Homologous tumor cell exosome-based drug delivery system co-delivering temozolomide and resveratrol for orthotopic glioblastoma therapy

Xuemei Wang , Tao Zhang , Dandan Zhang , Yuxin Cao , Xinxin Wang , Xiaowei Liu , Weili Yang , Yingchao Liu , Daquan Chen

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100075

PDF (8814KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100075 DOI: 10.1016/j.pscia.2025.100075
Research Article
research-article

Homologous tumor cell exosome-based drug delivery system co-delivering temozolomide and resveratrol for orthotopic glioblastoma therapy

Author information +
History +
PDF (8814KB)

Abstract

Temozolomide (TMZ) is the first-line chemotherapeutic agent for treating glioblastoma multiforme (GBM), but its potency is hampered by inevitable drug resistance and systematic toxicity. Novel strategies that can decrease drug-associated adverse events are urgently needed. Encouraged by the significant pro-apoptotic, anti-inflammatory, and anti-proliferative properties of resveratrol (RES), one of the most widely studied polyphenolic compounds in cancer therapy, we propose a synergistic therapeutic strategy by using the combination of TMZ and RES to inhibit GBM progression. Recently, exosomes (Exos) have received increasing attention as promising drug delivery alternatives with favorable intrinsic features. In this work, Exos derived from homologous U87 cells are developed to co-deliver TMZ/RES for GBM therapy, defined as U87-Exos@TMZ/RES. It is found that U87-Exos@TMZ/RES share various advantages, including intrinsic tumor-targeting accumulation with homologous effects, as well as enhanced antitumor activity with synergistic effects of TMZ and RES. Furthermore, the excellent therapeutic effect of U87-Exos@TMZ/RES is also achieved in orthotopic GBM models. Based on these results, this novel U87-Exos@TMZ/RES delivery platform can provide a promising systemic chemotherapy strategy for enhancing GBM treatment.

Keywords

Glioblastoma multiforme / Exosomes / Combination therapy / Orthotopic models

Cite this article

Download citation ▾
Xuemei Wang, Tao Zhang, Dandan Zhang, Yuxin Cao, Xinxin Wang, Xiaowei Liu, Weili Yang, Yingchao Liu, Daquan Chen. Homologous tumor cell exosome-based drug delivery system co-delivering temozolomide and resveratrol for orthotopic glioblastoma therapy. Pharmaceutical Science Advances, 2025, 3(1): 100075 DOI:10.1016/j.pscia.2025.100075

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Xuemei Wang: Writing - original draft, Data curation. Tao Zhang: Data curation. Dandan Zhang: Writing - review & editing, Data curation. Yuxin Cao: Software, Investigation. Xinxin Wang: Validation, Investigation. Xiaowei Liu: Visualization, Data curation. Weili Yang: Software. Yingchao Liu: Conceptualization. Daquan Chen: Project administration, Methodology, Funding acquisition.

Ethics approval and consent to participate

All experimental procedures were performed in strict accordance with the ARRIVE guidelines. Sample processing and experimental operations complied with the operational and ethical guidelines of Provincial Hospital Affiliated to Shandong First Medical University, and were approved by the Animal Ethics Committee (Ethical Annotation License No.2023-083).

Data availability

The data generated or analyzed in this study have been included in article.

Funding

This funding was supported by the Taishan Scholar Foundation of Shandong Province (No.qnts20161035); Natural Science Foundation of Shandong Province (No. ZR2019ZD24, ZR2019YQ30); Graduate Innovation Foundation of Yantai University (GIFYTU). The Shandong Province Modern Agricultural Industrial Technology System Chinese Herbal Medicine System (SDAIT-20-06).

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgment

Thanks to Adobe Illustrator software for support of scientific schematic mapping.

References

[1]

A.S. Youshani, K. Yu, C. O'Leary, O. Pathmanaban, I. Kamaly-Asl, B. Bigger, Characterisation of central versus peripheral tumour associated macrophages in glioblastoma multiforme, Lancet 387 (2016) S110, https://doi.org/10.1016/S0140-6736(16)00497-9.

[2]

N. Sanai, M.S. Berger, Surgical oncology for gliomas: the state of the art, Nat. Rev. Clin. Oncol. 15 (2) (2018) 112-125, https://doi.org/10.1038/nrclinonc.2017.171.

