The crucial role of SPP1 in osteoporosis, osteoarthritis, and cancer

Yaru Qu, Shuixian Li, Huiyuan Luo, Junnan Li, Tong Wang, Xiuzhen Han

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100074.

PDF(1049 KB)
PDF(1049 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100074. DOI: 10.1016/j.pscia.2025.100074
Review article

The crucial role of SPP1 in osteoporosis, osteoarthritis, and cancer

Author information +
History +

Abstract

Osteopontin (OPN), also known as secreted phosphoprotein 1(SPP1), is a highly glycosylated and phosphorylated acidic protein, which is a multifunctional glycoprotein expressed in numerous cell types. SPP1 is involved in the attachment of osteoclasts to mineralized bone matrix, inflammatory reaction, cell recruitment, and tissue repair, and plays an important role in bone formation, fibrosis, immune diseases, and cancer. The role of SPP1 in osteoporosis, osteoarthritis and cancer is multi-faceted. While it holds potential therapeutic value, it also presents certain limitations. This review integrates the molecular structural characteristics of SPP1, including isoform variants and post-translational modifications, with its pathophysiological functions. It highlights the regulatory roles of SPP1 in these diseases: maintaining the dynamic balance between bone resorption and formation in osteoporosis, promoting cartilage degeneration and inflammation in osteoarthritis, and driving tumor progression in cancer through the activation of pathways such as PI3K/AKT/mTOR. Furthermore, SPP1 regulates tumor-associated macrophages and fibroblasts within the tumor microenvironment, thereby facilitating immune evasion and metastasis. The article also underscores the potential value of precisely modulating SPP1 activity in the treatment of osteoporosis and osteoarthritis and suggests a combined therapeutic strategy targeting SPP1, offering novel insights into overcoming the limitations of single-target cancer therapies.

Keywords

Secreted phosphoprotein 1 (SPP1) / Bone formation / Osteoporosis / Osteoarthritis / Cancer / Metastasis

Cite this article

Download citation ▾
Yaru Qu, Shuixian Li, Huiyuan Luo, Junnan Li, Tong Wang, Xiuzhen Han. The crucial role of SPP1 in osteoporosis, osteoarthritis, and cancer. Pharmaceutical Science Advances, 2025, 3(0): 100074 https://doi.org/10.1016/j.pscia.2025.100074

