D-pinitol modulates the anti-emetic effects of aprepitant, domperidone, and ondansetron in chicks

Md. Elit Rahman, Md. Anisur Rahman, Salehin Sheikh, Md. Jannatul Islam Polash, Sozoni Khatun, Mst. Sonia Akter Bristi, Md. Showkoth Akbor, Mst. Farjanamul Haque, Mehedi Hasan Bappi, Tohidul Islam Tanim, Siddique Akber Ansari, Irfan Aamer Ansari, Elaine Cristina Pereira Lucetti, Carolina Bandeira Domiciano, Henrique D.M. Coutinho, Muhammad Torequl Islam

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100073.

PDF(1121 KB)
PDF(1121 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100073. DOI: 10.1016/j.pscia.2025.100073
Research article

D-pinitol modulates the anti-emetic effects of aprepitant, domperidone, and ondansetron in chicks

Author information +
History +

Abstract

Naturally occurring substance, D-pinitol (DPL) belongs to the significant inositol family has numerous pharmacological activity. In this study we evaluated the anti-emetic effect as well as modulation activities of DPL on the recent market drugs aprepitant (APR), domperidone (DOM), hyoscine butyl bromide (HYS), and ondansetron (ODN) on emesis in the chick model. To highlight the possible anti-emetic activity in copper sulfate induced emesis chick models, we use several reference drugs, such as APR (26 ​mg/kg), DOM (7 ​mg/kg), OND (5 ​mg/kg), and HYS (21 ​mg/kg), as positive controls, while the vehicles serve as negative controls. All reference drugs are given alone or in combined groups to evaluate their anti-emetic and modulation effects. The results suggest DPL (25 or 50 ​mg/kg) increases the mean number of latency in the chicks compared to vehicles, and the combination groups, DPL (25 ​mg/kg) showed better anti-emetic effects with DOM and ODN while DPL (50 ​mg/kg) reduces the number of retches compared to vehicles and combined drug therapy with reference drugs. Additionally, A variety of computational algorithms were used to visualise ligand-receptor interactions and quantify the binding affinities of DPL and other ligands towards the dopamine receptors (D2 and D3), muscarinic acetylcholine receptors (M1-M5), and serotonin receptor (5HT3). The molecular docking study indicated that DPL exhibits the highest binding affinity towards subtypes M2 (having a docking score of −5.7 ​kcal/mol) and D3 (having a docking score of −5.7 ​kcal/mol) in comparison to certain standards for these receptors, which have docking scores of DOM (−9.7 ​kcal/mol) and HYS (−7.1 ​kcal/mol) for M2 and D3, respectively. Our findings suggest that DPL has anti-emetic properties in chicks, possibly through interactions with the M2 and D3 receptor pathways.

Keywords

Anti-emetic / Emesis / D-pinitol / Molecular docking / Pharmacokinetics / Toxicity

Cite this article

Download citation ▾
Md. Elit Rahman, Md. Anisur Rahman, Salehin Sheikh, Md. Jannatul Islam Polash, Sozoni Khatun, Mst. Sonia Akter Bristi, Md. Showkoth Akbor, Mst. Farjanamul Haque, Mehedi Hasan Bappi, Tohidul Islam Tanim, Siddique Akber Ansari, Irfan Aamer Ansari, Elaine Cristina Pereira Lucetti, Carolina Bandeira Domiciano, Henrique D.M. Coutinho, Muhammad Torequl Islam. D-pinitol modulates the anti-emetic effects of aprepitant, domperidone, and ondansetron in chicks. Pharmaceutical Science Advances, 2025, 3(0): 100073 https://doi.org/10.1016/j.pscia.2025.100073

