Assay development and screening of inhibitors targeting the SARS-CoV-2 2'-O-methyltransferase NSP16

Mengtong Cao , Carl W. Trieshmann , Subodh Kumar Samrat , Hongmin Li , Yifei Wu , Steven P. Maher , Angela A. Bae , Zhong-Ru Xie , Robert J. Hogan , Y. George Zheng

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100076

PDF (6898KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100076 DOI: 10.1016/j.pscia.2025.100076
Research Article
research-article

Assay development and screening of inhibitors targeting the SARS-CoV-2 2'-O-methyltransferase NSP16

Author information +
History +
PDF (6898KB)

Abstract

The coronavirus disease-2019 (COVID-19) pandemic, etiologically caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has profoundly impacted the global health. While vaccines have been developed, they have shown limited efficacy in treating patients already under infection or preventing infection with emerging SARS-CoV-2 variants. The nonstructural protein 16 (NSP16), with the assistance of the nonstructural protein 10 (NSP10), is responsible for forming the Cap-1 structure, which is critical for viral replication and immune evasion through the 5'-capping of viral mRNA. As a result, NSP16/NSP10 has emerged as a promising target for antiviral treatment of coronaviruses. In this study, we aimed to discover small molecule inhibitors of NSP16/NSP10 by leveraging recent structural insights and combined tools of virtual and experimental screenings. We designed a simple scintillation proximity assay to enable biochemical testing for NSP16/NSP10 enzymatic activity and applied it to screen inhibitors from candidate hit compounds that are derived from molecular docking-based virtual screenings. We identified potential hits that inhibit the NSP16 activity with cellular efficacy. Together with structural analysis and chemotype categorization, this study lays the groundwork for novel antiviral therapeutics development against SARS-CoV-2 and related coronaviruses.

Keywords

COVID-19 / SARS-CoV-2 / NSP16 / NSP10 / Assay design / Inhibitor screening / Drug discovery

Cite this article

Download citation ▾
Mengtong Cao, Carl W. Trieshmann, Subodh Kumar Samrat, Hongmin Li, Yifei Wu, Steven P. Maher, Angela A. Bae, Zhong-Ru Xie, Robert J. Hogan, Y. George Zheng. Assay development and screening of inhibitors targeting the SARS-CoV-2 2'-O-methyltransferase NSP16. Pharmaceutical Science Advances, 2025, 3(1): 100076 DOI:10.1016/j.pscia.2025.100076

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Mengtong Cao: Writing - review & editing, Writing - original draft, Investigation, Formal analysis, Data curation, Conceptualization. Carl W. Trieshmann: Writing - review & editing, Writing - original draft, Visualization, Methodology, Investigation, Data curation. Subodh Kumar Samrat: Writing - review & editing, Data curation. Hongmin Li: Writing - review & editing, Supervision, Investigation, Funding acquisition, Data curation. Yifei Wu: Writing - review & editing, Investigation, Data curation. Steven P. Maher: Writing - review & editing, Writing - original draft, Methodology, Investigation, Data curation. Angela A. Bae: Writing - review & editing, Writing - original draft, Investigation, Data curation. Zhong-Ru Xie: Writing - review & editing, Data curation. Robert J. Hogan: Writing - review & editing, Methodology, Funding acquisition. Y. George Zheng: Writing - review & editing, Supervision, Project administration, Methodology, Investigation, Funding acquisition, Conceptualization.

Data availability

All data generated or analyzed during this study are included in this article and its supplementary information files.

Ethics approval

Not applicable.

Declaration of generative AI in scientific writing

Not applicable.

Funding information

This study was supported by grants AI158176 to Y.G.Z. and AI175435 and AI177149 to H.L. from the National Institute of Allergy and Infectious Diseases (NIAID), the National Institutes of Health (NIH). Y.G.Z. was additionally supported by a National Institute of General Medical Sciences grant GM149230. H.L. was also supported by the NIH grants: AI161845 and AI131669.

Conflict of interest statement

The authors declare that they have no financial or non-financial competing interests related to this work.

