Recent progress on formulations of hirudin

Zheng Bao , Xingyu Qi , Suling Zhu , Mao Zhang , Xinyue Liu , Peidong Chen , Li Zhang , Ting Geng , Fang-Fang Cheng

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100078

PDF (9096KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100078 DOI: 10.1016/j.pscia.2025.100078
Review Article
research-article

Recent progress on formulations of hirudin

Author information +
History +
PDF (9096KB)

Abstract

Hirudin is an effective active ingredient derived from the salivary glands of leech. It is a small peptide molecule consisting of 65-66 amino acids and demonstrates a strong inhibitory effect on thrombin, providing beneficial anticoagulant and antithrombotic properties. However, as a biopharmaceutical peptide, it has some drawbacks such as easy degradation, short half-life, low bioavailability, and high risk of hemorrhage in clinical use. To overcome these challenges, various formulations were developed. In this work, a comprehensive review of research progress was provided in both traditional and novel hirudin formulations, spanning from lyophilized powders to biotechnology-based pharmaceuticals, covering various dosage forms to offer comprehensive references for field research. Firstly the advantages and limitations of conventional preparations were assessed such as freeze-dried powders, capsules, and injections. Then a detailed exploration of frontier strategies including nanotechnology-based delivery systems, transdermal formulations, and biotechnology-driven prodrug designs were conducted. This article aims to comprehensively analyze cutting-edge advancements in hirudin preparation research, providing updated information for relevant researchers by integrating traditional dosage optimization with breakthrough emerging technologies.

Keywords

Hirudin formulations / Anticoagulant activity / Release-controlled formulations / Dermal delivery formulations / Molecular design and structural modifications

Cite this article

Download citation ▾
Zheng Bao, Xingyu Qi, Suling Zhu, Mao Zhang, Xinyue Liu, Peidong Chen, Li Zhang, Ting Geng, Fang-Fang Cheng. Recent progress on formulations of hirudin. Pharmaceutical Science Advances, 2025, 3(1): 100078 DOI:10.1016/j.pscia.2025.100078

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zheng Bao: Writing - review & editing, Writing - original draft, Conceptualization. Xingyu Qi: Writing - review & editing, Writing original draft, Conceptualization. Suling Zhu: Writing - original draft, Conceptualization. Mao Zhang: Writing - original draft, Conceptualization. Xinyue Liu: Writing - original draft, Conceptualization. Peidong Chen: Writing - review & editing, Funding acquisition. Li Zhang: Writing - review & editing, Funding acquisition. Ting Geng: Writing review & editing, Supervision, Conceptualization. Fang-Fang Cheng: Writing - review & editing, Supervision, Funding acquisition, Conceptualization.

Data avaliability

Not applicable.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

Deepseek was used to correct grammatical errors.

Funding

The authors are thankful to the National Natural Science Foundation of China (82374037, 82374039), the Natural Science Foundation of Jiangsu Province (BK20231258), and Project funded by Jiangsu Administration of traditional Chinese Medicine (MS2021005) for the generous financial supports. This work is also supported by the College Students’ Innovation and Entrepreneurship Training Program (202310315058Z, 202410315Y087).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Fig. 1 was created with Adobe Illustrator Software.

References

[1]

Y. Pan, L. Zhang, M.J. Li, S.J. Guo, J.J. Guo, H.X. Liu, W.H. Liu, M.X. Zhou, Effects of Astragalus polysaccharides and Hirudin combined intervention on lipid accumulation in macrophages and its mechanism, Chin. J. Arteriosclerosis 31 (2023) 1029-1036.

[2]

X. Yi, J. Liu, E. Zang, Y. Tian, J. Liu, L. Shi, Exploring a Hirudin variant from nonhematophagous leeches: unraveling full-length sequence, alternative splicing, function, and potential as a novel anticoagulant polypeptide, J. Ethnopharmacol. 330 (2024), https://doi.org/10.1016/j.jep.2024.118257.

[3]

D. Wei, J. Lyu, B. Wang, Y. He, L. Bi,Hirudin enhances perforator flap survival: clinical application report and mechanistic exploration, J. Stomatol. Oral Maxillofac. Surg. 125 (3) (2024), https://doi.org/10.1016/j.jormas.2024.101868.