References

[1]
W. Zhong, O. Shahbaz, G. Teskey, A. Beever, N. Kachour, V. Venketaraman, et al., Mechanisms of nausea and vomiting: current knowledge and recent advances in intracellular emetic signaling systems, Int. J. Mol. Sci. 22 (2021) 5797, https://doi.org/10.3390/ijms22115797.
[2]
C. Elwood, P. Devauchelle, J. Elliott, V. Freiche, A.J. German, M. Gualtieri, et al. Emesis in dogs: a review, J. Small Anim., Pract. 51 (2010) 4-22, https://doi.org/10.1111/j.1748-5827.2009.00820.x.
[3]
W. Maule, H.K. Walker, W. Dallas Hall, J. Willis Hurst, Nausea and vomiting, in: Clinical Methods: the History, Physical, and Laboratory Examinations, third ed., Butterworths, Boston, 1990. Chapter 84.
[4]
R.A. Hatcher, S. Weiss, Studies on vomiting, J. Pharmacol. Experim. Therap. 22 (1923) 139-193, https://doi.org/10.1016/s0022-3565(25)05711-8.
[5]
M.H. Bappi, A.A.S. Prottay, K. Al-Khafaji, M.S. Akbor, M.K. Hossain, M.S. Islam, et al., Antiemetic effects of sclareol, possibly through 5-HT3 and D2 receptor interaction pathways: in-vivo and in-silico studies, Food Chem. Toxicol. 181 (2023) 114068, https://doi.org/10.1016/j.fct.2023.114068.
[6]
P.J. Hornby, Central neurocircuitry associated with emesis, Am. J. Med. 111 (2001) 106-112, https://doi.org/10.1016/S0002-9343(01)00849-X.
[7]
C.M. Herndon, K.C. Jackson, P.A. Hallin, Management of opioid-induced gastrointestinal effects in patients receiving palliative care, Pharmacotherapy 22 (2002) 240-250, https://doi.org/10.1592/phco.22.3.240.33552.
[8]
L. Denholm, G. Gallagher, Physiology and pharmacology of nausea and vomiting, Anaesth. Intensive Care Med. 19 (2018) 513-516, https://doi.org/10.1016/j.mpaic.2018.06.010.
[9]
A. Holmes, J. Rudd, F. Tattersall, Q. Aziz, P.L.R. Andrews, Opportunities for the replacement of animals in the study of nausea and vomiting, Br. J. Pharmacol. 157 (2009) 865-880, https://doi.org/10.1111/j.1476-5381.2009.00176.x.
[10]
N. Percie du Sert, P.L.R. Andrews, The ferret in nausea and vomiting research: lessons in translation of basic science to the clinic, in: Biology and Diseases of the Ferret, third ed., 2014, pp. 735-778.
[11]
S. Ahmed, M.M. Hasan, S.W. Ahmed, Natural antiemetics: an overview, Pak. J. Pharm. Sci. 27 (2014) 1583-1598.
[12]
E.A. Abd El-Ghffar, H.A. El-Nashar, O.A. Eldahshan, A.N.B. Singab, GC-MS analysis and hepatoprotective activity of the n-hexane extract of Acrocarpus fraxinifolius leaves against paracetamol-induced hepatotoxicity in male albino rats, Pharm. Biol. 55 (2017) 441-449, https://doi.org/10.1080/13880209.2016.1246575.
[13]
H.A. El-Nashar, S.H. Aly, A. Ahmadi, M. El-Shazly, The impact of polyphenolics in the management of breast cancer: mechanistic aspects and recent patents, Recent Pat. Anticancer Drug Discov. 17 (2022) 358-379, https://doi.org/10.2174/1574892816666211213090623.
[14]
H. Yuan, Q. Ma, L. Ye, G. Piao, The traditional medicine and modern medicine from natural products, Molecules 21 (2016) 559, https://doi.org/10.3390/molecules21050559.
[15]
C.P. Ihekwereme, M. Chukwuson, E.O. Erhirhie, U.G. Okator, Preliminary evaluation of the anti-emetic activity of crude methanol extract and fraction of Ocimum gratissimum, J. Develop. Drugs 5 (2016) 2329-6631, https://doi.org/10.4172/2329-6631.1000149.
[16]
K. Srivastava, M. Tiwari, A. Dubey, A. Dubey, D-Pinitol-A natural phytomolecule and its pharmacological effect, Int. J. Pharma. Life Sci. 11 (2020) 6609-6623.
