Study on the CHJ01 antitumor activity and mechanism via targeting sphingosine kinase 1 in A549 cells

Caiyu Liu , Shengmei Gao , Bo Liu , Feipeng Zhang , Yanling Mu , Fuwen Wang , Yan Li

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100077

PDF (7125KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100077 DOI: 10.1016/j.pscia.2025.100077
Research Article
research-article

Study on the CHJ01 antitumor activity and mechanism via targeting sphingosine kinase 1 in A549 cells

Author information +
History +
PDF (7125KB)

Abstract

The SphK1 inhibitor development is of great importance for the treatment of non-small cell lung cancer (NSCLC). In this study, CHJ01 which has been previously shown anti-tumor effects was introduced to investigate the detailed antitumor mechanism both in vitro and in vivo. CHJ01 inhibited the A549 cell proliferation, migration, and invasion significantly and showed cytotoxicity to A549. CHJ01 induced G0/G1 cell cycle arrest by increasing ceramide levels and altered the expression of TRAF2, Bcl-2, Bax and RELA. CHJ01 inhibited the TRAF2/NF-кB signaling pathway and promoted apoptosis by downregulating Bcl-2 and upregulating Bax. In vivo anti-tumor effects were investigated using a nude mouse ectopic tumor model. CHJ01 reduced the volumes and weights of xenograft tumor in nude mice. CHJ01 induced apoptosis by HE staining and immunohistochemistry assay. These results indicated that CHJ01 can be a potential candidate for the treatment of NSCLC.

Keywords

CHJ01 / Sphingosine kinase 1 / A549 / TRAF2/NF-κB signaling pathway / Apoptosis / Non-small cell lung cancer / NSCLC

Cite this article

Download citation ▾
Caiyu Liu, Shengmei Gao, Bo Liu, Feipeng Zhang, Yanling Mu, Fuwen Wang, Yan Li. Study on the CHJ01 antitumor activity and mechanism via targeting sphingosine kinase 1 in A549 cells. Pharmaceutical Science Advances, 2025, 3(1): 100077 DOI:10.1016/j.pscia.2025.100077

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Caiyu Liu: Writing - review & editing, Writing - original draft, Visualization, Validation, Software, Resources, Investigation, Formal analysis, Data curation. Shengmei Gao: Writing - original draft, Validation, Software, Formal analysis. Bo Liu: Resources, Investigation, Funding acquisition. Feipeng Zhang: Software, Resources. Yanling Mu: Validation, Project administration, Methodology. Fuwen Wang: Writing - review & editing, Validation, Supervision, Resources, Methodology, Investigation, Conceptualization. Yan Li: Writing - review & editing, Writing - original draft, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization.

Data availability statement

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Compliance with ethics guidelines

Caiyu Liu, Shengmei Gao, Bo Liu, Feipeng Zhang, Yanling Mu, Fuwen Wang and Yan Li declare that they have no conflicts of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed. The animal study protocol was approved by Ethics Com-mittee of Institute of Materia Medica Shandong Academy of Medical Sciences (protocol code AEC2021097 and June 2021).

Declaration of generative AI in scientific writing

Not applicable.

Funding information

This research was funded by Natural Science Foundation of Shandong Provincial, grant number ZR2023MB080. Open Project of Shandong Key Laboratory of Glycochemistry and Biology, Shandong University, grant number 2023CCG05. Natural Science Foundation of Shandong Provincial, grant number ZR2023QH129.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We are indebted to our principle collaborators at Shandong First Medical University.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100077.

References

[1]

V.M.L. de Sousa, L. Carvalho, Heterogeneity in lung cancer, Pathobiology 85 (2018), https://doi.org/10.1159/000487440.

[2]

R.L. Siegel, K.D. Miller, H.E. Fuchs, A. Jemal, Cancer statistics, CA Cancer J. Clin. 71 (2021), https://doi.org/10.3322/caac.21654.

[3]

H. Lv, D. Qian, S. Xu, G. Fan, Q. Qian, D. Cha, X. Qian, G. Zhou, B. Lu, Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: a comprehensive review, Phytother Res. 38 (2024), https://doi.org/10.1002/ptr.8202.