References

[1]
J. Sodek, B. GanssM, D. McKee, Osteopontin, Crit. Rev. Oral Biol. Med. 11 (2000) 279-303, https://doi.org/10.1177/10454411000110030101.
[2]
M.D. McKee, A. Nanci, Secretion of osteopontin by macrophages and its accumulation at tissue surfaces during wound healing in mineralized tissues: a potential requirement for macrophage adhesion and phagocytosis, Anat. Rec. 245 (1996) 394-409, https://doi.org/10.1002/(SICI)1097-0185(199606)245:2<394::AID-AR19>3.0.CO;2-K.
[3]
M.F. Young, J.M. Kerr, J.D. Termine, U.M. Wewer, M.G. Wang, O.W. McBride, L.W. Fisher, cDNA cloning, mRNA distribution and heterogeneity, chromosomal location, and RFLP analysis of human osteopontin (OPN), Genomics 7 (1990) 491-502, https://doi.org/10.1016/0888-7543(90)90191-v.
[4]
N. Clemente, D. Raineri, G. Cappellano, E. Boggio, F. Favero, M.F. Soluri, C. Dianzani, C. Comi, U. Dianzani, A. Chiocchetti, Osteopontin bridging innate and adaptive immunity in autoimmune diseases, J. Immunol. Res. 2016 (2016) 7675437, https://doi.org/10.1155/2016/7675437.
[5]
M.K. El-Tanani, F.C. Campbell, V. Kurisetty, D. Jin, M. McCann, P.S. Rudland, The regulation and role of osteopontin in malignant transformation and cancer, Cytokine Growth Factor Rev. 17 (2006) 463-474, https://doi.org/10.1016/j.cytogfr.2006.09.010.
[6]
M. Scatena, L. LiawC, M. Giachelli, Osteopontin: a multifunctional molecule regulating chronic inflammation and vascular disease, Arterioscler. Thromb. Vasc. Biol. 27 (2007) 2302-2309, https://doi.org/10.1161/ATVBAHA.107.144824.
[7]
P.M. Green, S.B. Ludbrook, D.D. Miller, C.M.T. Horgan, S.T. Barry, Structural elements of the osteopontin SVVYGLR motif important for the interaction with α4 integrins, FEBS Lett. 503 (2001) 75-79, https://doi.org/10.1016/S0014-5793(01)02690-4.
[8]
K. Ito, S. Kon, Y. Nakayama, D. Kurotaki, Y. Saito, M. Kanayama, C. Kimura, H. Diao, J. Morimoto, Y. Matsui, T. Uede, The differential amino acid requirement within osteopontin in α4 and α9 integrin-mediated cell binding and migration, Matrix Biol. 28 (2009) 11-19, https://doi.org/10.1016/j.matbio.2008.10.002.
[9]
Y. Yokosaki, K. Tanaka, F. Higashikawa, K. Yamashita, A. Eboshida, Distinct structural requirements for binding of the integrins αvβ6, αvβ3, αvβ5, α5β1 and α9β1 to osteopontin, Matrix Biol. 24 (2005) 418-427, https://doi.org/10.1016/j.matbio.2005.05.005.
[10]
H. Guan, P.S. Nagarkatti, M. Nagarkatti, Role of CD44 in the differentiation of Th1 and Th2 cells: CD44-deficiency enhances the development of Th2 effectors in response to sheep RBC and chicken ovalbumin, J. Immunol. 183 (2009) 172-180, https://doi.org/10.4049/jimmunol.0802325.
[11]
R. Agnihotri, H.C. Crawford, H. Haro, L.M. Matrisian, M.C. Havrda, L. Liaw, Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin), Biol. Chem. 276 (2001) 28261-28267, https://doi.org/10.1074/jbc.M103608200.
[12]
A. Goncalves DaSilva, L. Liaw, V.W. Yong, Cleavage of osteopontin by matrix metalloproteinase-12 modulates experimental autoimmune encephalomyelitis disease in C57bl/6 mice, Am. J. Pathol. 177 (2010) 1448-1458, https://doi.org/10.2353/ajpath.2010.091081.
[13]
N.M.T. Barros, B. Hoac, R.L. Neves, W.N. Addison, D.M. Assis, M. Murshed, A.K. Carmona, M.D. McKee, Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia, J. Bone Miner. Res. 28 (2013) 688-699, https://doi.org/10.1002/jbmr.1766.
[14]
G.R. Silva, D.S. Mattos, A.C.F. Bastos, B.P.P.B. Viana, M.C.M. Brum, L.B. Ferreira, E.R.P. Gimba, Osteopontin-4 and osteopontin-5 splice variants are expressed in several tumor cell lines, Mol. Biol. Rep. 47 (2020) 8339-8345, https://doi.org/10.1007/s11033-020-05867-9.
[15]
H. Rangaswami, A. Bulbule, G.C. Kundu, Osteopontin: role in cell signaling and cancer progression, Trends Cell Biol. 16 (2006) 79-87, https://doi.org/10.1016/j.tcb.2005.12.005.
[16]
M. Dong, Q. Sun, X. Yu, L. Sui, Y. Xu, H. Kong, Y. Kong, OPN N-glycosylation promoted bone destruction, Oral Dis. 29 (2023) 2154-2162, https://doi.org/10.1111/odi.14218.
[17]
