GLDC interacts with VPS34 to inhibit tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma

Zan Song , Hao Dong , Kailing Zhang , Bingke Qiao , Leilei Li , Zhicheng Zhang , Zhili Fan , Jing Li , Yu Li , Mengfei Liu , Ying Liu , Xinyu Gu , Tao Zhang

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100072

PDF (3381KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (1) : 100072 DOI: 10.1016/j.pscia.2025.100072
Research Article
research-article

GLDC interacts with VPS34 to inhibit tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma

Author information +
History +
PDF (3381KB)

Abstract

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer with high mortality and limited therapeutic strategy. Glycine decarboxylase (GLDC) is the key limiting enzyme in glycine breakdown metabolism and acts as oncogene or tumor suppressor to impact tumor onset and progression in a context dependent manner. However, the underlying mechanism of GLDC on autophagy and progression is largely unexplored in HCC. Here, we showed that GLDC overexpression inhibited cell proliferation, cell migration and promoted cell senescence and autophagy in HCC. Intriguingly, induced GLDC remarkably attenuated epithelial-mesenchymal transition (EMT) progress and tumor growth in vitro and in vivo. Mechanically, we demonstrated that GLDC upregulated VPS34 protein and enhanced its interaction with VPS34, thus promoting the association of VPS34 with Beclin1/ ATG14 complex and autophagy induction in HCC. Importantly, GLDC acetylation at K514 promoted interaction of GLDC-VPS34, whereas GLDC acetylation-dead mutant K514R abolished their binding. Furthermore, GLDC protein was decreased in HCC tissues compared with para-tumor tissues and reduced GLDC was significantly correlated with poor prognosis of patients. In conclusion, we unveil the key regulatory role of GLDC in autophagy and HCC progression through VPS34 and provide a potential strategy for HCC therapy.

Keywords

GLDC / Acetylation / VPS34 / Epithelial-mesenchymal transition / HCC

Cite this article

Download citation ▾
Zan Song, Hao Dong, Kailing Zhang, Bingke Qiao, Leilei Li, Zhicheng Zhang, Zhili Fan, Jing Li, Yu Li, Mengfei Liu, Ying Liu, Xinyu Gu, Tao Zhang. GLDC interacts with VPS34 to inhibit tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma. Pharmaceutical Science Advances, 2025, 3(1): 100072 DOI:10.1016/j.pscia.2025.100072

登录浏览全文

4963

注册一个新账户 忘记密码

CRediT authorship contribution statement

Zan Song: Writing - original draft, Visualization, Validation, Methodology, Investigation, Formal analysis. Hao Dong: Visualization, Validation, Methodology, Investigation, Formal analysis. Kailing Zhang: Visualization, Methodology, Investigation. Bingke Qiao: Visualization, Methodology, Investigation. Leilei Li: Visualization, Investigation. Zhicheng Zhang: Visualization, Investigation. Zhili Fan: Visualization, Investigation. Jing Li: Visualization, Investigation. Yu Li: Visualization, Investigation. Mengfei Liu: Visualization, Investigation. Ying Liu: Visualization, Investigation. Xinyu Gu: Visualization, Investigation. Tao Zhang: Writing - review & editing, Supervision, Resources, Project administration, Methodology, Funding acquisition, Conceptualization.

Ethical approval

All animal experiments were approved by the Animal Care and Use Committee of Shandong University. (Approval No. 230067).

Data availability

Data will be made available on request.

Declaration of generative AI in scientific writing

Not applicable.

Funding information

This work was supported by the National Natural Science Foundation of China (82104218), the Taishan Scholars Program (TSQN201909033) of Shandong Province and the program for Multidisciplinary Research and Innovation Team of Young Scholars of Shandong University (2020QNQT002).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors thank the Translational Medicine Core Facility of Shandong University for consultation and instrument availability supporting this work. We also thank BioRender.com for assistance in creating the Graphical Abstract.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pscia.2025.100072.

References

[1]

F. Bray, M. Laversanne, H. Sung, J. Ferlay, R.L. Siegel, I. Soerjomataram, A. Jemal, Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin. 74 (3) (2024) 229-263, https://doi.org/10.3322/caac.21834.

[2]

C. Yang, H. Zhang, L. Zhang, A.X. Zhu, R. Bernards, W. Qin, C. Wang, Evolving therapeutic landscape of advanced hepatocellular carcinoma, Nat. Rev. Gastro. Hepat. 20 (4) (2023) 203-222, https://doi.org/10.1038/s41575-022-00704-9.