[17]
M.F. Haque, H.A. El-Nashar, M.S. Akbor, M. Alfaifi, M.H. Bappi, A.K. Chowdhury, et al., Anti-inflammatory activity of d-pinitol possibly through inhibiting COX-2 enzyme: in vivo and in silico studies, Front. Chem. 12 (2024) 1366844, https://doi.org/10.3389/fchem.2024.1366844.
[18]
E. Akita, E. Li-Chan, S. Nakai, Neutralization of enterotoxigenic escherichia coli heat-labile toxin by chicken egg yolk immunoglobulin Y and its antigen-binding fragments, Food Agric. Immunol. 10 (1998) 161-172, https://doi.org/10.1080/09540109809354979.
[19]
R.M. Navari, R.R. Reinhardt, R.J. Gralla, M.G. Kris, P.J. Hesketh, A. Khojasteh, et al., Reduction of cisplatin-induced emesis by a selective neurokinin-1-receptor antagonist, N. Engl. J. Med. 340 (1999) 190-195, https://doi.org/10.1056/NEJM199901213400304.
[20]
M.P. Davis, D. Walsh, Treatment of nausea and vomiting in advanced cancer, Support, Care Cancer 8 (2000) 444-452, https://doi.org/10.1007/s005200000151.
[21]
N. Darmani, W. Zhao, B. Ahmad, The role of D 2 and D 3 dopamine receptors in the mediation of emesis in Cryptotis parva (the least shrew), J. Neural Transm. 106 (1999) 1045-1061, https://doi.org/10.1007/s007020050222.
[22]
A. Doenicke, R. Hoernecke, I. Celik, Premedication with H 1 and H 2 blocking agents reduces the incidence of postoperative nausea and vomiting, Inflamm. Res. 53 (2004) S154-S158, https://doi.org/10.1007/s00011-004-0367-0.
[23]
B.J. Pleuvry, Physiology and pharmacology of nausea and vomiting, Physiology 7 (2006) 473-477, https://doi.org/10.1053/j.mpaic.2006.09.004.
[24]
R.E. Gregory, D.S. Ettinger, 5-HT 3 receptor antagonists for the prevention of chemotherapy-induced nausea and vomiting: a comparison of their pharmacology and clinical efficacy, Drugs 55 (1998) 173-189, https://doi.org/10.2165/00003495-199855020-00002.
[25]
M.H. Bappi, M.N. Mia, S.A. Ansari, I.A. Ansari, A.A.S. Prottay, M.S. Akbor, et al., Quercetin increases the antidepressant-like effects of sclareol and antagonizes diazepam in thiopental sodium-induced sleeping mice: a possible GABAergic transmission intervention, Phytother Res 38. (2024) 2198-2214, https://doi.org/10.1002/ptr.8139.
[26]
G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments, J. Comput. Aided Mol. Des. 27 (2013) 221-234, https://doi.org/10.1007/s10822-013-9644-8.
[27]
S. Dallakyan, A.J. Olson,Small-molecule library screening by docking with PyRx, Chemical Biology: Methods and Protocols, Springer, 2014, pp. 243-250, https://doi.org/10.1007/978-1-4939-2269-7_19.
[28]
H. Kamli, A. Shaikh, M.H. Bappi, A. Raposo, M.F. Ahmad, F.A. Sonia, et al., Sclareol exerts synergistic antidepressant effects with quercetin and caffeine, possibly suppressing GABAergic transmission in chicks, Biomed. Pharmacother. 168 (2023) 115768, https://doi.org/10.1016/j.biopha.2023.115768.
[29]
M.S. Hossain, M.A. Rahman, P.R. Dey, M.P. Khandocar, M.Y. Ali, M. Snigdha, et al., Natural isatin derivatives against black fungus: in silico studies, Curr. Microbiol. 81 (2024) 113, https://doi.org/10.1007/s00284-024-03621-z.
[30]
S. Akash, I. Bayıl, S. Mahmood, N. Mukerjee, T.A. Mili, K. Dhama, et al., Mechanistic inhibition of gastric cancer-associated bacteria Helicobacter pylori by selected phytocompounds: a new cutting-edge computational approach, Heliyon 9 (2023) e20670, https://doi.org/10.1016/j.heliyon.2023.e20670.