J. Chen, Y. Chen, C. Mao, J. Chiou, C.K. Tsao, K.-S. Tsai, Association between secreted phosphoprotein-1 (SPP1) polymorphisms and low bone mineral density in women, PLoS One 9 (2014) e97428, https://doi.org/10.1371/journal.pone.0097428.
[18]
I.C. Chang, T.I. Chiang, K.T. Yeh, H. Lee, Y.W. Cheng, Increased serum osteopontin is a risk factor for osteoporosis in menopausal women, Osteoporos. Int. 21 (2010) 1401-1409, https://doi.org/10.1007/s00198-009-1107-7.
[19]
J. Si, C. Wang, D. Zhang, B. Wang, W. Hou, Y. Zhou, Osteopontin in bone metabolism and bone diseases, Med. Sci. Monit. 26 (2020) e919159, https://doi.org/10.12659/MSM.919159.
[20]
Y. Asou, S.R. Rittling, H. Yoshitake, K. Tsuji, K. Shinomiya, A. Nifuji, D.T. Denhardt, M. Noda, Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone, Endocrinology 142 (2001) 1325-1332, https://doi.org/10.1210/endo.142.3.8006.
[21]
J. Chen, K. Singh, B.B. Mukherjee, J. Sodek, Developmental expression of osteopontin (OPN) mRNA in rat tissues: evidence for a role for OPN in bone formation and resorption, Matrix 13 (1993) 113-123, https://doi.org/10.1016/s0934-8832(11)80070-3.
[22]
K. Suzuki, B. Zhu, S.R. Rittling, D.T. Denhardt, H.A. Goldberg, C.A.G. McCulloch, J. Sodek, Colocalization of intracellular osteopontin with CD44 is associated with migration, cell fusion, and resorption in osteoclasts, J. Bone Miner. Res. 17 (2002) 1486-1497, https://doi.org/10.1359/jbmr.2002.17.8.1486.
[23]
R. Zohar, S. Cheifetz, C.A.G. McCulloch, J. Sodek, Analysis of intracellular osteopontin as a marker of osteoblastic cell differentiation and mesenchymal cell migration, Eur. J. Oral Sci. 106 (1998) 401-407, https://doi.org/10.1111/j.1600-0722.1998.tb02206.x.
[24]
L. Liu, Q. Luo, J. Sun, A. Wang, Y. Shi, Y. Ju, Y. Morita, G. Song, Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells, Exp. Cell Res. 355 (2017) 172-181, https://doi.org/10.1016/j.yexcr.2017.04.004.
[25]
H. Zeng, L. Dong, C. Xu, X. Zhao, L. Wu, Artesunate promotes osteoblast differentiation through miR-34a/DKK1 axis, Acta Histochem. 122 (2020) 151601, https://doi.org/10.1016/j.acthis.2020.151601.
[26]
K. Srirussamee, S. Mobini, N.J. Cassidy, S.H. Cartmell, Direct electrical stimulation enhances osteogenesis by inducing Bmp2 and Spp1 expressions from macrophages and preosteoblasts, Biotechnol. Bioeng. 116 (2019) 3421-3432, https://doi.org/10.1002/bit.27142.
[27]
O.D. Kennedy, O. Brennan, S.M. Rackard, A. Staines, F.J. O'Brien, D. Taylor, T.C. Lee, Effects of ovariectomy on bone turnover, porosity, and biomechanical properties in ovine compact bone 12 months postsurgery, J. Orthop. Res. 27 (2009) 303-309, https://doi.org/10.1002/jor.20750.
[28]
J. Fox, M.A. Miller, M.K. Newman, A.F. Metcalfe, C.H. Turner, R.R. Recker, S.Y. Smith,Daily treatment of aged ovariectomized rats with human parathyroid hormone (1-84) for 12 months reverses bone loss and enhances trabecular and cortical bone strength, Calcif. Tissue Int. 79 (2006) 262-272, https://doi.org/10.1007/s00223-006-0108-1.
[29]
H. Ihara, D.T. Denhardt, K. Furuya, T. Yamashita, Y. Muguruma, K. Tsuji, K.A. Hruska, K. Higashio, S. Enomoto, A. Nifuji, S.R. Rittling, M. Noda, Parathyroid hormone-induced bone resorption does not occur in the absence of osteopontin, J. Biol. Chem. 276 (2001) 13065-13071, https://doi.org/10.1074/jbc.M010938200.
[30]
T. Chiang, I. Chang, H.S. Lee, H. Lee, C. Huang, Y. Cheng, Osteopontin regulates anabolic effect in human menopausal osteoporosis with intermittent parathyroid hormone treatment, Osteoporos. Int. 22 (2011) 577-585, https://doi.org/10.1007/s00198-010-1327-x.
[31]
O. Pullig, G. Weseloh, S. Gauer, B. Swoboda, Osteopontin is expressed by adult human osteoarthritic chondrocytes: protein and mRNA analysis of normal and osteoarthritic cartilage, Matrix Biol. 19 (2000) 245-255, https://doi.org/10.1016/s0945-053x(00)00068-8.
[32]
S. Honsawek, A. Tanavalee, M. Sakdinakiattikoon, M. Chayanupatkul, P. Yuktanandana, Correlation of plasma and synovial fluid osteopontin with disease severity in knee osteoarthritis, Clin. Biochem. 42 (2009) 808-812, https://doi.org/10.1016/j.clinbiochem.2009.02.002.
