibit viral entry. The combination of TNF and CV-N may have synergistic effects and enhance the efficacy of microbicide. The aim of this study was to develop and optimize composite hydrogel formulations containing 1%TNF and 0.0005% CV-N using Box Behnken Design. A three-factor, three-level BoxBehnken design was employed to investigate the effects of the concentrations of PEG2000, sodium carboxyl methylcellulose (NaCMC), and calcium chloride on the release of Tenofovir, flux, and mucoadhesion. The mucoadhesion was evaluated by measuring the percent mucin adsorption while flux and release kinetics were evaluated using the Franz cell diffusion method. The optimal hydrogel formulation was found to contain 4% NaCMC, 2% PEG2000 and 1% CaCl2. The hydrogel had a pH of 4.5±0.017, a viscosity of 275600±0.65cP, flux 9806μ g/cm2/h for TNF with a drug release of 119, 205.6μ g/cm2. The TNF gel exhibited a pseudoplastic rheological behavior with 96.3% muco-adhesion. The study successfully developed an optimized TNF/CV-N mucoadhesive hydrogel, highlighting its potential as an on-demand multipurpose prevention technology (MPT) for HIV. The formulation was optimized to ensure good drug release, flux and mucoadhesion. The optimized hydrogel offers a convenient, effective method for preventing sexually transmitted infections (STIs), addressing critical challenges in drug delivery and user adherence while advancing public health strategies for STIs.

Keywords

Box Behnken design / Artificial neural network / Hydrogels / Cyanovirin-N / Tenofovir / Flux

Cite this article

Download citation ▾
Karamot O. Oyediran, Ibilola M. Cardoso-Daodu, Peace Ofonabasi Bassey, Deborah A. Ogundemuren, Ridwan Muhammed, Olusola E. Ojo, Andrew N. Amenaghawon, Chukwuemeka P. Azubuike, Rachna Agarwal, Kondoru Haritha, Margaret O. Ilomunaya. Artificial neural network guided optimization of tenofovir and Cyanovirin-N multipurpose preventive hydrogel formulation developed using the Box Behnken design model. Pharmaceutical Science Advances, 2025, 3(1): 100079 DOI:10.1016/j.pscia.2025.100079

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Karamot O. Oyediran: Writing - review & editing, Writing - original draft, Visualization, Validation, Resources, Project administration, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Ibilola M. Cardoso-Daodu: Writing - review & editing. Peace Ofonabasi Bassey: Writing - review & editing. Deborah A. Ogundemuren: Writing - review & editing, Conceptualization. Ridwan Muhammed: Writing - review & editing. Olusola E. Ojo: Visualization. Andrew N. Amenaghawon: Writing - original draft, Methodology, Data curation. Chukwuemeka P. Azubuike: Writing - review & editing, Supervision. Rachna Agarwal: Writing - review & editing, Conceptualization. Kondoru Haritha: Writing - review & editing. Margaret O. Ilomunaya: Writing - review & editing, Supervision, Resources, Methodology, Conceptualization.

Consent for publication

Not applicable.

Availability of data and material

The datasets used during the current study are available from the corresponding author on request.

Declaration of generative AI in scientific writing

The authors acknowledge the use of Image J, Canva, DPI converter to enhance images in this manuscript. ChatGPT was also used to summarize certain sentences. After using this tool/service, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Cyanovirin-N was generously supplied by the BARC group, Mumbai, India. Financial support and access to Electospinnig equipment was provided by the MEDAFRICA GMP Laboaratory, Faculty of Pharmacy University of Lagos Nigeria.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Cyanovirin-N was generously supplied by the BARC group, Mumbai, India. Financial support and access to the NLI Electrospinnig equipment was provided by the MEDAFRICA GMP Laboratory, Faculty of Pharmacy University of Lagos Nigeria. The authors acknowledge the support of the entire staff of Pharmaceutics and Pharmaceutical technology, Faculty of Pharmacy, University of Lagos

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100079.

References

[1]

D. Gökengin, T. Noori, A. Alemany, C. Bienkowski, G. Liegon, A.Ç. İnkaya, et al., Prevention strategies for sexually transmitted infections, HIV, and viral hepatitis in Europe, Lancet. Reg. Health - Eur. 34 (2023) 100738, https://doi.org/10.1016/j.lanepe.2023.100738.