[3]

Z. Yang, Y. Du, Q. Sun, Y. Peng, R. Wang, Y. Zhou, Y. Wang, C. Zhang, X. Qi, Albumin-based nanotheranostic probe with hypoxia alleviating potentiates synchronous multimodal imaging and phototherapy for glioma, ACS Nano 14 (5) (2020) 6191-6212, https://doi.org/10.1021/acsnano.0c02249.

[4]

W. Niu, Q. Xiao, X. Wang, J. Zhu, J. Li, X. Liang, Y. Peng, C. Wu, R. Lu, Y. Pan, J. Luo, X. Zhong, H. He, Z. Rong, J.-B. Fan, Y. Wang, A biomimetic drug delivery system by integrating grapefruit extracellular vesicles and doxorubicin-loaded heparin-based nanoparticles for glioma therapy, Nano Lett. 21 (3) (2021) 1484-1492, https://doi.org/10.1021/acs.nanolett.0c04753.

[5]

P.S. Yasaswi, K. Shetty, K.S. Yadav, Temozolomide nano enabled medicine: promises made by the nanocarriers in glioblastoma therapy, J. Contr. Release 336 (2021) 549-571, https://doi.org/10.1016/j.jconrel.2021.07.003.

[6]

X. Wang, L. Tian, J. Lu, I.O.-L. Ng, Exosomes and cancer - diagnostic and prognostic biomarkers and therapeutic vehicle, Oncogenesis 11 (1) (2022) 54, https://doi.org/10.1038/s41389-022-00431-5.

[7]

I.K. Herrmann, M.J.A. Wood, G. Fuhrmann, Extracellular vesicles as a nextgeneration drug delivery platform, Nat. Nanotechnol. 16 (7) (2021) 748-759, https://doi.org/10.1038/s41565-021-00931-2.

[8]

C. Gong, X. Zhang, M. Shi, F. Li, S. Wang, Y. Wang, Y. Wang, W. Wei, G. Ma, Tumor exosomes reprogrammed by low pH are efficient targeting vehicles for smart drug delivery and personalized therapy against their homologous tumor, Adv. Sci. 8 (10) (2021), https://doi.org/10.1002/advs.202002787.

[9]

L. Qiao, S. Hu, K. Huang, T. Su, Z. Li, A. Vandergriff, J. Cores, P.-U. Dinh, T. Allen, D. Shen, H. Liang, Y. Li, K. Cheng, Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs, Theranostics 10 (8) (2020) 3474-3487, https://doi.org/10.7150/thno.39434.

[10]

T. Yong, X. Zhang, N. Bie, H. Zhang, X. Zhang, F. Li, A. Hakeem, J. Hu, L. Gan, H. A. Santos, X. Yang, Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy, Nat. Commun. 10 (1) (2019) 3838, https://doi.org/10.1038/s41467-019-11718-4.

[11]

H. Shi, S. Sun, H. Xu, Z. Zhao, Z. Han, J. Jia, D. Wu, J. Lu, H. Liu, R. Yu, Combined delivery of temozolomide and siPLK1 using targeted nanoparticles to enhance temozolomide sensitivity in glioma, Int. J. Nanomed. 15 (2020) 3347-3362, https://doi.org/10.2147/ijn.S243878.

[12]

R. Wang, Q. Liang, X. Zhang, Z. Di, X. Wang, L. Di, Tumor-derived exosomes reversing TMZ resistance by synergistic drug delivery for glioma-targeting treatment, Colloids Surf. B Biointerfaces 215 (2022) 112505, https://doi.org/10.1016/j.colsurfb.2022.112505.

[13]

Y. Zhang, Z. Zhang, M. Mousavi, A. Moliani, Y. Bahman, H. Bagheri, Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade Pglycoprotein and targeting AKT/PTEN signaling pathway, Chem. Biol. Interact. 376 (2023) 110409, https://doi.org/10.1016/j.cbi.2023.110409.

[14]

X. Fu, M. Li, C. Tang, Z. Huang, M. Najafi, Targeting of cancer cell death mechanisms by resveratrol: a review, Apoptosis 26 (11) (2021) 561-573, https://doi.org/10.1007/s10495-021-01689-7.

[15]

T. Kiskova, P. Kubatka, D. Büsselberg, M. Kassayova, The plant-derived compound resveratrol in brain cancer: a review, Biomolecules 10 (1) (2020), https://doi.org/10.3390/biom10010161.

[16]

H.C. Yang, J.Y. Wang, X.Y. Bu, B. Yang, B.Q. Wang, S. Hu, Z.Y. Yan, Y.S. Gao, S. Y. Han, M.Q. Qu, Resveratrol restores sensitivity of glioma cells to temozolamide through inhibiting the activation of Wnt signaling pathway, J. Cell. Physiol. 234 (5) (2019) 6783-6800, https://doi.org/10.1002/jcp.27409.