[33]
S. Li, J. Liu, S. Liu, W. Jiao, X. Wang, Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis, J. Nanobiotechnol. 19 (2021) 343, https://doi.org/10.1186/s12951-021-01086-x.
[34]
C. Lin, Z. Chen, D. Guo, L. Zhou, S. Lin, C. Li, S. Li, X. Wang, B. Lin, Y. Ding, Increased expression of osteopontin in subchondral bone promotes bone turnover and remodeling, and accelerates the progression of OA in a mouse model, Aging 14 (2022) 253-271, https://doi.org/10.18632/aging.203707.
[35]
R. Bai, D. Liu, Y. Li, J. Tian, D. Yu, H. Li, F. Zhang, OPN inhibits autophagy through CD44, integrin and the MAPK pathway in osteoarthritic chondrocytes, Front. Endocrinol. 13 (2022) 919366, https://doi.org/10.3389/fendo.2022.919366.
[36]
C. Cheng, J. Tian, S. Gao, Z. Zhou, R. Yang, K. Xiao, W. Guo, L. Liu, H. Yang, F. Zhang, The expression of αvβ3 and osteopontin in osteoarthritic knee cartilage and their correlations with disease severity and chondrocyte senescence, Appl. Immunohistochem. Mol. Morphol. 31 (2023) 57-63, https://doi.org/10.1097/PAI.0000000000001063.
[37]
Q. Liu, H. Zeng, Y. Yuan, Z. Wang, Z. Wu, W. Luo, Osteopontin inhibits osteoarthritis progression via the OPN/CD44/PI3K signal axis, Genes Dis. 9 (2022) 128-139, https://doi.org/10.1016/j.gendis.2020.06.006.
[38]
P. Sun, W. Kong, L. Liu, Y. Liu, F. Liu, W. Liu, H. Yu, W. Yang, G. Li, Q. Sun, Osteopontin accelerates chondrocyte proliferation in osteoarthritis rats through the NF-κb signaling pathway, Eur. Rev. Med. Pharmacol. Sci. 24 (2020) 2836-2842, https://doi.org/10.26355/eurrev_202003_20647.
[39]
W. Luo, Z. Lin, Y. Yuan, Z. Wu, W. Zhong, Q. Liu, Osteopontin (OPN) alleviates the progression of osteoarthritis by promoting the anabolism of chondrocytes, Genes Dis. 10 (2022) 1714-1725, https://doi.org/10.1016/j.gendis.2022.08.010.
[40]
C. Cheng, F. Zhang, J. Tian, M. Tu, Y. Xiong, W. Luo, Y. Li, B. Song, S. Gao, G. Lei, Osteopontin inhibits HIF-2α mRNA expression in osteoarthritic chondrocytes, Exp. Ther. Med. 9 (2015) 2415-2419, https://doi.org/10.3892/etm.2015.2434.
[41]
Q. Wang, W. Wang, F. Zhang, Y. Deng, Z. Long, NEAT1/miR-181c regulates osteopontin (OPN)-mediated synoviocyte proliferation in osteoarthritis, J. Cell. Biochem. 118 (2017) 3775-3784, https://doi.org/10.1002/jcb.26025.
[42]
J. Tian, C. Cheng, S. Kuang, C. Su, X. Zhao, Y. Xiong, Y. Li, S. Gao, OPN deficiency increases the severity of osteoarthritis associated with aberrant chondrocyte senescence and apoptosis and upregulates the expression of osteoarthritisassociated genes, Pain Res. Manag. 22 (2020) 3428587, https://doi.org/10.1155/2020/3428587.
[43]
Y. Li, W. Jiang, H. Wang, Z. Deng, C. Zeng, M. Tu, L. Li, W. Xiao, S. Gao, W. Luo, G. Lei, Osteopontin promotes expression of matrix metalloproteinase 13 through NF-κB signaling in osteoarthritis, Biomed Res. Int. 2016 (2016) 6345656, https://doi.org/10.1155/2016/6345656.
[44]
L. Li, G. Lv, B. Wang, L. Kuang, XIST/miR-376c-5p/OPN axis modulates the influence of proinflammatory M1 macrophages on osteoarthritis chondrocyte apoptosis, J. Cell. Physiol. 235 (2020) 281-293, https://doi.org/10.1002/jcp.28968.
[45]
S. Gao, Y. Yu, C. Zeng, S. Lu, J. Tian, C. Cheng, L. Li, G. Lei, Phosphorylation of osteopontin has proapoptotic and proinflammatory effects on human knee osteoarthritis chondrocytes, Exp. Ther. Med. 12 (2016) 3488-3494, https://doi.org/10.3892/etm.2016.3784.
[46]
B. He, M. Mirza, G.F. Weber, An osteopontin splice variant induces anchorage independence in human breast cancer cells, Oncogene 25 (2006) 2192-2202, https://doi.org/10.1038/sj.onc.1209248.
[47]
R. Huang, Y. Quan, J. Chen, T. Wang, M. Xu, M. Ye, H. Yuan, C. Zhang, X. Liu, Z. Min, Osteopontin promotes cell migration and invasion, and inhibits apoptosis and autophagy in colorectal cancer by activating the p38 MAPK signaling pathway, Cell. Physiol. Biochem. 41 (2017) 1851-1864, https://doi.org/10.1159/000471933.
[48]