[2]

B.Y. Holt, J.A. Turpin, J. Romano, Multipurpose prevention technologies: opportunities and challenges to ensure advancement of the Most promising MPTs, Front. Reprod. Health 3 (2021) 704841, https://doi.org/10.3389/frph.2021.704841.

[3]

E.E. Tolley, S. Li, S.Z. Zangeneh, M. Atujuna, P. Musara, J. Justman, S. Pathak, L.G. Bekker, S. Swaminathan, J. Stanton, J. Farrior, N. Sista,Acceptability of a longacting injectable HIV prevention product among US and African women: findings from a phase 2 clinical trial (HPTN 076), J. Int. AIDS Soc. 22 (10) (2019) e25408, https://doi.org/10.1002/jia2.25408.

[4]

J.S. Hynes, J.M. Sales, A.N. Sheth, E. Lathrop, L.B. Haddad, Interest in multipurpose prevention technologies to prevent HIV/STIs and unintended pregnancy among young women in the United States, Contraception 97 (3) (2018) 277-284, https://doi.org/10.1016/j.contraception.2017.10.006.

[5]

A. van der Straten, K. Agot, K. Ahmed, R. Weinrib, E.N. Browne, K. Manenzhe, F. Owino, J. Schwartz, A. Minnis, Team, on behalf of the T. S., The tablets, ring, injections as options (TRIO) study: what young African women chose and used for future HIV and pregnancy prevention, J. Int. AIDS Soc. 21 (3) (2018) e25094, https://doi.org/10.1002/jia2.25094.

[6]

J. Ross, J. Stover, Use of modern contraception increases when more methods become available: analysis of evidence from 1982-2009, Glob. Health Sci. Pract. 1 (2) (2013) 203-212, https://doi.org/10.9745/GHSP-D-13-00010.

[7]

I. Maier, G. Kontaxis, C. Zimmermann, C. Steininger, Cyanovirin-N binding to N-Acetyl-d-glucosamine requires carbohydrate-binding sites on two different protomers, Biochemistry 63 (10) (2024) 1270-1277, https://doi.org/10.1021/acs.biochem.4c00113.

[8]

R. Agarwal, J. Trivedi, D. Mitra, High yield production of recombinant CyanovirinN (Antiviral lectin) exhibiting significant anti-HIV activity, from a rationally selected Escherichia coli strain, Process Biochem. 93 (2020) 1-11, https://doi.org/10.1016/j.procbio.2020.03.011.

[9]

H. Lotfi, R. Sheervalilou, N. Zarghami, An update of the recombinant protein expression systems of Cyanovirin- N and challenges of preclinical development, Bioimpacts : BI 8 (2) (2017) 139, https://doi.org/10.15171/bi.2018.16.

[10]

R.J. Shattock, J.P. Moore, Inhibiting sexual transmission of HIV-1 infection, Nat. Rev. Microbiol. 1 (1) (2003) 25-34, https://doi.org/10.1038/nrmicro729.

[11]

S. Xiong, J. Fan, K. Kitazato, The antiviral protein cyanovirin- N : the current state of its production and applications, Appl. Microbiol. Biotechnol. 86 (3) (2010) 805-812, https://doi.org/10.1007/s00253-010-2470-1.

[12]

C.C. Tsai, P. Emau, Y. Jiang, B. Tian, W.R. Morton, K.R. Gustafson, et al., Cyanovirin-N gel as a topical microbicide prevents rectal transmission of SHIV89.6P in macaques, AIDS Res. Hum. Retrovir. 19 (7) (2003) 535-541, https://doi.org/10.1089/088922203322230897.

[13]

M. Mazalovska, J.C. Kouokam, Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections, BioMed Res. Int. (2018) 3750646, https://doi.org/10.1155/2018/3750646.

[14]

S.S.A. Abdool Karim, Q.A. Karim, A.B.M. Kharsany, C. Baxter, A.C. Grobler, L. Werner, et al., Tenofovir gel for the prevention of Herpes simplex virus type 2 infection, N. Engl. J. Med. 373 (6) (2015) 530-539, https://doi.org/10.1056/NEJMoa1410649.

[15]

J. Wang, S.A. Khan, S. Yasmin, M.M. Alam, H. Liu, U. Farooq, et al., Central composite design [CCD]-response surface methodology [RSM] for modeling and simulation of MWCNT-Water nanofluid inside hexagonal cavity: application to electronic cooling, Case Stud. Therm. Eng. 50 (2023) 103488, https://doi.org/10.1016/j.csite.2023.103488.