[31]
M.N. Mia, S.Z. Smrity, M.H. Bappi, H. Kamli, T. Islam, A.A.S. Prottay, et al., Anxiolytic-like effect of succinic acid: a possible GABAergic intervention, Food Biosci 55 (9) (2023) 103044, https://doi.org/10.1016/j.fbio.2023.103044.
[32]
A. Daina, O. Michielin, V. Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Sci. Rep. 7 (2017) 42717, https://doi.org/10.1038/srep42717.
[33]
M.T. Islam, M.H. Bappi, M.S. Bhuia, S.A. Ansari, I.A. Ansari, M.C. Shill, et al., Anti-inflammatory effects of thymol: an emphasis on the molecular interactions through in vivo approach and molecular dynamic simulations, Front. Chem. 12 (2024) 1376783, https://doi.org/10.3389/fchem.2024.1376783.
[34]
R. Chowdhury, M.S. Bhuia, A.I. Rakib, S. Sheikh, S. Ahmmed, S.G. Situ, et al., (±) citronellal exerts antidepressant and modulatory effects on duloxetine possibly through serotonin and norepinephrine reuptake interaction pathway: in vivo approach with molecular docking, ChemistrySelect 9 (2024) e202404764, https://doi.org/10.1002/slct.202404764.
[35]
S. Ahmed, A. Zahid, S. Abidi, S. Meer, Anti-emetic activity of four species of genus Cassia in chicks, IOSR J. Pharm. 2 (2012) 380-384, https://doi.org/10.9790/3013-0230380384.
[36]
F.M. Schnell, Chemotherapy-induced nausea and vomiting: the importance of acute antiemetic control, Oncologist 8 (2003) 187-198, https://doi.org/10.1634/theoncologist.8-2-187.
[37]
R. Chowdhury, M.S. Bhuia, A.I. Rakib, R. Hasan, H.D.M. Coutinho, I.M. Araújo, et al., Assessment of quercetin antiemetic properties: in vivo and in silico investigations on receptor binding affinity and synergistic effects, Plants 12 (2023) 4189, https://doi.org/10.3390/plants12244189.
[38]
A. Khani, A.E. Oskuyi, R. Asghari, H.R. Khalkhli, H. Sharifi, Olanzapine enhances the effect of conventional drugs in chemotherapy inducing nausea and vomiting: a randomized clinical trial, Caspian J. Intern. Med. 13 (2022) 356, https://doi.org/10.22088/cjim.13.2.6.
[39]
G.J. Sanger, P.L.R. Andrews, An analysis of the pharmacological rationale for selecting drugs to inhibit vomiting or increase gastric emptying during treatment of gastroparesis, Aliment, Pharmacol. Ther. 57 (2023) 962-978, https://doi.org/10.1111/apt.17466.
[40]
R. Chowdhury, M.S. Bhuia, A.I. Rakib, R. Hasan, H.D.M. Coutinho, I.M. Araújo, et al., Assessment of quercetin antiemetic properties: in vivo and in silico investigations on receptor binding affinity and synergistic effects, Plants 12 (2023) 4189, https://doi.org/10.3390/plants12244189.
[41]
D. Kumar, V. Jain, B. Rai, Capturing the synergistic effects between corrosion inhibitor molecules using density functional theory and ReaxFF simulations-A case for benzyl azide and butyn-1-ol on Cu surface, Corros. Sci. 195 (2022) 109960, https://doi.org/10.1016/j.corsci.2021.109960.
[42]
S. Wang, H.L. Borison, The vomiting center: its destruction by radon implantation in dog medulla oblongata, Am. J. Physiol. -Legacy Content 166 (1951) 712-717, https://doi.org/10.1152/ajplegacy.1951.166.3.712.
[43]
A. Niijima, Z.-Y. Jiang, N.G. Daunton, R.A. Fox, Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat, Neurosci. Lett. 80 (1987) 71-74, https://doi.org/10.1016/0304-3940(87)90497-6.
[44]