Acknowledgments

The authors would like to acknowledge the use of several specialized software tools in this study. Molecular docking was performed using Schrödinger Maestro, and molecular dynamics simulations were conducted using Desmond developed by D. E. Shaw Research. Molecular descriptor calculations and SAR/QSAR analyses utilized DataWarrior (1D descriptors), Crescent Silico Chem Master (1D and 2D descriptors), and Cresset Flare (3D descriptors). Pharmacophore modeling was carried out using LigandScout. These resources were essential in supporting the computational aspects of the research.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100076.

References

[1]

V. Coronaviridae Study Group of the International Committee on Taxonomy of, The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat. Microbiol. 5 (4) (2020) 536-544, https://doi.org/10.1038/s41564-020-0695-z.

[2]

M.M. DeGrace, E. Ghedin, M.B. Frieman, F. Krammer, A. Grifoni, A. Alisoltani, G. Alter, R.R. Amara, R.S. Baric, D.H. Barouch, J.D. Bloom, L.M. Bloyet, G. Bonenfant, A.C.M. Boon, E.A. Boritz, D.L. Bratt, T.L. Bricker, L. Brown, W. J. Buchser, J.M. Carreno, L. Cohen-Lavi, T.L. Darling, M.E. Davis-Gardner, B. L. Dearlove, H. Di, M. Dittmann, N.A. Doria-Rose, D.C. Douek, C. Drosten, V. V. Edara, A. Ellebedy, T.P. Fabrizio, G. Ferrari, W.M. Fischer, W.C. Florence, R.A. M. Fouchier, J. Franks, A. Garcia-Sastre, A. Godzik, A.S. Gonzalez-Reiche, A. Gordon, B.L. Haagmans, P.J. Halfmann, D.D. Ho, M.R. Holbrook, Y. Huang, S. L. James, L. Jaroszewski, T. Jeevan, R.M. Johnson, T.C. Jones, A. Joshi, Y. Kawaoka, L. Kercher, M.P.G. Koopmans, B. Korber, E. Koren, R.A. Koup, E. B. LeGresley, J.E. Lemieux, M.J. Liebeskind, Z. Liu, B. Livingston, J.P. Logue, Y. Luo, A.B. McDermott, M.J. McElrath, V.A. Meliopoulos, V.D. Menachery, D. C. Montefiori, B. Muhlemann, V.J. Munster, J.E. Munt, M.S. Nair, A. Netzl, A. M. Niewiadomska, S. O'Dell, A. Pekosz, S. Perlman, M.C. Pontelli, B. Rockx, M. Rolland, P.W. Rothlauf, S. Sacharen, R.H. Scheuermann, S.D. Schmidt, M. Schotsaert, S. Schultz-Cherry, R.A. Seder, M. Sedova, A. Sette, R.S. Shabman, X. Shen, P.Y. Shi, M. Shukla, V. Simon, S. Stumpf, N.J. Sullivan, L.B. Thackray, J. Theiler, P.G. Thomas, S. Trifkovic, S. Tureli, S.A. Turner, M.A. Vakaki, H. van Bakel, L.A. VanBlargan, L.R. Vincent, Z.S. Wallace, L. Wang, M. Wang, P. Wang, W. Wang, S.C. Weaver, R.J. Webby, C.D. Weiss, D.E. Wentworth, S.M. Weston, S.P. J. Whelan, B.M. Whitener, S.H. Wilks, X. Xie, B. Ying, H. Yoon, B. Zhou, T. Hertz, D. J. Smith, M.S. Diamond, D.J. Post, M.S. Suthar, Defining the risk of SARS-CoV-2 variants on immune protection, Nature 605 (7911) (2022) 640-652, https://doi.org/10.1038/s41586-022-04690-5.

[3]

S.K. Samrat, Q. Bashir, R. Zhang, Y. Huang, Y. Liu, X. Wu, T. Brown, W. Wang, Y. G. Zheng, Q.Y. Zhang, Y. Chen, Z. Li, H. Li, A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases, Emerg. Microb. Infect. 12 (1) (2023) 2204164, https://doi.org/10.1080/22221751.2023.2204164.