[17]

A. Arabzadeh, T. Mortezazadeh, T. Aryafar, E. Gharepapagh, M. Majdaeen, B. Farhood, Therapeutic potentials of resveratrol in combination with radiotherapy and chemotherapy during glioblastoma treatment: a mechanistic review, Cancer Cell Int. 21 (1) (2021) 391, https://doi.org/10.1186/s12935-021-02099-0.

[18]

Q. Zhang, Y. Zhou, X. Feng, Y. Gao, C. Huang, X. Yao, Low-dose orlistat promotes the therapeutic effect of oxaliplatin in colorectal cancer, Biomed. Pharmacother. 153 (2022) 113426, https://doi.org/10.1016/j.biopha.2022.113426.

[19]

J. Wang, W. Tang, M. Yang, Y. Yin, H. Li, F. Hu, L. Tang, X. Ma, Y. Zhang, Y. Wang, Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy, Biomaterials 273 (2021) 120784, https://doi.org/10.1016/j.biomaterials.2021.120784.

[20]

S. Wei, D. Yin, S. Yu, X. Lin, M.R. Savani, K. Du, Y. Ku, D. Wu, S. Li, H. Liu, M. Tian, Y. Chen, M. Bowie, S. Hariharan, M. Waitkus, S.T. Keir, E.T. Sugarman, R.A. Deek, M. Labrie, M. Khasraw, Y. Lu, G.B. Mills, M. Herlyn, K. Wu, L. Liu, Z. Wei, K. T. Flaherty, K. Abdullah, G. Zhang, D.M. Ashley, Antitumor activity of a mitochondrial-targeted HSP90 inhibitor in gliomas, Clin. Cancer Res. 28 (10) (2022) 2180-2195, https://doi.org/10.1158/1078-0432.Ccr-21-0833.

[21]

A.A. Patil, W.J. Rhee, Exosomes: biogenesis, composition, functions, and their role in pre-metastatic niche formation, Biotechnol. Bioproc. Eng. 24 (5) (2019) 689-701, https://doi.org/10.1007/s12257-019-0170-y.

[22]

S.D. Ibsen, J. Wright, J.M. Lewis, S. Kim, S.-Y. Ko, J. Ong, S. Manouchehri, A. Vyas, J. Akers, C.C. Chen, B.S. Carter, S.C. Esener, M.J. Heller, Rapid isolation and detection of exosomes and associated biomarkers from plasma, ACS Nano 11 (7) (2017) 6641-6651, https://doi.org/10.1021/acsnano.7b00549.

[23]

X. Zhang, D. Liu, Y. Gao, C. Lin, Q. An, Y. Feng, Y. Liu, D. Liu, H. Luo, D. Wang, The biology and function of extracellular vesicles in cancer development, Front. Cell Dev. Biol. 9 (2021), https://doi.org/10.3389/fcell.2021.777441.

[24]

H.-f. Zhao, J. Wang, W. Shao, C.-p. Wu, Z.-p. Chen, S.-s.T. To, W.-p. Li, Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development, Mol. Cancer 16 (1) (2017) 100, https://doi.org/10.1186/s12943-017-0670-3.

[25]

Z. Wan, L. Zhao, F. Lu, X. Gao, Y. Dong, Y. Zhao, M. Wei, G. Yang, C. Xing, L. Liu, Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium, Theranostics 10 (1) (2020) 218-230, https://doi.org/10.7150/thno.38198.

[26]

Z. Geng, Z. Zhang, M. Wang, Z. Yu, S. Wang, J. Lu, S. Wang, S. Guan, J. Li, T. Liu, C. Zhu, Targeting stromal cells in tumor microenvironment as a novel treatment strategy for glioma, Cancer Cell Int. 25 (1) (2025) 58, https://doi.org/10.1186/s12935-025-03692-3.

[27]

A. Krajcer, E. Grzywna, J. Lewandowska-Łańcucka, Strategies increasing the effectiveness of temozolomide at various levels of anti-GBL therapy, Biomed. Pharmacother. 165 (2023) 115174, https://doi.org/10.1016/j.biopha.2023.115174.