[16]

M. Kumar Ananthu, P. Kumar Chintamaneni, S. Basha Shaik, R. Thadipatri, N. Mahammed, Artificial neural networks in optimization of pharmaceutical formulations, Saudi. J. Med. Pharm. Sci. 7 (8) (2021) 368-378, doi:SJMPS_78_368378c.pdf.

[17]

H.S. Kusuma, A.N. Amenaghawon, H. Darmokoesoemo, Y.A.B. Neolaka, B. A. Widyaningrum, S.U. Onowise, et al., A comparative evaluation of statistical empirical and neural intelligence modeling of manihot esculenta-derived leaves extract for optimized bio-coagulation-flocculation of turbid water, Ind. Crop. Prod. 186 (2022) 115194, https://doi.org/10.1016/j.indcrop.2022.115194.

[18]

S. Sukpancharoen, T. Katongtung, N. Rattanachoung, N. Tippayawong, Unlocking the potential of transesterification catalysts for biodiesel production through machine learning approach, Bioresour. Technol. 378 (2023) 128961, https://doi.org/10.1016/j.biortech.2023.128961.

[19]

A.N. Amenaghawon, S. Igemhokhai, S.A. Eshiemogie, F. Ugbodu, N. I. Evbarunegbe, Data-driven intelligent modeling, optimization, and global sensitivity analysis of a xanthan gum biosynthesis process, Heliyon 10 (3) (2024) e25432, https://doi.org/10.1016/j.heliyon.2024.e25432.

[20]

M. Ekpenyong, A. Asitok, U. Ben, A. Amenaghawon, H. Kusuma, A. Akpan, et al., Application of the novel manta-ray foraging algorithm to optimize acidic peptidase production in solid-state fermentation using binary agro-industrial waste, Prep. Biochem. Biotechnol. 54 (2) (2024) 226-238, https://doi.org/10.1080/10826068.2023.2214936.

[21]

M. Ilomuanya, A. Amenaghawon, J. Odimegwu, O. Okubanjo, C. Aghaizu, A. Oluwatobiloba, et al., Formulation and optimization of gentamicin hydrogel infused with tetracarpidium conophorum extract via a central composite design for topical delivery, Turk. J. Pharm. Sci. 15 (3) (2018) 319-327, https://doi.org/10.4274/tjps.33042.

[22]

W. Alshaer, H. Nsairat, Z. Lafi, O.M. Hourani, A. Al-Kadash, E. Esawi, et al., Quality by design approach in liposomal formulations: robust product development, Molecules 28 (1) (2023) 10, https://doi.org/10.3390/molecules28010010.

[23]

M.O. Ilomuanya, P.O. Bassey, D.A. Ogundemuren, U.N. Ubani-Ukoma, A. Tsamis, Y. Fan, et al., Development of mucoadhesive electrospun scaffolds for intravaginal delivery of lactobacilli spp., a tenside, and metronidazole for the management of bacterial vaginosis, Pharmaceutics 15 (4) (2023) 1263, https://doi.org/10.3390/pharmaceutics15041263.

[24]

M.O. Ilomuanya, R. Elesho, A. Amenaghawon, A. Adetuyi, V. Velusamy, S. Akanmu, Development of trigger sensitive hyaluronic acid/palm oil-based organogel for in vitro release of HIV/AIDS microbicides using artificial neural networks, Future J. Pharm. Sci. 6 (2020) 1, https://doi.org/10.1186/s43094-019-0015-8.

[25]

R. Gawali, J. Trivedi, S. Bhansali, R. Bhosale, D. Sarkar, D. Mitra, Design, synthesis, sdocking studies and biological screening of 2-thiazolyl substituted -2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines as potent HIV-1 reverse transcriptase inhibitors, Eur. J. Med. Chem. 157 (2018) 310-319, https://doi.org/10.1016/j.ejmech.2018.07.067.

[26]

M.O. Ilomuanya, B.B. Salako, M.O. Ologunagba, O.O. Shonekan, K. OwodehaAshaka, E.S. Osahon, et al., Formulation and optimization of metronidazole and lactobacillus spp. layered suppositories via a three-variable, five-level central composite design for the management of bacterial vaginosis, Pharmaceutics 14 (11) (2022) 2337, https://doi.org/10.3390/pharmaceutics14112337.