[4]

C. Jung, D. Kmiec, L. Koepke, F. Zech, T. Jacob, K.M.J. Sparrer, F. Kirchhoff, Omicron: what makes the latest SARS-CoV-2 variant of concern so concerning? J. Virol. 96 (6) (2022) e0207721 https://doi.org/10.1128/jvi.02077-21.

[5]

A.R. Fehr, S. Perlman, Coronaviruses: an overview of their replication and pathogenesis, Methods Mol. Biol. 1282 (2015) 1-23, https://doi.org/10.1007/978-1-4939-2438-7_1.

[6]

R.J. Lu, X. Zhao, J. Li, P.H. Niu, B. Yang, H.L. Wu, W.L. Wang, H. Song, B.Y. Huang, N. Zhu, Y.H. Bi, X.J. Ma, F.X. Zhan, L. Wang, T. Hu, H. Zhou, Z.H. Hu, W.M. Zhou, L. Zhao, J. Chen, Y. Meng, J. Wang, Y. Lin, J.Y. Yuan, Z.H. Xie, J.M. Ma, W.J. Liu, D.Y. Wang, W.B. Xu, E.C. Holmes, G.F. Gao, G.Z. Wu, W.J. Chen, W.F. Shi, W. J. Tan, Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet 395 (10224) (2020) 565-574, https://doi.org/10.1016/S0140-6736(20) 30251-8.

[7]

A.A. Naqvi, K. Fatima, T. Mohammad, U. Fatima, I.K. Singh, A. Singh, S.M. Atif, G. Hariprasad, G.M. Hasan, M.I. Hassan, Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach, Bba-Mol. Basis Dis. 1866 (10) (2020) 165878, https://doi.org/10.1016/j.bbadis.2020.165878.

[8]

S.A. Yost, J. Marcotrigiano, Viral precursor polyproteins: keys of regulation from replication to maturation, Curr. Opin. Virol. 3 (2) (2013) 137-142, https://doi.org/10.1016/j.coviro.2013.03.009.

[9]

P.V. Baranov, C.M. Henderson, C.B. Anderson, R.F. Gesteland, J.F. Atkins, M. T. Howard, Programmed ribosomal frameshifting in decoding the SARS-CoV genome, Virology 332 (2) (2005) 498-510, https://doi.org/10.1016/j.virol.2004.11.038.

[10]

I. Brierley, P. Digard, S.C. Inglis, Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot, Cell 57 (4) (1989) 537-547, https://doi.org/10.1016/0092-8674(89)90124-4.

[11]

J.A. Kelly, A.N. Olson, K. Neupane, S. Munshi, J. San Emeterio, L. Pollack, M. T. Woodside, J.D. Dinman, Structural and functional conservation of the programmed - 1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2), J. Biol. Chem. 295 (31) (2020) 10741-10748, https://doi.org/10.1074/jbc.AC120.013449.

[12]

J. Ziebuhr, E.J. Snijder, A.E. Gorbalenya, Virus-encoded proteinases and proteolytic processing in the Nidovirales, J. Gen. Virol. 81 (Pt 4) (2000) 853-879, https://doi.org/10.1099/0022-1317-81-4-853.

[13]

Y.J. Zhai, F. Sun, X.M. Li, H. Pang, X.L. Xu, M. Bartlam, Z.H. Rao, Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer, Nat. Struct. Mol. Biol. 12 (11) (2005) 980-986, https://doi.org/10.1038/nsmb999.

[14]

X. Xu, Y.Q. Liu, S. Weiss, E. Arnold, S.G. Sarafianos, J.P. Ding, Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design, Nucleic Acids Res. 31 (24) (2003) 7117-7130, https://doi.org/10.1093/nar/gkg916.

[15]

K.A. Ivanov, J. Ziebuhr, Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5' triphosphatase activities, J. Virol. 78 (14) (2004) 7833-7838, https://doi.org/10.1128/Jvi.78.14.7833-7838.2004.