Y. Sharon, Y. Raz, N. Cohen, A. Ben-Shmuel, H. Schwartz, T. Geiger, N. Erez, Tumor-derived osteopontin reprograms normal mammary fibroblasts to promote inflammation and tumor growth in breast cancer, Cancer Res. 75 (2015) 963-973, https://doi.org/10.1158/0008-5472.CAN-14-1990.
[49]
J. Insua-Rodríguez, M. Pein, T. Hongu, J. Meier, A. Descot, C.M. Lowy, E. De Braekeleer, H.P. Sinn, S. Spaich, M. Sütterlin, A. Schneeweiss, T. Oskarsson, Stress signaling in breast cancer cells induces matrix components that promote chemoresistant metastasis, EMBO Mol. Med. 10 (2018) e9003, https://doi.org/10.15252/emmm.201809003.
[50]
G.M. Pio, Y. Xia, M.M. Piaseczny, J.E. Chu, A.L. Allan, Soluble bone-derived osteopontin promotes migration and stem-like behavior of breast cancer cells, PLoS One 12 (2017) e0177640, https://doi.org/10.1371/journal.pone.0177640.
[51]
J. Dai, L. Peng, K. Fan, H. Wang, R. Wei, G. Ji, J. Cai, B. Lu, B. Li, D. Zhang, Y. Kang, M. Tan, W. Qian, Y. Guo, Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells, Oncogene 28 (2009) 3412-3422, https://doi.org/10.1038/onc.2009.189.
[52]
D. Raineri, C. Dianzani, G. Cappellano, F. Maione, G. Baldanzi, I. Iacobucci, N. Clemente, G. Baldone, E. Boggio, C.L. Gigliotti, R. Boldorini, J.M. Rojo, M. Monti, L. Birolo, U. Dianzani, A. Chiocchetti, Osteopontin binds ICOSL promoting tumor metastasis, Commun. Biol. 3 (2020) 615, https://doi.org/10.1038/s42003-020-01333-1.
[53]
J.K. Messex, C.J. Byrd, M.U. Thomas, G.-Y. Liou, Macrophages cytokine Spp1 increases growth of prostate intraepithelial neoplasia to promote prostate tumor progression, Int. J. Mol. Sci. 23 (2022) 4247, https://doi.org/10.3390/ijms23084247.
[54]
X. Pang, J. Zhang, X. He, Y. Gu, B. Qian, R. Xie, W. Yu, X. Zhang, T. Li, X. Shi, Y. Zhou, Y. Cui, SPP1 promotes enzalutamide resistance and epithelialmesenchymal- transition activation in castration-resistant prostate cancer via PI3K/AKT and ERK1/2 pathways, Oxid. Med. Cell. Longev. 2021 (2021) 5806602, https://doi.org/10.1155/2021/5806602.
[55]
Y. Fu, Y. Zhang, Z. Lei, T. Liu, T. Cai, A. Wang, W. Du, Y. Zeng, J. Zhu, Z. Liu, J.-A. Huang, Abnormally activated OPN/integrin αVβ3/FAK signalling is responsible for EGFR-TKI resistance in EGFR mutant non-small-cell lung cancer, J. Hematol. Oncol. 13 (2020) 169, https://doi.org/10.1186/s13045-020-01009-7.
[56]
C. Hao, Y. Cui, S. Chang, J. Huang, E. Birkin, M. Hu, X. Zhi, W. Li, L. Zhang, S. Cheng, W.G. Jiang, OPN promotes the aggressiveness of non-small-cell lung cancer cells through the activation of the RON tyrosine kinase, Sci. Rep. 9 (2019)18101, https://doi.org/10.1038/s41598-019-54843-2.
[57]
J. Cui, J. Wang, C. Lin, J. Liu, W. Zuo, Osteopontin mediates cetuximab resistance via the MAPK pathway in NSCLC cells, OncoTargets Ther. 12 (2019) 10177-10185, https://doi.org/10.2147/OTT.S228437.
[58]
C. Wang, Q. Yu, T. Song, Z. Wang, L. Song, Y. Yang, J. Shao, J. Li, Y. Ni, N. Chao, L. Zhang, W. Li, The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing, Signal Transduct. Targeted Ther. 7 (2022) 289, https://doi.org/10.1038/s41392-022-01130-8.
[59]
G. Chakraborty, S. Jain, G.C. Kundu, Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms, Cancer Res. 68 (2008) 152-161, https://doi.org/10.1158/0008-5472.CAN-07-2126.
[60]
Z. Guo, J. Huang, Y. Wang, X. Liu, W. Li, J. Yao, S. Li, W. Hu, Analysis of expression and its clinical significance of the secreted phosphoprotein 1 in lung adenocarcinoma, Front. Genet. 11 (2020) 547, https://doi.org/10.3389/fgene.2020.00547.
[61]
D.S. Ettinger, D.E. Wood, W. Akerley, L.A. Bazhenova, H. Borghaei, D.R. Camidge, R.T. Cheney, L.R. Chirieac, T.A. D'Amico, T.L. Demmy, T.J. Dilling, R. Govindan, F.W. Grannis, L. Horn, T.M. Jahan, R. Komaki, M.G. Kris, L.M. Krug, R.P. Lackner, M. Lanuti, R. Lilenbaum, J. Lin, B.W. Loo, R. Martins, G.A. Otterson, J.D. Patel, K.M. Pisters, K. Reckamp, G.J. Riely, E. Rohren, S. Schild, T.A. Shapiro, S.J. Swanson, K. Tauer, S.C. Yang, K. Gregory, M. Hughes, Non-small cell lung cancer, version 1.2015, J. Natl. Compr. Cancer Netw. 12 (2014) 1738-1761, https://doi.org/10.6004/jnccn.2014.0176.
[62]