[4]

R.S. Herbst, J.V. Heymach, S.M. Lippman, Lung cancer, N. Engl. J. Med. 359 (2008), https://doi.org/10.1056/NEJMra0802714.

[5]

M. Wang, R.S. Herbst, C. Boshoff, Toward personalized treatment approaches for non-small-cell lung cancer, Nat. Med. 27 (2021), https://doi.org/10.1038/s41591-021-01450-2.

[6]

A. Adamo, C. Frusteri, S. Pilotto, S. Caligola, L. Belluomini, O. Poffe, L. Giacobazzi, S. Dusi, C. Musiu, Y. Hu, T. Wang, D. Rizzini, A. Vella, S. Canè, G. Sartori, J. Insolda, M. Sposito, U.C. Incani, C. Carbone, G. Piro, F. Pettinella, F. Qi, D. Wang, S. Sartoris, F. De Sanctis, P. Scapini, S. Dusi, M.A. Cassatella, E. Bria, M. Milella, V. Bronte, S. Ugel, Immune checkpoint blockade therapy mitigates systemic inflammation and affects cellular FLIP-expressing monocytic myeloidderived suppressor cells in non-progressor non-small cell lung cancer patients, OncoImmunology 12 (2023), https://doi.org/10.1080/2162402X.2023.2253644.

[7]

Y. Li, X. Wu, P. Yang, G. Jiang, Y. Luo, Machine learning for lung cancer diagnosis, treatment, and prognosis, Genom. Proteom. Bioinform. 20 (2022), https://doi.org/10.1016/j.gpb.2022.11.003.

[8]

R. Diaz Escarcega, L.D. McCullough, A.S. Tsvetkov, The functional role of sphingosine kinase 2, Front. Mol. Biosci. 8 (2021), https://doi.org/10.3389/fmolb.2021.683767.

[9]

Y.A. Hannun, L.M. Obeid, Principles of bioactive lipid signalling: lessons from sphingolipids, Nat. Rev. Mol. Cell Biol. 9 (2008), https://doi.org/10.1038/nrm2329.

[10]

E.V. Berdyshev, K.A. Serban, K.S. Schweitzer, I.A. Bronova, A. Mikosz, I. Petrache, Ceramide and sphingosine-1 phosphate in COPD lungs, Thorax (2021), https://doi.org/10.1136/thoraxjnl-2020-215892.

[11]

B. Verstockt, S. Vetrano, A. Salas, S. Nayeri, M. Duijvestein, N. Vande Casteele, Sphingosine 1-phosphate modulation and immune cell trafficking in inflammatory bowel disease, Nat. Rev. Gastroenterol. Hepatol. 19 (2022), https://doi.org/10.1038/s41575-021-00574-7.

[12]

K.R. Johnson, K.Y. Johnson, H.G. Crellin, B. Ogretmen, A.M. Boylan, R.A. Harley, L.M. Obeid, Immunohistochemical distribution of sphingosine kinase 1 in normal and tumor lung tissue, J. Histochem. Cytochem. 53 (2005), https://doi.org/10.1369/jhc.4A6606.2005.

[13]

T. Kohama, A. Olivera, L. Edsall, M.M. Nagiec, R. Dickson, S. Spiegel, Molecular cloning and functional characterization of murine sphingosine kinase, J. Biol. Chem. 273 (1998), https://doi.org/10.1074/jbc.273.37.23722.

[14]

H. Liu, M. Sugiura, V.E. Nava, L.C. Edsall, K. Kono, S. Poulton, S. Milstien, T. Kohama, S. Spiegel, Molecular cloning and functional characterization of a novel mammalian sphingosine kinase type 2 isoform, J. Biol. Chem. 275 (2000), https://doi.org/10.1074/jbc.M002759200.

[15]

T.A. Perry, N. Masand, K. Vrzalikova, M. Pugh, W. Wei, R. Hollows, K. Bouchalova, M. Nohtani, E. Fennell, J. Bouchal, P. Kearns, P.G. Murray, The oncogenic lipid sphingosine-1-phosphate impedes the phagocytosis of tumor cells by M1 macrophages in diffuse large B cell lymphoma, Cancers (Basel) 16 (2024), https://doi.org/10.3390/cancers16030574.