[16]

K.A. Ivanov, V. Thiel, J.C. Dobbe, Y. van der Meer, E.J. Snijder, J. Ziebuhr, Multiple enzymatic activities associated with Severe acute respiratory syndrome coronavirus helicase, J. Virol. 78 (11) (2004) 5619-5632, https://doi.org/10.1128/Jvi.78.11.5619-5632.2004.

[17]

L.D. Eckerle, M.M. Becker, R.A. Halpin, K. Li, E. Venter, X.T. Lu, S. Scherbakova, R. L. Graham, R.S. Baric, T.B. Stockwell, D.J. Spiro, M.R. Denison, Infidelity of SARSCoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing, PLoS Pathog. 6 (5) (2010) e1000896, https://doi.org/10.1371/journal.ppat.1000896.

[18]

L.D. Eckerle, X. Lu, S.M. Sperry, L. Choi, M.R. Denison, High fidelity of murine hepatitis virus replication is decreased in nsp14 exoribonuclease mutants, J. Virol. 81 (22) (2007) 12135-12144, https://doi.org/10.1128/Jvi.01296-07.

[19]

Y. Chen, H. Cai, J. Pan, N. Xiang, P. Tien, T. Ahola, D.Y. Guo, Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase, P Natl. Acad. Sc.i U S A 106 (9) (2009) 3484-3489, https://doi.org/10.1073/pnas.0808790106.

[20]

K. Bhardwaj, J.C. Sun, A. Holzenburg, L.A. Guarino, C.C. Kao, RNA recognition and cleavage by the SARS coronavirus endoribonuclease, J. Mol. Biol. 361 (2) (2006) 243-256, https://doi.org/10.1016/j.jmb.2006.06.021.

[21]

E. Decroly, I. Imbert, B. Coutard, M.L. Bouvet, B. Selisko, K. Alvarez, A. E. Gorbalenya, E.J. Snijder, B. Canard, Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2')-methyltransferase activity, J. Virol. 82 (16) (2008) 8071-8084, https://doi.org/10.1128/Jvi.00407-08.

[22]

E. Decroly, F. Ferron, J. Lescar, B. Canard, Conventional and unconventional mechanisms for capping viral mRNA, Nat. Rev. Microbiol. 10 (1) (2011) 51-65, https://doi.org/10.1038/nrmicro2675.

[23]

Y. Chen, C.Y. Su, M. Ke, X. Jin, L.R. Xu, Z. Zhang, A.D. Wu, Y. Sun, Z.N. Yang, P. Tien, T. Ahola, Y. Liang, X.Q. Liu, D.Y. Guo, Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2'-O-methylation by nsp16/ nsp10 protein complex, PLoS Pathog. 7 (10) (2011) e1002294, https://doi.org/10.1371/journal.ppat.1002294.

[24]

Y. Chen, D.Y. Guo, Molecular mechanisms of coronavirus RNA capping and methylation, Virol. Sin. 31 (1) (2016) 3-11, https://doi.org/10.1007/s12250-016-3726-4.

[25]

E. Decroly, C. Debarnot, F. Ferron, M. Bouvet, B. Coutard, I. Imbert, L. Gluais, N. Papageorgiou, A. Sharff, G. Bricogne, M. Ortiz-Lombardia, J. Lescar, B. Canard, Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2'-Omethyltransferase nsp10/nsp16 complex, PLoS Pathog. 7 (5) (2011) e1002059, https://doi.org/10.1371/journal.ppat.1002059.

[26]

S. Daffis, K.J. Szretter, J. Schriewer, J.Q. Li, S. Youn, J. Errett, T.Y. Lin, S. Schneller, R. Zust, H.P. Dong, V. Thiel, G.C. Sen, V. Fensterl, W.B. Klimstra, T. C. Pierson, R.M. Buller, M. Gale, P.Y. Shi, M.S. Diamond, 2'- methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature 468 (7322) (2010) 452-456, https://doi.org/10.1038/nature09489.