[4]

J. Zhang, N. Lan, Hirudin variants production by genetic engineered microbial factory, in: T. Patel, G. Vanmarle (Eds.), Biotechnology and Genetic Engineering Reviews, Vol vol. 34, Issue 22018, pp. 261-280, https://doi.org/10.1080/02648725.2018.1506898.

[5]

D.-Q. Li, F.-F. Lv, Z.-C. Li, Z.-Y. Dai, H.-X. Wang, Y. Han, Anti-atherosclerotic effects between a combined treatment with simvastatin plus hirudin and single simvastatin therapy in patients with early type 2 diabetes mellitus, Ann. Transl. Med. 7 (14) (2019), https://doi.org/10.21037/atm.2019.05.69.

[6]

J. Zhao, Z. Li, H. Zhang, T. Qin, J. Zhao, Q. Pei, Recombinant hirudin suppresses angiogenesis of diffuse large B-cell lymphoma through regulation of the PAR-1VEGF, Chem. Biol. Drug Des. 103 (5) (2024), https://doi.org/10.1111/cbdd.14533.

[7]

J. Kou, L. Gao, L. Ni, T. Shao, J. Ding, Mechanism of hirudin-mediated inhibition of proliferation in ovarian cancer cells, Mol. Biotechnol. 66 (5) (2024) 1062-1070, https://doi.org/10.1007/s12033-023-01003-7.

[8]

Z.J. Haffler, T.G. Hughes, L.S. Yeager, Intraoperative bivalirudin use in patient undergoing femoral endarterectomy with heparin-induced thrombocytopenia: case report and review of the literature, Vasc. Endovasc. Surg. 58 (4) (2024) 452-456, https://doi.org/10.1177/15385744231216034.

[9]

H. Zhang, H. Chen, J. Li, Y. Bian, Y. Song, Z. Li, F. He, S. Liu, Y. Tsai, Hirudin protects against isoproternol-induced myocardial infraction by alleviating oxidative via an Nrf2 dependent manner, Int. J. Biol. Macromol. 162 (2020) 425-435, https://doi.org/10.1016/j.ijbiomac.2020.06.097.

[10]

J.P. Cunha, DO, FACOEP, iprivask. https://www.rxlist.com/refludan-drug.htm, 2022

[11]

J.P. Cunha, DO, FACOEP, refludan. https://www.rxlist.com/refludan-drug.htm, 2022.

[12]

R. Lai, Z.L. Duan, W.X. Mai, Q.M. , Y.F. Chen, An Antithrombotic Polypeptide PM4 and its Preparation Method and Application, Patent CN-119661695A, p. 13.

[13]

H.Y. Han, S.T. Li, Hirudin Magnetic Nanoparticles for Thrombosis Treatment and Their Preparation Method and Application, Patent CN-119607200A, p. 17.

[14]

H.Y. Han, K. Zhang, Inhalable Nanomotor for Pulmonary Thrombosis Treatment and its Preparation Method and Application, Patent CN-117357636A, p. 17.

[15]

Y.-b. Liu, Y. Liang, H.-c. Liu, G.-x. Feng, X.-c. Zhou, L. Zhang, X.-l. Zhang, Q. Li, B.y. Ren, X. Xia, J. Zhu, C.-t. Wu, J.-d. Jin, Safety tolerability, pharmacodynamics, and pharmacokinetics of recombinant neorudin, a new anticoagulant drug in patients with acute coronary syndrome, Clinical Pharmacology in Drug Development 13 (11) (2024) 1189-1197, https://doi.org/10.1002/cpdd.1478.

[16]

X. Sun, M. Mijiti, C. Huang, S. Mei, K. Fang, Y. Yang, The effect and mechanism of freeze-dried powder of Poecilobdella manillensis on improving inflammatory injury of rat glomerular mesangial cells through TXNIP/NLRP3 pathway, Heliyon 10 (18) (2024) e38206, https://doi.org/10.1016/j.heliyon.2024.e38206.

[17]

S. Su, Y. Yu, W. Mo, Y. Zhang, H. Song, Q. Chen, Y. Xie, A development of LC-MS method combining ultrafiltration and lyophilization for determination of r-RGDHirudin in human serum, J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 870 (1) (2008) 27-31, https://doi.org/10.1016/j.jchromb.2008.05.032.