[16]

S. Geng, H. Chen, Y. Li, Y. Li, J. Pang, F. Zhang, Z. Qu, M. Li, N. Liu, Q. Yao, Y. Mu, B. Liu, Design, synthesis and biological activity testing of library of Sphk1 inhibitors, Molecules 27 (2022), https://doi.org/10.3390/molecules27062020.

[17]

A. Lucaciu, R. Brunkhorst, J.M. Pfeilschifter, W. Pfeilschifter, J. Subburayalu, The S1P-S1PR Axis in neurological disorders-insights into current and future therapeutic perspectives, Cells 9 (2020), https://doi.org/10.3390/cells9061515.

[18]

H. Yang, Y. Li, H. Chai, T. Yakura, B. Liu, Q. Yao, Synthesis and biological evaluation of 2 -epi-jaspine B analogs as selective sphingosine kinase 1 inhibitors, Bioorg. Chem. 98 (2020), https://doi.org/10.1016/j.bioorg.2019.103369.

[19]

H.J. Chen, H.R. Yang, Y. Zhi, Q.Q. Yao, B. Liu, Evaluation of pyrrolidine-based analog of jaspine B as potential SphK1 inhibitors against rheumatoid arthritis, Bioorg. Med. Chem. Lett. 34 (2021), https://doi.org/10.1016/j.bmcl.2020.127754.

[20]

Z. Lin, Y. Li, X. Han, Z. Fu, Z. Tian, C. Li, Targeting SPHK1/PBX1 Axis induced cell cycle arrest in non-small cell lung cancer, Int. J. Mol. Sci. 23 (2022), https://doi.org/10.3390/ijms232112741.

[21]

N.J. Pyne, A. El Buri, D.R. Adams, S. Pyne, Sphingosine 1-phosphate and cancer, Adv. Biol. Regul. 68 (2018), https://doi.org/10.1016/j.jbior.2017.09.006.

[22]

X. Peng, X. Liu, W. Hu, Y. Zhou, L. Ouyang, X. Peng, Y. Long, J. Sun, T. Tao, L. Chen, Y. Shi, Y. Tao, D. Xiao, S. Liu, HOXC 11 drives lung adenocarcinoma progression through transcriptional regulation of SPHK1, Cell Death Dis. 14 (2023), https://doi.org/10.1038/s41419-023-05673-8.

[23]

M. Escudero-Casao, A. Cardona, R. Beltrán-Debón, Y. Díaz, M.L. Matheu, S. Castillón, Fluorinated triazole-containing sphingosine analogues. Syntheses and in vitro evaluation as SPHK inhibitors, Org. Biomol. Chem. 16 (2018), https://doi.org/10.1039/c8ob01867g.

[24]

G. Ahuja, D. Bartsch, W. Yao, S. Geissen, S. Frank, A. Aguirre, N. Russ, J. E. Messling, J. Dodzian, K.A. Lagerborg, N.E. Vargas, J.S. Muck, S. Brodesser, S. Baldus, A. Sachinidis, J. Hescheler, C. Dieterich, A. Trifunovic, A. Papantonis, M. Petrascheck, L.I. Kurian, Loss of genomic integrity induced by lysosphingolipid imbalance drives ageing in the heart, EMBO Rep. 20 (2019), https://doi.org/10.15252/embr.201847407.

[25]

Y. Yoshimitsu, S. Oishi, J. Miyagaki, S. Inuki, H. Ohno, N. Fujii, Pachastrissamine (jaspine B) and its stereoisomers inhibit sphingosine kinases and atypical protein kinase C, Bioorg. Med. Chem. 19 (2011), https://doi.org/10.1016/j.bmc.2011.07.061.

[26]

D. Shida, K. Takabe, D. Kapitonov, S. Milstien, S. Spiegel, Targeting SphK1 as a new strategy against cancer, Curr. Drug Targets 9 (2008), https://doi.org/10.2174/138945008785132402.

[27]

M. Nagahashi, A. Yamada, E. Katsuta, T. Aoyagi, W.C. Huang, K.P. Terracina, N. C. Hait, J.C. Allegood, J. Tsuchida, K. Yuza, M. Nakajima, M. Abe, K. Sakimura, S. Milstien, T. Wakai, S. Spiegel, K. Takabe,Targeting the SphK1/S1P/S1PR1 Axis that links obesity, chronic inflammation, and breast cancer metastasis, Cancer Res. 78 (2018), https://doi.org/10.1158/0008-5472.CAN-17-1423.