[3]

A. Huang, X. Yang, W. Chung, A.R. Dennison, J. Zhou, Targeted therapy for hepatocellular carcinoma, Signal Transduct. Tar. 5 (1) (2020) 146, https://doi.org/10.1038/s41392-020-00264-x.

[4]

J.M. Llovet, R. Montal, D. Sia, R.S. Finn, Molecular therapies and precision medicine for hepatocellular carcinoma, Nat. Rev. Clin. Oncol. 15 (10) (2018) 599-616, https://doi.org/10.1038/s41571-018-0073-4.

[5]

Y. Wang, B. Deng, Hepatocellular carcinoma: molecular mechanism, targeted therapy, and biomarkers, Cancer Metast. Rev. 42 (3) (2023) 629-652, https://doi.org/10.1007/s10555-023-10084-4.

[6]

K.A. Aguayo-Cerón, F. Sánchez-Muñoz, R.A. Gutierrez-Rojas, L.N. AcevedoVillavicencio, A.V. Flores-Zarate, F. Huang, A. Giacoman-Martinez, S. Villafaña, R. Romero-Nava, Glycine: the smallest anti-inflammatory micronutrient, Int. J. Mol. Sci. 24 (14) (2023) 11236, https://doi.org/10.3390/ijms241411236.

[7]

S.L. Geeraerts, E. Heylen, K. De Keersmaecker, K.R. Kampen, The ins and outs of serine and glycine metabolism in cancer, Nat. Metab. 3 (2) (2021) 131-141, https://doi.org/10.1038/s42255-020-00329-9.

[8]

Z. Gan, M. Zhang, D. Xie, X. Wu, C. Hong, J. Fu, L. Fan, S. Wang, S. Han, Glycinergic signaling in macrophages and its application in macrophage-associated diseases, Front. Immunol. 12 (2021), https://doi.org/10.3389/fimmu.2021.762564.

[9]

S. Kang, H. Ham, C. Hong, D. Song, Glycine induces enhancement of bactericidal activity of neutrophils, Korean J. Physiol. Pharmacol. 26 (4) (2022) 229-238, https://doi.org/10.4196/kjpp.2022.26.4.229.

[10]

T. Kou, J. Wu, X. Chen, Z. Chen, J. Zheng, B. Peng, Exogenous glycine promotes oxidation of glutathione and restores sensitivity of bacterial pathogens to serum-induced cell death, Redox Biol. 58 (2022) 102512, https://doi.org/10.1016/j.redox.2022.102512.

[11]

O. Rom, Y. Liu, A.C. Finney, A. Ghrayeb, Y. Zhao, Y. Shukha, L. Wang, K.K. Rajanayake, S. Das, N.A. Rashdan, N. Weissman, L. Delgadillo, B. Wen, M.T. Garcia-Barrio, M. Aviram, C.G. Kevil, A. Yurdagul, C.B. Pattillo, J. Zhang, D. Sun, T. Hayek, E. Gottlieb, I. Mor, Y.E. Chen, Induction of glutathione biosynthesis by glycine-based treatment mitigates atherosclerosis, Redox Biol. 52 (2022) 102313, https://doi.org/10.1016/j.redox.2022.102313.

[12]

I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, G. Melino, Serine and glycine metabolism in cancer, Trends Biochem. Sci. 39 (4) (2014) 191-198, https://doi.org/10.1016/j.tibs.2014.02.004.

[13]

W.C. Zhang, N. Shyh-Chang, H. Yang, A. Rai, S. Umashankar, S. Ma, B.S. Soh, L.L. Sun, B.C. Tai, M.E. Nga, K.K. Bhakoo, S.R. Jayapal, M. Nichane, Q. Yu, D.A. Ahmed, C. Tan, W.P. Sing, J. Tam, A. Thirugananam, M.S. Noghabi, Y. Huei Pang, H.S. Ang, W. Mitchell, P. Robson, P. Kaldis, R.A. Soo, S. Swarup, E.H. Lim, B. Lim, Glycine decarboxylase activity drives non-small cell lung cancer tumorinitiating cells and tumorigenesis, Cell 148 (1) (2012) 259-272, https://doi.org/10.1016/j.cell.2011.11.050.

[14]

A. Alptekin, B. Ye, Y. Yu, C.J. Poole, J. van Riggelen, Y. Zha, H. Ding, Glycine decarboxylase is a transcriptional target of MYCN required for neuroblastoma cell proliferation and tumorigenicity, Oncogene 38 (50) (2019) 7504-7520, https://doi.org/10.1038/s41388-019-0967-3.