[27]

V.D. Menachery, K. Debbink, R.S. Baric,Coronavirus non-structural protein 16: evasion, attenuation, and possible treatments, Virus Res. 194 (2014) 191-199, https://doi.org/10.1016/j.virusres.2014.09.009.

[28]

K. Konishi, T. Yamaji, C. Sakuma, F. Kasai, T. Endo, A. Kohara, K. Hanada, N. Osada, Whole-genome sequencing of Vero E6 (VERO C1008) and comparative analysis of four Vero cell sublines, Front. Genet. 13 (2022) 801382, https://doi.org/10.3389/fgene.2022.801382.

[29]

R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M. P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis, P.S. Shenkin, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (7) (2004) 1739-1749, https://doi.org/10.1021/jm0306430.

[30]

M. Rosas-Lemus, G. Minasov, L. Shuvalova, N.L. Inniss, O. Kiryukhina, J. Brunzelle, K.J.F. Satchell, High-resolution structures of the SARS-CoV-2 2'-Omethyltransferase reveal strategies for structure-based inhibitor design, Sci. Signal. 13 (651) (2020), https://doi.org/10.1126/scisignal.abe1202.

[31]

M. Klima, A. Khalili Yazdi, F. Li, I. Chau, T. Hajian, A. Bolotokova, H.U. Kaniskan, Y. Han, K. Wang, D. Li, M. Luo, J. Jin, E. Boura, M. Vedadi, Crystal structure of SARS-CoV-2 nsp10-nsp16 in complex with small molecule inhibitors, SS148 and WZ16, Protein Sci. 31 (9) (2022) e4395, https://doi.org/10.1002/pro.4395.

[32]

W. Wang, P.A. Kollman, Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model, J. Mol. Biol. 303 (4) (2000) 567-582, https://doi.org/10.1006/jmbi.2000.4057.

[33]

T. Cheeseright, M. Mackey, S. Rose, A. Vinter, Molecular field extrema as descriptors of biological activity: definition and validation, J. Chem. Inf. Model. 46 (2) (2006) 665-676, https://doi.org/10.1021/ci050357s.

[34]

M.R. Bauer, M.D. Mackey, Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein-ligand complexes, J. Med. Chem. 62 (6) (2019) 3036-3050, https://doi.org/10.1021/acs.jmedchem.8b01925.

[35]

M. Kuhn, S. Firth-Clark, P. Tosco, A.S.J.S. Mey, M. Mackey, J. Michel, Assessment of binding affinity via alchemical free-energy calculations, J. Chem. Inf. Model. 60 (6) (2020) 3120-3130, https://doi.org/10.1021/acs.jcim.0c00165.

[36]

T. Sander, J. Freyss, M. von Korff, C. Rufener, DataWarrior: an open-source program for chemistry aware data visualization and analysis, J. Chem. Inf. Model. 55 (2) (2015) 460-473, https://doi.org/10.1021/ci500588j.

[37]

O. Al-attraqchi, ChemMaster, Crescent Silico, 2024. Cheminformatics and General Drug Design.

[38]

V. Vapnik, S.E. Golowich, A. Smola, Support vector method for function approximation, regression estimation, and signal processing, Adv. Neur. In. 9 (1997) 281-287.

[39]

F. Galton, J. Anthropol. Regression towards mediocrity in hereditary stature, Institut. 15 (15) (1886) 246-263.

[40]

T.K. Ho,Random decision forests, Proc. 3rd Int Conf. Document Anal. Recog. 1 (1995) 278-282.

[41]

H. Wold, Estimation of principal components and related models by iterative least squares, in: P.R. Krishnajah (Ed.), Multivariate analysis, Academic Press, New York, 1966, pp. 391-420.

[42]

B.W. Silverman, M.C. Jones, E. Fix, Jl Hodges, An important contribution to nonparametric discriminant-analysis and density-estimation - commentary on fix and hodges, Int. Stat. Rev. 57 (3) (1951) 233-247, https://doi.org/10.2307/1403796,1989,(1951).