[18]

T. Ren, P.Y. Zhu, H.T. Yang, Intervention effect of Hirudin on renal interstitial fibrosis in unilateral ureteral ligation rats, Sichuan Journal of Traditional Chinese Medicine 37 (2019) 64-68.

[19]

T. Ren, P.Y. Zhu, H.T. Yang, Intervention effect of Hirudin on renal interstitial injury and MCP-1, ICAM-1 in unilateral ureteral obstruction rats, Tianjin Journal of Traditional Chinese Medicine 36 (2019) 477-481.

[20]

R.X. Gao, Effects of Hirudin on the Expression of AKT and P-AKT Proteins in Lung Tissue of Rats with Bleomycin-Induced Idiopathic Pulmonary Interstitial Fibrosis,

[21]

W.J. Zhu, H.M. Li, H.J. Li, P. Chen, A Hirudin Active Lyophilized Powder and its Preparation Method and Application, Patent CN-113101234A, p. 8.

[22]

J.J. Wang, W.H. Wang, Effects of Hirudin on coagulation function and endothelial function in hypertensive patients, New Chinese Medicine 51 (2019) 123-125.

[23]

B.Y. Lai, Z.F. Chen, Effects of Hirudin on blood-brain barrier tight junction protein expression and intracranial pressure in acute cerebral hemorrhage patients, Heilongjiang Journal of Traditional Chinese Medicine 50 (2021) 107-108.

[24]

C. Zhang, J.S. Liu, S.J. Liu, Z.W. Wang, Hirudin Formulation for the Treatment of Chronic Renal Failure, Patent CN-115501329A, p. 18.

[25]

Y. Zhu, H.-H. Han, L. Zhai, Y. Yan, X. Liu, Y. Wang, L. Lei, J.-C. Wang, Engineering a "three-in-one" hirudin prodrug to reduce bleeding risk: a proof-of-concept study, J. Contr. Release 338 (2021) 462-471, https://doi.org/10.1016/j.jconrel.2021.08.058.

[26]

Y.-r. Li, Y.-n. Huang, B. Zhao, M.-f. Wu, T.-y. Li, Y.-l. Zhang, D. Chen, M. Yu, W. Mo, RGD-hirudin-based low molecular weight peptide prevents blood coagulation via subcutaneous injection, Acta Pharmacol. Sin. 41 (6) (2020) 753-762, https://doi.org/10.1038/s41401-019-0347-0.

[27]

K. Rai, X. Chu, Z. Bao, Y. Liang, X. Wang, J. Yang, M. Xian, Y. Sun, R. Nian, Enhanced anticoagulant activity of hirudin-i analogue co-expressed with arylsulfotransferase in periplasm of E. coli BL21(DE3), J. Biotechnol. 323 (2020) 107-112, https://doi.org/10.1016/j.jbiotec.2020.08.003.

[28]

R.B. Saudagar, M.M. Mahale, Microsphere: a review, J. Drug Deliv. Therapeut. 9 (3-s) (2019) 854-856, https://doi.org/10.22270/jddt.v9i3-s.2826.

[29]

F. Rahmani, S. Naderpour, B.G. Nejad, M. Rahimzadegan, Z.N. Ebrahimi, H. Kamali, R. Nosrati, The recent insight in the release of anticancer drug loaded into PLGA microspheres, Med. Oncol. 40 (8) (2023), https://doi.org/10.1007/s12032-023-02103-9.

[30]

D.L. Sellers, T.H. Kim, C.W. Mount, S.H. Pun, P.J. Horner, Poly(lactic-co-glycolic) acid microspheres encapsulated in Pluronic F-127 prolong hirudin delivery and improve functional recovery from a demyelination lesion, Biomaterials 35 (31) (2014) 8895-8902, https://doi.org/10.1016/j.biomaterials.2014.06.051.

[31]

K. Zhang, Z. Ma, S. Li, W. Zhang, M.F. Foda, Y. Zhao, H. Han, Platelet-covered nanocarriers for targeted delivery of hirudin to eliminate thrombotic complication in tumor therapy, ACS Nano 16 (11) (2022) 18483-18496, https://doi.org/10.1021/acsnano.2c06666.

[32]

F. Jing, W. Xu, D. Liu, C. Wang, Z. Sui, Enhanced antithrombotic effect of hirudin by bovine serum albumin nanoparticles, J. Exp. Nanosci. 11 (8) (2016) 619-629, https://doi.org/10.1080/17458080.2015.1104925.