[28]

X. Liu, Q. Guo, G. Gao, Z. Cao, Z. Guan, B. Jia, W. Wang, K. Zhang, W. Zhang, S. Wang, W. Li, Q. Hao, Y. Zhang, M. Li, W. Zhang, J. Gu, Exosome-transmitted circCABIN1 promotes temozolomide resistance in glioblastoma via sustaining ErbB downstream signaling, J. Nanobiotechnol. 21 (1) (2023) 45, https://doi.org/10.1186/s12951-023-01801-w.

[29]

J.L. Munoz, N.D. Walker, K.W. Scotto, P. Rameshwar, Temozolomide competes for P-glycoprotein and contributes to chemoresistance in glioblastoma cells, Cancer Lett. 367 (1) (2015) 69-75, https://doi.org/10.1016/j.canlet.2015.07.013.

[30]

P. Zhao, J. Qu, A. Wu, S. Wang, X. Tang, A. Ou, J. Zhang, Y. Xu, Q. Zhao, Y. Huang, Anti-alcoholism drug disulfiram for targeting glioma energy metabolism using BBB-penetrating delivery of fixed-dose combination, Nano Today 44 (2022) 101448, https://doi.org/10.1016/j.nantod.2022.101448.

[31]

P. Maleki Dana, F. Sadoughi, Z. Asemi, B. Yousefi, The role of polyphenols in overcoming cancer drug resistance: a comprehensive review, Cell. Mol. Biol. Lett. 27 (1) (2022) 1, https://doi.org/10.1186/s11658-021-00301-9.

[32]

M. Elshaer, Y. Chen, X.J. Wang, X. Tang, Resveratrol: an overview of its anti-cancer mechanisms, Life Sci. 207 (2018) 340-349, https://doi.org/10.1016/j.1fs.2018.06.028.

[33]

L. Wang, Y. Shi, J. Jiang, C. Li, H. Zhang, X. Zhang, T. Jiang, L. Wang, Y. Wang, L. Feng, Micro-nanocarriers based drug delivery Technology for blood-brain barrier crossing and brain tumor targeting therapy, Small 18 (45) (2022), https://doi.org/10.1002/smll.202203678.

[34]

V.P. Chavda, A. Pandya, L. Kumar, N. Raval, L.K. Vora, S. Pulakkat, V. Patravale, Salwa, Y. Duo, B.Z. Tang, Exosome nanovesicles: a potential carrier for therapeutic delivery, Nano Today 49 (2023) 101771, https://doi.org/10.1016/j.nantod.2023.101771.

[35]

Q. Zhu, X. Ling, Y. Yang, J. Zhang, Q. Li, X. Niu, G. Hu, B. Chen, H. Li, Y. Wang, Z. Deng, Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy, Adv. Sci. 6 (6) (2019), https://doi.org/10.1002/advs.201801899.

[36]

D. Yuan, Y. Zhao, W.A. Banks, K.M. Bullock, M. Haney, E. Batrakova, A. V. Kabanov, Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain, Biomaterials 142 (2017) 1-12, https://doi.org/10.1016/j.biomaterials.2017.07.011.

[37]

L. Bai, Y. Liu, K. Guo, K. Zhang, Q. Liu, P. Wang, X. Wang, Ultrasound facilitates naturally equipped exosomes derived from macrophages and blood serum for orthotopic glioma treatment, ACS Appl. Mater. Interfaces 11 (16) (2019) 14576-14587, https://doi.org/10.1021/acsami.9b00893.

[38]

H. Lee, K. Bae, A.R. Baek, E.B. Kwon, Y.H. Kim, S.W. Nam, G.H. Lee, Y. Chang, Glioblastoma-derived exosomes as nanopharmaceutics for improved glioma treatment, Pharmaceutics 14 (5) (2022), https://doi.org/10.3390/pharmaceutics14051002.

[39]

F. Chen, J.-J. Cui, D.-C. Jiang, H.-Z. Wang, W. Zhuang, Y.-N. Feng, X.-L. Lin, S.Y. Xi, Antitumor mechanism of kangliu pill on gliomas in mice through PI3K-Akt signaling pathway, J. Ethnopharmacol. 307 (2023) 116252, https://doi.org/10.1016/j.jep.2023.116252.

[40]

M.L. Hill, S.-J. Chung, H.-J. Woo, C.R. Park, K. Hadrick, M. Nafiujjaman, P.P. P. Kumar, L. Mwangi, R. Parikh, T. Kim, Exosome-coated prussian blue nanoparticles for specific targeting and treatment of glioblastoma, ACS Appl. Mater. Interfaces 16 (16) (2024) 20286-20301, https://doi.org/10.1021/acsami.4c02364.

AI Summary AI Mindmap
PDF (8814KB)

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/