[43]

R.W. Kennard, L.A. Stone, Computer aided design of experiments, Technometrics 11 (1969) 137-148.

[44]

D.E. Shaw, K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K. Salmon, Y. Shan,Scalable algorithms for molecular dynamics simulations on commodity clusters, in:Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, 2006, p. SC06.

[45]

J.C.W.L. Jorgensen, J.D. Madura, R.W. Impey, M.L. Klein, TIP3P, J. Chem. Phys. 79 (79) (1983) 926-935.

[46]

C. Lu, C.J. Wu, D. Ghoreishi, W. Chen, L.L. Wang, W. Damm, G.A. Ross, M. K. Dahlgren, E. Russell, C.D. Von Bargen, R. Abel, R.A. Friesner, E.D. Harder, OPLS4: improving force field accuracy on challenging regimes of chemical space, J. Chem. Theor. Comput. 17 (7) (2021) 4291-4300, https://doi.org/10.1021/acs.jctc.1c00302.

[47]

A. Khalili Yazdi, F. Li, K. Devkota, S. Perveen, P. Ghiabi, T. Hajian, A. Bolotokova, M. Vedadi, A high-throughput radioactivity-based assay for screening SARS-CoV-2 nsp10-nsp16 complex, SLAS Discov. 26 (6) (2021) 757-765, https://doi.org/10.1177/24725552211008863.

[48]

W. Aouadi, A. Blanjoie, J.J. Vasseur, F. Debart, B. Canard, E. Decroly, Binding of the methyl donor S-Adenosyl-l-Methionine to Middle East respiratory syndrome coronavirus 2'-O-methyltransferase nsp16 promotes recruitment of the allosteric activator nsp10, J. Virol. 91 (5) (2017), https://doi.org/10.1128/JVI.02217-16.

[49]

A. Mohammad, E. Alshawaf, S.K. Marafie, M. Abu-Farha, F. Al-Mulla, J. Abubaker, Molecular simulation-based investigation of highly potent natural products to abrogate formation of the nsp10-nsp16 complex of SARS-CoV-2, Biomolecules 11 (4) (2021), https://doi.org/10.3390/biom11040573.

[50]

S. Rampogu, K.W. Lee, Pharmacophore modelling-based drug repurposing approaches for SARS-CoV-2 therapeutics, Front. Chem. 9 (2021) 636362, https://doi.org/10.3389/fchem.2021.636362.

[51]

T.P. Saliu, H.I. Umar, O.J. Ogunsile, M.O. Okpara, N. Yanaka, O.O. Elekofehinti, Molecular docking and pharmacokinetic studies of phytocompounds from Nigerian Medicinal Plants as promising inhibitory agents against SARS-CoV-2 methyltransferase (nsp16), J. Genet. Eng. Biotechnol. 19 (1) (2021) 172, https://doi.org/10.1186/s43141-021-00273-5.

[52]

S.H. Seyedi, M.S. Alhagh, M. Ahmadizad, N. Ardalan, E. Hosseininezhadian Koushki, C. Farshadfar, B. Amjadi, Structural screening into the recognition of a potent inhibitor against non-structural protein 16: a molecular simulation to inhibit SARS-CoV-2 infection, J. Biomol. Struct. Dyn. 40 (24) (2022) 14115-14130, https://doi.org/10.1080/07391102.2021.2001374.

[53]

H. Alici, H. Tahtaci, K. Demir, Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19 -associated main enzymes, Comput. Biol. Chem. 98 (2022) 107657, https://doi.org/10.1016/j.compbiolchem.2022.107657.

[54]

A. Bhardwaj, S. Sharma, S.K. Singh, Molecular docking studies to identify promising natural inhibitors targeting SARS-CoV-2 nsp10-nsp16 protein complex, Turk. J. Pharm. Sci. 19 (1) (2022) 93-100, https://doi.org/10.4274/tjps.galenos.2021.56957.