[27]

N.F. Che Nan, N. Zainuddin, Ayob M. Ahmad, Preparation and swelling study of CMC hydrogel as potential superabsorbent, Pertanika J. Sci. Technol. 27 (1) (2019) 489-498. http://psasir.upm.edu.my/id/eprint/67245.

[28]

S. Gedam, P. Jadhav, S. Talele, A. Jadhav, Effect of crosslinking agent on development of gastro-retentive mucoadhesive microspheres of risedronate sodium, Int. J. Appl. Pharm. 10 (2018) 133, https://doi.org/10.22159/ijap.2018v10i4.26071.

[29]

N.F.A.Z. Tuan Mohamood, A.H. Abdul Halim, N. Zainuddin, Carboxymethyl cellulose hydrogel from biomass waste of oil palm empty fruit bunch using calcium chloride as crosslinking agent, Polymers 13 (23) (2021) 4056, https://doi.org/10.3390/polym13234056.

[30]

N.A. Peppas, Y. Huang, Nanoscale technology of mucoadhesive interactions, Adv. Drug Deliv. Rev. 56 (11) (2004) 1675-1687, https://doi.org/10.1016/j.addr.2004.03.001.

[31]

B.J. Moncla, K. Pryke, L.C. Rohan, H. Yang, J. Microbiol. Testing of viscous anti-HIV microbicides using lactobacillus, Methods 88 (2) (2012) 292-296, https://doi.org/10.1016/j.mimet.2011.12.013.

[32]

H. Park, J.R. Robinson, Mechanisms of mucoadhesion of poly [acrylic acid] hydrogels, Pharm. Res. 4 (6) (1987) 457-464, https://doi.org/10.1023/a:1016467219657.

[33]

V.K. Yadav, A.B. Gupta, R. Kumar, J.S. Yadav, B. Kumar, Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system, J. Chem. Pharmaceut. Res. 2 (5) (2010). https://www.researchgate.net/publication/222712279_Mucoadhesive_Polymers_Means_of_Improving_the_Mucoadhesive_Properties_of_Drug_Delivery_System.

[34]

M. Momoh, M. Adikwu, C. Ibezim, K. Ofokansi, A. Attama, Thermal characterisation of PEGylated mucin, Asian Pac. J. Tropical Med. 3 (6) (2010) 458-460, https://doi.org/10.1016/S1995-7645(10)60110-1.

[35]

T. Crouzier, K. Boettcher, A.R. Geonnotti, N.L. Kavanaugh, J.B. Hirsch, K. Ribbeck, et al., Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding, Adv. Mater. Interfac. 2 (18) (2015) 1500308, https://doi.org/10.1002/admi.201500308.

[36]

X. Li, J.P. Gong, Nat. Rev. Mater. (Design principles for strong and tough hydrogels, 2024) 1-19, https://doi.org/10.1038/s41578-024-00672-3.

[37]

E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: a review, J. Adv. Res. 6 (2) (2015) 105, https://doi.org/10.1016/j.jare.2013.07.006.

[38]

D. Palmer, M. Levina, A. Nokhodchi, D. Douroumis, T. Farrell, A. RajabiSiahboomi, The influence of sodium carboxymethylcellulose on drug release from polyethylene oxide extended-release matrices, AAPS PharmSciTech 12 (3) (2011) 862, https://doi.org/10.1208/s12249-011-9648-4.

[39]

R. Reeves, A. Ribeiro, L. Lombardo, R. Boyer, J.B. Leach, Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds, Polymers 2 (3) (2010) 252-264, https://doi.org/10.3390/polym2030252.

[40]

X. Li, C. Cao, D. Yuan, Q. Liu, J. Zhao, Effects of the incorporation of calcium chloride on the physical and oxidative stability of filled hydrogel particles, Foods 11 (3) (2022) 278, https://doi.org/10.3390/foods11030278.

[41]

G. Cheraghian, M.P. Wistuba, S. Kiani, A.R. Barron, A. Behnood, Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles, Sci. Rep. 11 (1) (2021) 11455, https://doi.org/10.1038/s41598-021-90620-w.

[42]

A.R. Cho, Y.G. Chun, B.K. Kim, D.J. Park, Preparation of alginate- CaCl 2 microspheres as resveratrol carriers, J. Mater. Sci. 49 (13) (2014) 4612-4619, https://doi.org/10.1007/s10853-014-8163-x.