[33]

X. Li, X. Zhang, W. Zhao, P. Tian, K. Tulugan, Preparation of hirudin-loaded chitosan/polycaprolactone bowl-shaped particles and an application for a drug delivery system, Applied Sciences-Basel 14 (5) (2024), https://doi.org/10.3390/app14051939.

[34]

J. Zhao, Y. Liu, J.B. Xie, F.L. Wang, Y.Q. Zhang, Research progress on nano-drug delivery systems in traditional Chinese medicine, Chinese Journal of Traditional Chinese Medicine Studies 40 (2022) 134-137+276.

[35]

E.V. Araujo, S.V. Carneiro, D.M.A. Neto, T.M. Freire, V.M. Costa, R.M. Freire, L.M. U.D. Fechine, C.S. Clemente, J.C. Denardin, J.C.S. dos Santos, R. Santos-Oliveira, J. S. Rocha, P.B.A. Fechine, Advances in surface design and biomedical applications of magnetic nanoparticles, Adv. Colloid Interface Sci. 328 (2024), https://doi.org/10.1016/j.cis.2024.103166.

[36]

A. Haider, S. Khan, D.N. Iqbal, M. Shrahili, S. Haider, K. Mohammad, A. Mohammad, M. Rizwan, Q. Kanwal, G. Mustafa, Advances in chitosan-based drug delivery systems: a comprehensive review for therapeutic applications, Eur. Polym. J. 210 (2024), https://doi.org/10.1016/j.eurpolymj.2024.112983.

[37]

Y. Liu, X. Xie, H. Chen, X. Hou, Y. He, J. Shen, J. Shi, N. Feng, Advances in nextgeneration lipid-polymer hybrid nanocarriers with emphasis on polymer-modified functional liposomes and cell-based-biomimetic nanocarriers for active ingredients and fractions from Chinese medicine delivery, Nanomed. Nanotechnol. Biol. Med. 29 (2020), https://doi.org/10.1016/j.nano.2020.102237.

[38]

A. Shakouri, H. Kahroba, H. Hamishekar, J. Abdolalizadeh, Nanoencapsulation of Hirudo medicinalis proteins in liposomes as a nanocarrier for inhibiting angiogenesis through targeting VEGFA in the Breast cancer cell line (MCF-7), Bioimpacts 12 (2) (2022) 115-126, https://doi.org/10.34172/bi.2021.39.

[39]

H. Wang, H. Cui, L. Lin, Y. Ji, Q. Ni, J. Li, J. Pang, G. Bing, Y. Bian, The effects of a hirudin/liposome complex on a diabetic nephropathy rat model, BMC Compl. Alternative Med. 19 (2019), https://doi.org/10.1186/s12906-019-2531-7.

[40]

C.T. Inglut, A.J. Sorrin, T. Kuruppu, S. Vig, J. Cicalo, H. Ahmad, H.-C. Huang, Immunological and toxicological considerations for the design of liposomes, Nanomaterials 10 (2) (2020), https://doi.org/10.3390/nano10020190.

[41]

X. Dai, Polycaprolactone-based Nanofiber Scaffolds Composite with Hirudin and Their Effects on Endothelial Cells and Anticoagulation, 2021. Doctoral Dissertation.

[42]

Z. Zheng, X. Dai, X. Li, C. Du, PCL-Based and hirudin-containing composite nanofibers for prolonged anticoagulation effect, Chem. Res. Chin. Univ. 39 (6) (2023) 1023-1030, https://doi.org/10.1007/s40242-023-3080-7.

[43]

H.M. Li, X. Wang, Effects of paclitaxel-Hirudin stent coating complex on TLR4MyD88 signaling pathway in inflammatory activation of HCASMCs, Chinese Journal of Evidence-Based Cardiovascular Medicine 11 (2019) 94-98.

[44]

H. Li, X. Wang, Inhibitory effects of paclitaxel hirudin complexes on the growth and proliferation of human coronary artery smooth muscle cells and endothelial cells in vitro: an exploration of a new type of complex monomer for stents eluting natural herbs, West Indian Med. J. (2016), https://doi.org/10.7727/wimj.2016.297.