[15]

R. Liu, L. Zeng, R. Gong, F. Yuan, H. Shu, S. Li mTORC 1 activity regulates posttranslational modifications of glycine decarboxylase to modulate glycine metabolism and tumorigenesis, Nat. Commun. 12 (1) (2021), https://doi.org/10.1038/s41467-021-24321-3.

[16]

M. Chen, Z. Xiao, Z. Huang, K. Xue, H. Xia, J. Zhou, D. Liao, Z. Liang, X. Xie, Q. Wei, L. Zhong, J. Yang, C. Liu, Y. Liu, S. Zhao, Glycine decarboxylase (GLDC) plays a crucial role in regulating energy metabolism, invasion, metastasis and immune escape for prostate cancer, Int. J. Biol. Sci. 19 (15) (2023) 4726-4743, https://doi.org/10.7150/ijbs.85893.

[17]

H.L. Min, J. Kim, W.H. Kim, B.G. Jang, M.A. Kim, Epigenetic silencing of the putative tumor suppressor gene GLDC (Glycine dehydrogenase) in gastric carcinoma, Anticancer Res. 36 (1) (2016) 179-187.

[18]

H. Zhuang, Q. Li, X. Zhang, X. Ma, Z. Wang, Y. Liu, X. Yi, R. Chen, F. Han, N. Zhang, Y. Li, Downregulation of glycine decarboxylase enhanced cofilin-mediated migration in hepatocellular carcinoma cells, Free Radical Bio. Med. 120 (2018) 1-12, https://doi.org/10.1016/j.freeradbiomed.2018.03.003.

[19]

H. Zhuang, F. Wu, W. Wei, Y. Dang, B. Yang, X. Ma, F. Han, Y. Li, Glycine decarboxylase induces autophagy and is downregulated by miRNA-30d-5p in hepatocellular carcinoma, Cell Death Dis. 10 (3) (2019), https://doi.org/10.1038/s41419-019-1446-z.

[20]

M. Ishaq, R. Ojha, A.P. Sharma, S.K. Singh, Autophagy in cancer: recent advances and future directions, Semin. Cancer Biol. 66 (2020) 171-181, https://doi.org/10.1016/j.semcancer.2020.03.010.

[21]

N. Mizushima, M. Komatsu, Autophagy: renovation of cells and tissues, Cell 147 (4) (2011) 728-741, https://doi.org/10.1016/j.cell.2011.10.026.

[22]

J. Debnath, N. Gammoh, K.M. Ryan, Autophagy and autophagy-related pathways in cancer, Nat. Rev. Mol. Cell Bio. 24 (8) (2023) 560-575, https://doi.org/10.1038/s41580-023-00585-z.

[23]

J. Kim, Y.C. Kim, C. Fang, R.C. Russell, J.H. Kim, W. Fan, R. Liu, Q. Zhong, K.L. Guan, Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy, Cell 152 (1-2) (2013) 290-303, https://doi.org/10.1016/j.cell.2012.12.016.

[24]

R.C. Russell, K.L. Guan, The multifaceted role of autophagy in cancer, EMBO J. 41 (13) (2022) e110031, https://doi.org/10.15252/embj.2021110031.

[25]

G. Stjepanovic, S. Baskaran, M.G. Lin, J.H. Hurley, Vps 34 kinase domain dynamics regulate the autophagic PI 3-kinase complex, Mol. Cell 67 (3) (2017) 528-534.e3, https://doi.org/10.1016/j.molcel.2017.07.003.

[26]

G. Wang, X. Jiang, P. Torabian, Z. Yang, Investigating autophagy and intricate cellular mechanisms in hepatocellular carcinoma: emphasis on cell death mechanism crosstalk, Cancer Lett. 588 (2024) 216744, https://doi.org/10.1016/j.canlet.2024.216744.

[27]

S. Yin, W. Jin, Y. Qiu, L. Fu, T. Wang, H. Yu, Solamargine induces hepatocellular carcinoma cell apoptosis and autophagy via inhibiting LIF/miR-192-5p/CYR61/Akt signaling pathways and eliciting immunostimulatory tumor microenvironment, J. Hematol. Oncol. 15 (1) (2022) 32, https://doi.org/10.1186/s13045-022-01248w.

[28]

I. Pastushenko, C. Blanpain, EMT transition states during tumor progression and metastasis, Trends Cell Biol. 29 (3) (2019) 212-226, https://doi.org/10.1016/j.tcb.2018.12.001.