A. Niijima, Z.-Y. Jiang, N.G. Daunton, R.A. Fox, Effect of copper sulphate on the rate of afferent discharge in the gastric branch of the vagus nerve in the rat, Neurosci. Lett. 80 (1987) 71-74, https://doi.org/10.1016/0304-3940(87)90497-6.
[45]
Y. An, J. Li, Y. Liu, M. Fan, W. Tian, Protective effect of D-pinitol on the experimental spinal cord injury in rats, Metab. Brain Dis. 35 (2020) 473-482, https://doi.org/10.1007/s11011-020-00537-y.
[46]
S.H. Hassan, H.A. El-Nashar, M.A. Rahman, J.I. Polash, M.H. Bappi, M. Mondal, et al., Sclareol antagonizes the sedative effect of diazepam in thiopental sodium-induced sleeping animals: in vivo and in silico studies, Biomed. Pharmacother. 176 (2024) 116939, https://doi.org/10.1016/j.biopha.2024.116939.
[47]
P. Szymański, M. Markowicz, E. Mikiciuk-Olasik, Adaptation of high-throughput screening in drug discovery—toxicological screening tests, Int. J. Mol. Sci. 13 (2011) 427-452, https://doi.org/10.3390/ijms13010427.
[48]
B. Palsson, In silico biology through “omics” Nat. Biotechnol 20 (2002) 649-650, https://doi.org/10.1038/nbt0702-649.
[49]
A.R. Issahaku, S.M. Mncube, C. Agoni, S.K. Kwofie, M.I. Alahmdi, N.E. Abo-Dya, et al., Multi-dimensional structural footprint identification for the design of potential scaffolds targeting METTL 3 in cancer treatment from natural compounds, J. Mol. Model. 29 (2023) 122, https://doi.org/10.1007/s00894-023-05516-5.
[50]
A. Olğaç, I.E. Orhan, E. Banoglu, The potential role of in silico approaches to identify novel bioactive molecules from natural resources, Fut, Med. Chem. 9 (2017) 1665-1686, https://doi.org/10.4155/fmc-2017-0124.
[51]
T.S. Deisboeck, L. Zhang, J. Yoon, J. Costa, In silico cancer modeling: is it ready for prime time? Nat. Clin. Pract. Oncol. 6 (2009) 34-42, https://doi.org/10.1038/ncponc1237.
[52]
N. Berdigaliyev, M. Aljofan,An overview of drug discovery and development, Future Med. Chem. 12 (2020) 939-947, https://doi.org/10.4155/fmc-2019-0307.
[53]
E.A. Blackstone, P.F. Joseph, The economics of biosimilars, Am. Health Drug Benefits 6 (2013) 469.
[54]
B.A. Ruggeri, F. Camp, S. Miknyoczki, Animal models of disease: pre-clinical animal models of cancer and their applications and utility in drug discovery, Biochem. Pharmacol. 87 (2014) 150-161, https://doi.org/10.1016/j.bcp.2013.06.020.
[55]
D. Schuster, C. Laggner, T. Langer, Why drugs fail-a study on side effects in new chemical entities, Curr. Pharm. Des. 11 (2005) 3545-3559, https://doi.org/10.2174/138161205774414510.
[56]
S. Brogi, T.C. Ramalho, K. Kuca, J.L. Medina-Franco, M. Valko, In silico methods for drug design and discovery, Front. Chem. 8 (2020) 612.
[57]
M.T. Islam, M.H. Bappi, T. Islam, A.A.S. Prottay, S. Akbor, N. Mia, Toxicology of rabeprazole: a literature survey and an in silico study, Kariri Sci. 1 (2023) 1-6, https://doi.org/10.29327/2256856.2023.1-6.
[58]
M.S. Bhuia, M.S.H. Siam, M.R. Ahamed, U.K. Roy, M.I. Hossain, M. Rokonuzzman, et al., Toxicity analysis of some frequently used food processing chemicals using Allium cepa biomonitoring system, Biology 12 (2023) 637, https://doi.org/10.3390/biology12050637.
[59]
R.K. Tekade, Pharmacokinetics and Toxicokinetic Considerations-Vol II, Academic Press, 2022.
[60]
H.S. White, Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs, Epilepsia 38 (1997) S9-S17, https://doi.org/10.1111/j.1528-1157.1997.tb04523.x.
PDF(1121 KB)

Accesses

Citations

Detail

Sections
Recommended

/