[55]

Y. Jiang, L. Liu, M. Manning, M. Bonahoom, A. Lotvola, Z. Yang, Z.Q. Yang, Structural analysis, virtual screening and molecular simulation to identify potential inhibitors targeting 2'-O-ribose methyltransferase of SARS-CoV-2 coronavirus, J. Biomol. Struct. Dyn. 40 (3) (2022) 1331-1346, https://doi.org/10.1080/07391102.2020.1828172.

[56]

S.K. Maurya, A.K. Maurya, N. Mishra, H.R. Siddique, Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2, J. Recept. Signal Transduct. Res. 40 (6) (2020) 605-612, https://doi.org/10.1080/10799893.2020.1772298.

[57]

J.A. Encinar, J.A. Menendez, Potential drugs targeting early innate immune evasion of SARS-coronavirus 2 via 2'-O-methylation of viral RNA, Viruses 12 (5) (2020), https://doi.org/10.3390/v12050525.

[58]

A. Albohy, E.M. Zahran, U.R. Abdelmohsen, M.A. Salem, T. Al-Warhi, M.M. AlSanea, N. Abelyan, H.E. Khalil, S.Y. Desoukey, M.A. Fouad, M.S. Kamel, Multitarget in silico studies of Ocimum menthiifolium, family Lamiaceae against SARS-CoV-2 supported by molecular dynamics simulation, J. Biomol. Struct. Dyn. 40 (9) (2022) 4062-4072, https://doi.org/10.1080/07391102.2020.1852964.

[59]

J.A. Encinar, J.A. Menendez, Potential drugs targeting early innate immune evasion of SARS-coronavirus 2 via 2'-methylation of viral RNA, Viruses-Basel 12 (5) (2020) 525, https://doi.org/10.3390/v12050525.

[60]

D. Bohan, H. Van Ert, N. Ruggio, K.J. Rogers, M. Badreddine, J.A. Aguilar Briseno, J.M. Elliff, R.A. Rojas Chavez, B. Gao, T. Stokowy, E. Christakou, P. Kursula, D. Micklem, G. Gausdal, H. Haim, J. Minna, J.B. Lorens, W. Maury, Phosphatidylserine receptors enhance SARS-CoV-2 infection, PLoS Pathog. 17 (11) (2021) e1009743, https://doi.org/10.1371/journal.ppat.1009743.

[61]

S. Mlala, A.O. Oyedeji, M. Gondwe, O.O. Oyedeji, Ursolic acid and its derivatives as bioactive agents, Molecules 24 (15) (2019) 2751, https://doi.org/10.3390/molecules24152751.

[62]

S. Kumar, P. Kashyap, S. Chowdhury, S. Kumar, A. Panwar, A. Kumar, Identification of phytochemicals as potential therapeutic agents that binds to Nsp15 protein target of coronavirus (SARS-CoV-2) that are capable of inhibiting virus replication, Phytomedicine 85 (2021) 153317, https://doi.org/10.1016/j.phymed.2020.153317.

[63]

V.K. Soni, A. Mehta, Y.K. Ratre, A.K. Tiwari, A. Amit, R.P. Singh, S.C. Sonkar, N. Chaturvedi, D. Shukla, N.K. Vishvakarma, Cur cumin, a traditional spice component, can hold the promise against COVID-19? Eur. J. Pharmacol. 886 (2020) 173551 https://doi.org/10.1016/j.ejphar.2020.173551.

[64]

H. Liang, Q. Huang, L. Zou, P. Wei, J. Lu, Y. Zhang, Methyl gallate: review of pharmacological activity, Pharmacol. Res. 194 (2023) 106849, https://doi.org/10.1016/j.phrs.2023.106849.

[65]

J. Zhu, H. Guerineau, A.M. Lefebvre-Fortane, L. Largeaud, J. Lambert, P. Rousselot, M. Boudouin, J. Calvo, S. Prost, S. Clauser, V. Bardet, The AXL inhibitor bemcentinib overcomes microenvironment-mediated resistance to pioglitazone in acute myeloid leukemia, FEBS J. 292 (1) (2025) 115-128, https://doi.org/10.1111/febs.17263.

AI Summary AI Mindmap
PDF (6898KB)

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/