[28]

D. Chen, J. Wu, X. Qiu, S. Luo, S. Huang, E. Wei, M. Qin, J. Huang, S. Liu, SPHK1 potentiates colorectal cancer progression and metastasis via regulating autophagy mediated by TRAF6-induced ULK1 ubiquitination, Cancer Gene Ther. 31 (2024), https://doi.org/10.1038/s41417-023-00711-1.

[29]

S. Zhang, X. Chen, C. Wu, H. Xu, X. Xie, M. Feng, S. Hu, H. Bai, F. Gao, L. Tong, J. Ding, H. Liu, Z. Xie, J. Wang, Novel sphingosine kinase 1 inhibitor suppresses growth of solid tumor and inhibits the lung metastasis of triple-negative breast cancer, J. Med. Chem. 65 (2022), https://doi.org/10.1021/acs.jmedchem.2c00040.

[30]

A.R. Markowski, A. Żbikowski, P. Zabielski, U. Chlabicz, P. Sadowska, K. Pogodzińska, A.U. Błachnio-Zabielska, The effect of silencing the genes responsible for the level of sphingosine-1-phosphate on the apoptosis of colon cancer cells, Int. J. Mol. Sci. 24 (2023), https://doi.org/10.3390/ijms24087197.

[31]

A.B. Awad, S.L. Barta, C.S. Fink, P.G. Bradford, beta-Sitosterol enhances tamoxifen effectiveness on breast cancer cells by affecting ceramide metabolism, Mol. Nutr. Food Res. 52 (2008), https://doi.org/10.1002/mnfr.200700222.

[32]

M. Trayssac, C.J. Clarke, J.L. Stith, J.M. Snider, N. Newen, C.R. Gault, Y. A. Hannun, L.M. Obeid, Targeting sphingosine kinase 1 (SK1) enhances oncogeneinduced senescence through ceramide synthase 2 (CerS2)-mediated generation of very-long-chain ceramides, Cell Death Dis. 12 (2021), https://doi.org/10.1038/s41419-020-03281-4.

[33]

P. Muñoz-Guardiola, J. Casas, E. Megías-Roda, S. Solé, H. Perez-Montoyo, M. Yeste-Velasco, T. Erazo, N. Diéguez-Martínez, S. Espinosa-Gil, C. Muñoz-Pinedo, G. Yoldi, J.L. Abad, M.F. Segura, T. Moran, M. Romeo, J. Bosch-Barrera, A. Oaknin, J. Alfón, C. Domènech, G. Fabriàs, G. Velasco, J.M. Lizcano, The anti-cancer drug ABTL0812 induces ER stress-mediated cytotoxic autophagy by increasing dihydroceramide levels in cancer cells, Autophagy 17 (2021), https://doi.org/10.1080/15548627.2020.1761651.

[34]

Z. Wang, Y. Zhang, Y. Shen, H. Zhou, Y. Gao, C. Zhu, X. Qin, Unlocking hepatocellular carcinoma aggression: STAMBPL1-mediated TRAF2 deubiquitination activates WNT/PI3K/NF-kb signaling pathway, Biol. Direct 19 (2024), https://doi.org/10.1186/s13062-024-00460-7.

[35]

S. Liu, Y. Zhu, S. Yan, H. Xiao, J. Yi, R. Li, J. Wu, L. Wen, Phenethyl isothiocyanate induces IPEC-J2 cells cytotoxicity and apoptosis via S-G(2)/M phase arrest and mitochondria-mediated Bax/Bcl-2 pathway, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 226 (2019), https://doi.org/10.1016/j.cbpc.2019.108574.

[36]

L. Reshi, H.V. Wang, C.F. Hui, Y.C. Su, J.R. Hong, Anti-apoptotic genes Bcl-2 and Bcl-xL overexpression can block iridovirus serine/threonine kinase-induced Bax/ mitochondria-mediated cell death in GF-1 cells, Fish Shellfish Immunol. 61 (2017), https://doi.org/10.1016/j.fsi.2016.12.026.

AI Summary AI Mindmap
PDF (7125KB)

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/