X. Yu, Y. Zheng, X. Zhu, X. Gao, C. Wang, Y. Sheng, W. Cheng, L. Qin, N. Ren, H. Jia, Q. Dong, Osteopontin promotes hepatocellular carcinoma progression via the PI3K/AKT/Twist signaling pathway, Oncol. Lett. 16 (2018) 5299-5308, https://doi.org/10.3892/ol.2018.9281.
[63]
C. Lu, S. Fang, Q. Weng, X. Lv, M. Meng, J. Zhu, L. Zheng, Y. Hu, Y. Gao, X. Wu, J. Mao, B. Tang, Z. Zhao, L. Huang, J. Ji, Integrated analysis reveals critical glycolytic regulators in hepatocellular carcinoma, Cell Commun. Signal. 18 (2020) 97, https://doi.org/10.1186/s12964-020-00539-4.
[64]
P. Nallasamy, R.K. Nimmakayala, S. Karmakar, F. Leon, P. Seshacharyulu, I. Lakshmanan, S. Rachagani, K. Mallya, C. Zhang, Q.P. Ly, M.S. Myers, L. Josh, C.E. Grabow, S.K. Gautam, S. Kumar, S.M. Lele, M. Jain, S.K. Batra, M.P. Ponnusamy, Pancreatic tumor microenvironment factor promotes cancer stemness via SPP1-CD44 axis, Gastroenterology 161 (2021) 1998-2013.e1997, https://doi.org/10.1053/j.gastro.2021.08.023.
[65]
K. Chen, Q. Wang, X. Liu, F. Wang, Y. Ma, S. Zhang, Z. Shao, Y. Yang, X. Tian, Single cell RNA-seq identifies immune-related prognostic model and key signature-SPP1 in pancreatic ductal adenocarcinoma, Genes 13 (2022) 1760, https://doi.org/10.3390/genes13101760.
[66]
W. Xie, J. Cheng, Z. Hong, W. Cai, H. Zhuo, J. Hou, L. Lin, X. Wei, K. Wang, X. Chen, Y. Song, Z. Wang, J. Cai, Multi-transcriptomic analysis reveals the heterogeneity and tumor-promoting role of SPP1/CD44-mediated intratumoral crosstalk in gastric cancer, Cancers (Basel) 15 (2022) 164, https://doi.org/10.3390/cancers15010164.
[67]
Y. Wang, K. Zheng, X. Chen, R. Chen, Y. Zou, Bioinformatics analysis identifies COL1A1, THBS2 and SPP1 as potential predictors of patient prognosis and immunotherapy response in gastric cancer, Biosci. Rep. 41 (2021) BSR20202564, https://doi.org/10.1042/BSR20202564.
[68]
Y. Qian, E. Zhai, S. Chen, Y. Liu, Y. Ma, J. Chen, J. Liu, C. Qin, Q. Cao, J. Chen, S. Cai, Single-cell RNA-seq dissecting heterogeneity of tumor cells and comprehensive dynamics in tumor microenvironment during lymph nodes metastasis in gastric cancer, Int. J. Cancer 151 (2022) 1367-1381, https://doi.org/10.1002/ijc.34172.
[69]
G. Sun, Z. Shang, W. Liu, SPP 1 regulates radiotherapy sensitivity of gastric adenocarcinoma via the Wnt/beta-catenin pathway, J. Oncol. 2021 (2021) 1642852, https://doi.org/10.1155/2021/1642852.
[70]
M. Kijewska, M. Kocyk, M. Kloss, K. Stepniak, Z. Korwek, R. Polakowska, M. Dabrowski, A. Gieryng, B. Wojtas, I.A. Ciechomska, B. Kaminska, The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma, Oncotarget 8 (2017) 16340-16355, https://doi.org/10.18632/oncotarget.14092.
[71]
C. He, L. Sheng, D. Pan, S. Jiang, L. Ding, X. Ma, Y. Liu, D. Jia, Single-cell transcriptomic analysis revealed a critical role of SPP1/CD44-mediated crosstalk between macrophages and cancer cells in glioma, Front. Cell Dev. Biol. 9 (2021) 779319, https://doi.org/10.3389/fcell.2021.779319.
[72]
P. Chen, D. Zhao, J. Li, X. Liang, J. Li, A. Chang, V.K. Henry, Z. Lan, D.J. Spring, G. Rao, Y.A. Wang, R.A. DePinho, Symbiotic macrophage-glioma cell interactions reveal synthetic lethality in PTEN-null glioma, Cancer Cell 35 (2019) 868-884.e866, https://doi.org/10.1016/j.ccell.2019.05.003.
[73]
X. Li, S. Zhao, X. Bian, L. Zhang, L. Lu, S. Pei, L. Dong, W. Shi, L. Huang, X. Zhang, M. Chen, X. Chen, M. Yin, Signatures of EMT, immunosuppression, and inflammation in primary and recurrent human cutaneous squamous cell carcinoma at single-cell resolution, Theranostics 12 (2022) 7532-7549, https://doi.org/10.7150/thno.77528.
[74]
G. Deng, F. Zeng, J. Su, S. Zhao, R. Hu, W. Zhu, S. Hu, X. Chen, M. Yin, BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway, Theranostics 10 (2020) 11428-11443, https://doi.org/10.7150/thno.47432.
[75]
G. Deng, F. Zeng, Y. He, Y. Meng, H. Sun, J. Su, S. Zhao, Y. Cheng, X. Chen, M. Yin, EEF2K silencing inhibits tumour progression through repressing SPP1 and synergises with BET inhibitors in melanoma, Clin. Transl. Med. 12 (2022) e722, https://doi.org/10.1002/ctm2.722.
[76]