[43]

M. Vigata, C. Meinert, D.W. Hutmacher, N. Bock, Hydrogels as drug delivery systems: a review of current characterization and evaluation techniques, Pharmaceutics 12 (12) (2020) 1188, https://doi.org/10.3390/pharmaceutics12121188.

[44]

Y. Fu, W.J. Kao, Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems, Expet Opin. Drug Deliv. 7 (4) (2010) 429-444, https://doi.org/10.1517/17425241003602259.

[45]

S. Ayehunie, Y.Y. Wang, T. Landry, S. Bogojevic, R.A. Cone, Hyperosmolal vaginal lubricants markedly reduce epithelial barrier properties in a three-dimensional vaginal epithelium model, Toxicol. Rep. 5 (2017 Dec 16) 134-140, https://doi.org/10.1016/j.toxrep.2017.12.011.

[46]

S. Singh, A.K. Dash, Physical Properties, their Determination, and Importance in Pharmaceutics. Pharmaceutics: Basic Principles and Application to Pharmacy Practice, second ed., 2023, pp. 67-113.

[47]

S.A. Khan, S.B. Khan, L.U. Khan, A. Farooq, K. Akhtar, A.M. Asiri, Fourier transform infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization, in: S.K. Sharma (Ed.), Handbook of Materials Characterization, Springer International Publishing, Cham, 2018, pp. 317-344, https://doi.org/10.1007/978-3-319-92955-2_9.

[48]

B. Kumar, R. Priyadarshi, S. Singh, F. Deeba, A. Kulshreshtha, K. Gaikwad, et al., Nanoporous sodium carboxymethyl Cellulose-g-poly [sodium Acrylate]/FeCl3 hydrogel beads: synthesis and characterization, Gels 6 (2020) 49, https://doi.org/10.3390/gels6040049.

[49]

P. Rantuch, The thermal degradation of polymer materials, in:P. Rantuch (Ed.), Ignition of Polymers, Springer International Publishing, Cham, 2022, pp. 1-43, https://doi.org/10.1007/978-3-031-13082-3_1.

[50]

M.A. Saad, E.R. Sadik, B.M. Eldakiky, H. Moustafa, E. Fadl, Z. He, et al., Synthesis and characterization of an innovative sodium alginate/polyvinyl alcohol bioartificial hydrogel for forward-osmosis desalination, Sci. Rep. 14 (1) (2024) 8225, https://doi.org/10.1038/s41598-024-58533-6.

[51]

A. Hotter, H. Lengauer, Crystalline forms of tenofovir alafenamide monofumarate, WO2017134089A1, https://patents.google.com/patent/WO2017134089A1/en, 2017.

[52]

C.A. Bewley, K.R. Gustafson, M.R. Boyd, D.G. Covell, A. Bax, G.M. Clore, et al., Solution structure of Cyanovirin-N, a potent HIV-Inactivating protein, Nat. Struct. Biol. 5 (7) (1998) 571-578. https://www.nature.com/articles/nsb0798_571.

[53]

E.G. Raymond, C.P. Lien, J. Luoto, Contraceptive effectiveness and safety of five nonoxynol-9 spermicides: a randomized trial, Obstet. Gynecol. 103 (3) (2004) 430-439, https://doi.org/10.1097/01.AOG.0000113620.18395.0b.

[54]

P. Kumar, A. Nagarajan, P.D. Uchil, Analysis of cell viability by the MTT assay, Cold Spring Harb. Protoc. 6 (2018), https://doi.org/10.1101/pdb.prot095505.

[55]

A.J. Dominijanni, M. Devarasetty, S.D. Forsythe, K.I. Votanopoulos, S. Soker, Cell viability assays in three-dimensional hydrogels: a comparative study of accuracy, Tissue Eng. C Methods 27 (7) (2021) 401, https://doi.org/10.1089/ten.tec.2021.0060.

[56]

E.M. Wilkinson, P. Łaniewski, M.M. Herbst-Kralovetz, R.M. Brotman, Personal and clinical vaginal lubricants: impact on local vaginal microenvironment and implications for epithelial cell host response and barrier function, J. Infect. Dis. (12) (2019) 220, https://doi.org/10.1093/infdis/jiz412.

[57]

E. Amabebe, D.O.C. Anumba, The vaginal microenvironment: the physiologic role of lactobacilli, Front. Med. 5 (2018) 181, https://doi.org/10.3389/fmed.2018.00181.

AI Summary AI Mindmap
PDF (8427KB)

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/