[45]

X. Wang, H. Li, X. Sun, X. Wang, G. Wang, Evaluation of drug release from paclitaxel plus hirudin-eluting balloons and the resulting vascular reactivity in healthy pigs, Exp. Ther. Med. 16 (4) (2018) 3425-3432, https://doi.org/10.3892/etm.2018.6653.

[46]

J.C.K. Ng, D.W.Y. Toong, V. Ow, S.Y. Chaw, H. Toh, P.E.H. Wong, S. Venkatraman, T.T. Chong, L.P. Tan, Y.Y. Huang, H.Y. Ang, Progress in drug-delivery systems in cardiovascular applications: stents, balloons and nanoencapsulation, Nanomedicine 17 (5) (2022) 325-347, https://doi.org/10.2217/nnm-2021-0288.

[47]

D.H. Lee, S. Lim, S.S. Kwak, J. Kim, Advancements in skin-mediated drug delivery: mechanisms, techniques, and applications, Adv. Healthcare Mater. 13 (7) (2024), https://doi.org/10.1002/adhm.202302375.

[48]

M.M. Blaszczyk, L. Przybysz, A. Budzyn, The influence of the variable wettability characteristics of layers on the transport of nanoparticles in the context of drug delivery in skin structures, Int. J. Mol. Sci. 25 (9) (2024), https://doi.org/10.3390/ijms25094665.

[49]

S.Y. Wei, G.Q. Yin, Z.Q. Han, X.Y. Pan, B.J. Lin, Skin permeability and toxicological evaluation of natural Hirudin hydrogel, Chin. J. Exp. Tradit. Med. Formulae 20 (2014) 5-8.

[50]

H. El-Mowafi, A. El Araby, Y. Kandil, A. Zaghloul, Randomized, double-blind, placebo-controlled, interventional phase IV investigation to assess the efficacy and safety of r-hirudin gel (1120I.U) in patients with hematomas, Research and Practice in Thrombosis and Haemostasis 2 (1) (2018) 139-146, https://doi.org/10.1002/rth2.12049.

[51]

H. Tamez, D.S. Pinto, A.J. Kirtane, C. Litherland, R.W. Yeh, G.D. Dangas, R. Mehran, E.N. Deliargyris, G. Ortiz, C.M. Gibson, G.W. Stone, Effect of short procedural duration with bivalirudin on increased risk of acute stent thrombosis in patients with stemi A secondary analysis of the HORIZONS-AMI randomized clinical trial, Jama Cardiology 2 (6) (2017) 673-677, https://doi.org/10.1001/jamacardio.2016.5669.

[52]

M. Laine, C. Frere, T. Cuisset, F. Paganelli, P.-E. Morange, F. Dignat-George, J. Berbis, L. Camoin-Jau, L. Bonello, Potential mechanism of acute stent thrombosis with bivalirudin following percutaneous coronary intervention in acute coronary syndromes, Int. J. Cardiol. 220 (2016) 496-500, https://doi.org/10.1016/j.ijcard.2016.06.247.

[53]

Y.-N. Zeng, Y.-L. Jin, W. Li, Advances of microneedle patch in diabetic wound healing, Pharmaceutical Fronts (2024), https://doi.org/10.1055/s-0043-1777440.

[54]

J. Chi, L. Sun, L. Cai, L. Fan, C. Shao, L. Shang, Y. Zhao, Chinese herb microneedle patch for wound healing, Bioact. Mater. 6 (10) (2021) 3507-3514, https://doi.org/10.1016/j.bioactmat.2021.03.023.

[55]

Z. Men, X. Lu, T. He, M. Wu, T. Su, T. Shen, Microneedle patch-assisted transdermal administration of recombinant hirudin for the treatment of thrombotic diseases, Int. J. Pharm. 612 (2022), https://doi.org/10.1016/j.ijpharm.2021.121332.

[56]

M. Wu, T. Xia, Y. Li, T. Wang, S. Yang, J. Yu, Q. Liang, T. Shen, M. Yu, B. Zhao, Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease, Asian J. Pharm. Sci. 17 (2) (2022) 284-297, https://doi.org/10.1016/j.ajps.2022.02.005.

[57]

R.K. Kesharwani, K. Misra, Biotechnology in the modern medicinal system: Advances in gene therapy, Immunotherapy, and Targeted Drug Delivery (2021).