X. Xu, H. Liu, Y. Zhang, S. Zhang, Z. Chen, Y. Bao, T. Li, SPP1 and FN1 are significant gene biomarkers of tongue squamous cell carcinoma, Oncol. Lett. 22 (2021) 713, https://doi.org/10.3892/ol.2021.12974.
[77]
Q. Zhang, L. Li, Y. Lai, T. Zhao, Silencing of SPP1 suppresses progression of tongue cancer by mediating the PI3K/Akt signaling pathway, Technol. Cancer Res. Treat. 19 (2020) 1533033820971306, https://doi.org/10.1177/1533033820971306.
[78]
M. Li, K. Wang, Y. Pang, H. Zhang, H. Peng, Q. Shi, Z. Zhang, X. Cui, F. Li, Secreted phosphoprotein 1 (SPP1) and fibronectin 1 (FN1) are associated with progression and prognosis of esophageal cancer as identified by integrated expression profiles analysis, Med. Sci. Monit. 26 (2020) e920355, https://doi.org/10.12659/MSM.920355.
[79]
M. Wang, X. Sun, H. Xin, Z. Wen, Y. Cheng, SPP 1 promotes radiation resistance through JAK2/STAT3 pathway in esophageal carcinoma, Cancer Med. 11 (2022) 4526-4543, https://doi.org/10.1002/cam4.4840.
[80]
C. Wang, G. Sun, H. Wang, L. Dai, J. Zhang, R. Du, Serum anti-SPP1 autoantibody as a potential novel biomarker in detection of esophageal squamous cell carcinoma, BMC Cancer 22 (2022) 932, https://doi.org/10.1186/s12885-022-10012-9.
[81]
P.K. Poleboyina, M. Alagumuthu, A. Pasha, D. Ravinder, D. Pasumarthi, S.C. Pawar, Entrectinib a plausible inhibitor for osteopontin (SPP1) in cervical cancer-integrated bioinformatic approach, Appl. Biochem. Biotechnol. (2023), https://doi.org/10.1007/s12010-023-04541-7.
[82]
X. Su, B. Xu, D. Zhou, Z. Ye, H. He, X. Yang, X. Zhang, Q. Liu, J. Ma, Q. Shao, A. Yang, C. He, Polymorphisms in matricellular SPP1 and SPARC contribute to susceptibility to papillary thyroid cancer, Genomics 112 (2020) 4959-4967, https://doi.org/10.1016/j.ygeno.2020.09.018.
[83]
M. Cheng, G. Liang, Z. Yin, X. Lin, Q. Sun, Y. Liu,Immunosuppressive role of SPP1-CD44 in the tumor microenvironment of intrahepatic cholangiocarcinoma assessed by single-cell RNA sequencing, J. Cancer Res. Clin. Oncol. 149 (2023) 5497-5512, https://doi.org/10.1007/s00432-022-04498-w.
[84]
B. Sun, C. Zhou, R. Guan, G. Liu, Z. Yang, Z. Wang, W. Gan, J. Zhou, J. Fan, Y. Yi, S. Qiu, Dissecting intra-tumoral changes following immune checkpoint blockades in intrahepatic cholangiocarcinoma via single-cell analysis, Front. Immunol. 13 (2022) 871769, https://doi.org/10.3389/fimmu.2022.871769.
[85]
Y. Wang, J. Su, Y. Wang, D. Fu, J.E. Ideozu, H. Geng, Q. Cui, C. Wang, R. Chen, Y. Yu, Y. Niu, D. Yue, The interaction of YBX1 with G3BP1 promotes renal cell carcinoma cell metastasis via YBX1/G3BP1-SPP1- NF-κB signaling axis, J. Exp. Clin. Cancer Res. 38 (2019) 386, https://doi.org/10.1186/s13046-019-1347-0.
[86]
R. Butti, R. Nimma, G. Kundu, A. Bulbule, T.V.S. Kumar, V.P. Gunasekaran, D. Tomar, D. Kumar, A. Mane, S.S. Gill, T. Patil, G.F. Weber, G.C. Kundu, Tumorderived osteopontin drives the resident fibroblast to myofibroblast differentiation through Twist1 to promote breast cancer progression, Oncogene 40 (2021) 2002-2017, https://doi.org/10.1038/s41388-021-01663-2.
[87]
A. Muchlinska, A. Nagel, M. Popęda, J. Szade, M. Niemira, J. Zielinski, J. Skokowski, N. Bednarz-Knoll, A.J. Z_ aczek, Alpha-smooth muscle actin-positive cancer-associated fibroblasts secreting osteopontin promote growth of luminal breast cancer, Cell. Mol. Biol. Lett. 27 (2022) 45, https://doi.org/10.1186/s11658-022-00351-7.
[88]
T. Yamanaka, N. Harimoto, T. Yokobori, R. Muranushi, K. Hoshino, K. Hagiwara, D. Gantumur, T. Handa, N. Ishii, M. Tsukagoshi, T. Igarashi, A. Watanabe, N. Kubo, K. Araki, K. Umezawa, K. Shirabe, Conophylline inhibits hepatocellular carcinoma by inhibiting activated cancer-associated fibroblasts through suppression of G protein-coupled receptor 68, Mol. Cancer Therapeut. 20 (2021) 1019-1028, https://doi.org/10.1158/1535-7163.MCT-20-0150.
[89]
L. Zhao, Z. Wang, Y. Tan, J. Ma, W. Huang, X. Zhang, C. Jin, T. Zhang, W. Liu, Y.-G. Yang, IL-17A/CEBPβ/OPN/LYVE-1 axis inhibits anti-tumor immunity by promoting tumor-associated tissue-resident macrophages, Cell Rep. 43 (2024) 115039, https://doi.org/10.1016/j.celrep.2024.115039.