[29]

G. Babaei, S.G. Aziz, N.Z.Z. Jaghi, EMT, cancer stem cells and autophagy; the three main axes of metastasis, Biomed. Pharmacother. 133 (2021) 110909, https://doi.org/10.1016/j.biopha.2020.110909.

[30]

B. Levine, G. Kroemer, Biological functions of autophagy genes: a disease perspective, Cell 176 (1) (2019) 11-42, https://doi.org/10.1016/j.cell.2018.09.048.

[31]

Y. Ohashi, S. Tremel, R.L. Williams, VPS 34 complexes from a structural perspective, J. Lipid Res. 60 (2) (2019) 229-241, https://doi.org/10.1194/jlr.R089490.

[32]

B. Faubert, A. Solmonson, R.J. DeBerardinis, Metabolic reprogramming and cancer progression, Science 368 (6487) (2020) eaaw5473, https://doi.org/10.1126/science.aaw5473.

[33]

C.J. Lee, H. Yoon, Metabolic adaptation and cellular stress response as targets for cancer therapy, World J. Mens Health 42 (1) (2024) 62-70, https://doi.org/10.5534/wjmh.230153.

[34]

P.J. Kang, J. Zheng, G. Lee, D. Son, I.Y. Kim, G. Song, G. Park, S. You, Glycine decarboxylase regulates the maintenance and induction of pluripotency via metabolic control, Metab. Eng. 53 (2019) 35-47, https://doi.org/10.1016/j.ymben.2019.02.003.

[35]

T. He, J. Zou, K. Sun, J. Yang, Global research status and frontiers on autophagy in hepatocellular carcinoma: a comprehensive bibliometric and visualized analysis, Int. J. Surg. 110 (5) (2024), https://doi.org/10.1097/JS9.0000000000001202.

[36]

R. Rakesh, L.C. PriyaDharshini, K.M. Sakthivel, R.R. Rasmi, Role and regulation of autophagy in cancer, Biochim. Biophys. Acta Mol. Basis Dis. 1868 (7) (2022) 166400, https://doi.org/10.1016/j.bbadis.2022.166400.

[37]

M.J. Czaja, W. Ding, T.M. Donohue, S.L. Friedman, J. Kim, M. Komatsu, J.J. Lemasters, A. Lemoine, J.D. Lin, J.J. Ou, D.H. Perlmutter, G. Randall, R.B. Ray, A. Tsung, X. Yin, Functions of autophagy in normal and diseased liver, Autophagy 9 (8) (2013) 1131-1158, https://doi.org/10.4161/auto.25063.

[38]

D. Mukha, M. Fokra, A. Feldman, B. Sarvin, N. Sarvin, K. Nevo-Dinur, E. Besser, E. Hallo, E. Aizenshtein, Z.T. Schug, T. Shlomi, Glycine decarboxylase maintains mitochondrial protein lipoylation to support tumor growth, Cell Metab. 34 (5) (2022) 775-782.e9, https://doi.org/10.1016/j.cmet.2022.04.006.

[39]

C. Qi, L. Zou, S. Wang, X. Mao, Y. Hu, J. Shi, Z. Zhang, H. Wu, Vps 34 inhibits hepatocellular carcinoma invasion by regulating endosome-lysosome trafficking via rab7-RILP and Rab11, Cancer Res. Treat. 54 (1) (2022) 182-198, https://doi.org/10.4143/crt.2020.578.

[40]

J. Son, M. Kim, J.S. Lee, J.Y. Kim, E. Chun, K. Lee, Hepatitis B virus X protein promotes liver cancer progression through autophagy induction in response to TLR4 stimulation, Immune Netw. 21 (5) (2021), https://doi.org/10.4110/in.2021.21.e37.

[41]

X. Li, Y. Xiao, Y. Zhu, P. Li, J. Zhou, J. Yang, Z. Chen, H. Du, H. Yu, Y. Guo, H. Bian, Z. Li, Regulation of autophagy by ST3GAL2-mediated α2-3 sialylated glycosphingolipids in hepatic encephalopathy, Int. J. Biol. Macromol. 278 (2024) 135196, https://doi.org/10.1016/j.ijbiomac.2024.135196.

[42]

Y. Lee, B. Kim, H. Jang, W. Huh, Atg1-dependent phosphorylation of Vps34 is required for dynamic regulation of the phagophore assembly site and autophagy in Saccharomyces cerevisiae, Autophagy 19 (9) (2023) 2428-2442, https://doi.org/10.1080/15548627.2023.2182478.

AI Summary AI Mindmap
PDF (3381KB)

633

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/