[58]

X. Tian, M. Feng, X. Wei, C. Cheng, K. He, T. Jiang, B. He, Z. Gu, In situ formed depot of elastin- like polypeptide- hirudin fusion protein for long- acting antithrombotic therapy, Proc. Natl. Acad. Sci. U. S. A 121 (11) (2024), https://doi.org/10.1073/pnas.2314349121.

[59]

K. Ren, H. Gong, J. Huang, Y. Liu, Q. Dong, K. He, L. Tian, F. Zhang, A. Yu, C. Wu, Thrombolytic and anticoagulant effects of a recombinant staphylokinase-hirudin fusion protein, Thromb. Res. 208 (2021) 26-34, https://doi.org/10.1016/j.thromres.2021.10.005.

[60]

Z. Cong, Y. Li, L. Xie, Q. Chen, M. Tang, P. Thongpon, Y. Jiao, S. Wu, Engineered microrobots for targeted delivery of bacterial outer membrane vesicles (OMV) in thrombus therapy, Small 20 (40) (2024), https://doi.org/10.1002/smll.202400847.

[61]

Y.-B. Liu, Y. Liu, L. Zhang, X.-C. Zhou, B.-Y. Ren, C. Zheng, C.-H. Hao, W.-T. Wang, X. Xia, G.-Q. Zhou, C.-T. Wu, J.-D. Jin, Recombinant neorudin for the prevention of deep-vein thrombosis after spinal-cord injury, Drug Des. Dev. Ther. 17 (2023) 2523-2535, https://doi.org/10.2147/DDDT.S408078.

[62]

A. Volkova, P. Semenyuk, Tyrosine phosphorylation of recombinant hirudin increases affinity to thrombin and antithrombotic activity, Proteins: Struct., Funct., Bioinf. 92 (3) (2024) 329-342, https://doi.org/10.1002/prot.26616.

[63]

H.-H. Han, H.-T. Zhang, R. Wang, Y. Yan, X. Liu, Y. Wang, Y. Zhu, J.-C. Wang, Improving long circulation and procoagulant platelet targeting by engineering of hirudin prodrug, Int. J. Pharm. 589 (2020), https://doi.org/10.1016/j.ijpharm.2020.119869.

[64]

X. Wei, Y. Zou, S. Dong, Y. Chen, G. Li, B. Wang, Recombinant hirudin attenuates pulmonary hypertension and thrombosis in acute pulmonary embolism rat model, PeerJ 12 (2024), https://doi.org/10.7717/peerj.17039.

[65]

E. Cedrone, B.W. Neun, J. Rodriguez, A. Vermilya, J.D. Clogston, S.E. McNeil, Y. Barenholz, J. Szebeni, M.A. Dobrovolskaia, Anticoagulants influence the performance of in vitro assays intended for characterization of nanotechnologybased formulations, Molecules 23 (1) (2018), https://doi.org/10.3390/molecules23010012.

[66]

X. Xu, X. Huang, Y. Zhang, S. Shen, Z. Feng, H. Dong, C. Zhang, R. Mo, Selfregulated hirudin delivery for anticoagulant therapy, Sci. Adv. 6 (41) (2020), https://doi.org/10.1126/sciadv.abc0382.

[67]

Y. Yang, Chemical Synthesis of Tyrosine-Sulfated Hirudin and its Mechanism of Thrombin Inhibition, 2022. Doctoral Dissertation.

[68]

C.F. Greineder, I.H. Johnston, C.H. Villa, K. Gollomp, C.T. Esmon, D.B. Cines, M. Poncz, V.R. Muzykantov, ICAM-1-targeted thrombomodulin mitigates tissue factor-driven inflammatory thrombosis in a human endothelialized microfluidic model, Blood Adv. 1 (18) (2017) 1452-1465, https://doi.org/10.1182/bloodadvances.2017007229.

[69]

X. Wang, S. Wang, D. Pan, K. Qin, H. Yuan, F. Zhang, Y. Sun, Z. Xiu, Combined optimization of N-terminal site-specific PEGylation of recombinant hirudin using response surface methodology and kinetic analysis, Eng. Life Sci. 18 (8) (2018) 611-621, https://doi.org/10.1002/elsc.201700190.

AI Summary AI Mindmap
PDF (9096KB)

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/