[90]
J. Wei, A. Marisetty, B. Schrand, K. Gabrusiewicz, Y. Hashimoto, M. Ott, Z. Grami, L. Kong, X. Ling, H. Caruso, S. Zhou, Y.A. Wang, G.N. Fuller, J. Huse, E. Gilboa, N. Kang, X. Huang, R. Verhaak, S. Li, A.B. Heimberger, Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target, J. Clin. Invest. 129 (2019) 137-149, https://doi.org/10.1172/JCI121266.
[91]
Y. Zhu, J. Yang, D. Xu, X. Gao, Z. Zhang, J.L. Hsu, C. Li, S.O. Lim, Y. Sheng, Y. Zhang, J. Li, Q. Luo, Y. Zheng, Y. Zhao, L. Lu, H. Jia, M.C. Hung, Q. Dong, L. Qin, Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitizes hepatocellular carcinoma to anti-PD-L1 blockade, Gut 68 (2019) 1653-1666, https://doi.org/10.1136/gutjnl-2019-318419.
[92]
A. Ellert-Miklaszewska, P. Wisniewski, M. Kijewska, P. Gajdanowicz, D. Pszczolkowska, P. Przanowski, M. Dabrowski, M. Maleszewska, B. Kaminska, Tumour-processed osteopontin and lactadherin drive the protumorigenic reprogramming of microglia and glioma progression, Oncogene 35 (2016) 6366-6377, https://doi.org/10.1038/onc.2016.55.
[93]
S. Kale, R. Raja, D. Thorat, G. Soundararajan, T.V. Patil, G.C. Kundu, Osteopontin signaling upregulates cyclooxygenase-2 expression in tumor-associated macrophages leading to enhanced angiogenesis and melanoma growth via α9β1 integrin, Oncogene 33 (2014) 2295-2306, https://doi.org/10.1038/onc.2013.184.
[94]
X. Li, Q. Zhang, G. Chen, D. Luo, Multi-omics analysis showed the clinical value of gene signatures of C1QCþ and SPP1þ TAMs in cervical cancer, Front. Immunol. 12 (2021) 694801, https://doi.org/10.3389/fimmu.2021.694801.
[95]
Y. Li, H. Liu, Y. Zhao, D. Yue, C. Chen, C. Li, Z. Zhang, C. Wang, Tumor-associated macrophages (TAMs)-derived osteopontin (OPN) upregulates PD-L1 expression and predicts poor prognosis in non-small cell lung cancer (NSCLC), Thorac. Cancer 12 (2021) 2698-2709, https://doi.org/10.1111/1759-7714.14108.
[96]
J.D. Klement, A.V. Paschall, P.S. Redd, M.L. Ibrahim, C. Lu, D. Yang, E. Celis, S.I. Abrams, K. Ozato, K. Liu, An osteopontin/CD44 immune checkpoint controls CD8þ T cell activation and tumor immune evasion, J. Clin. Invest. 128 (2018) 5549-5560, https://doi.org/10.1172/JCI123360.
[97]
C. Liu, K. Wu, C. Li, Z. Zhang, P. Zhai, H. Guo, J. Zhang, SPP1þ macrophages promote head and neck squamous cell carcinoma progression by secreting TNF-α and IL-1β J. Exp. Clin. Cancer Res. 43 (2024) 332, https://doi.org/10.1186/s13046-024-03255-w.
[98]
G. Rao, H. Wang, B. Li, L. Huang, D. Xue, X. Wang, H. Jin, J. Wang, Y. Zhu, Y. Lu, L. Du, Q. Chen, Reciprocal interactions between tumor-associated macrophages and CD44-positive cancer cells via osteopontin/CD44 promote tumorigenicity in colorectal cancer, Clin. Cancer Res. 19 (2013) 785-797, https://doi.org/10.1158/1078-0432.CCR-12-2788.
[99]
X. Liu, J. Qin, J. Nie, R. Gao, S. Hu, H. Sun, S. Wang, Y. Pan, ANGPTL2þcancerassociated fibroblasts and SPP1þmacrophages are metastasis accelerators of colorectal cancer, Front. Immunol. 14 (2023) 1185208, https://doi.org/10.3389/fimmu.2023.1185208.
[100]
J. Qi, H. Sun, Y. Zhang, Z. Wang, Z. Xun, Z. Li, X. Ding, R. Bao, L. Hong, W. Jia, F. Fang, H. Liu, L. Chen, J. Zhong, D. Zou, L. Liu, L. Han, F. Ginhoux, Y. Liu, Y. Ye, B. Su, Single-cell and spatial analysis reveal interaction of FAPþ fibroblasts and SPP1þ macrophages in colorectal cancer, Nat. Commun. 13 (2022) 1742, https://doi.org/10.1038/s41467-022-29366-6.
[101]
X. Jiang, X. Zhang, N. Jiang, Y. Sun, T. Li, J. Zhang, Y. Shen, J. Cao, The single-cell landscape of cystic echinococcosis in different stages provided insights into endothelial and immune cell heterogeneity, Front. Immunol. 13 (2022) 1067338, https://doi.org/10.3389/fimmu.2022.1067338.
[102]
Y. Liu, Q. Zhang, B. Xing, N. Luo, R. Gao, K. Yu, X. Hu, Z. Bu, J. Peng, X. Ren, Z. Zhang, Immune phenotypic linkage between colorectal cancer and liver metastasis, Cancer Cell 40 (2022) 424-437.e425, https://doi.org/10.1016/j.ccell.2022.02.013.
PDF(1049 KB)

Accesses

Citations

Detail

Sections
Recommended

/