Antimicrobial potentials and challenges of paracetamol: A comprehensive reassessment based on database reports

Muhammad Torequl Islam, Raihan Chowdhury, Md. Shimul Bhuia, Md. Sakib Al Hasan, Md. Showkot Akbor, Fardin Farhad, Carolina Bandeira Domiciano, Davi Antas e Silva, Henrique D.M. Coutinho

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100070.

PDF(1439 KB)
PDF(1439 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100070. DOI: 10.1016/j.pscia.2025.100070
Review article

Antimicrobial potentials and challenges of paracetamol: A comprehensive reassessment based on database reports

Author information +
History +

Abstract

Paracetamol (PMCL) is an analgesic-antipyretic drug. It is frequently used as an over-the-counter (OTC) drug in many countries around the world, especially for headaches, mild pain, and fever. Knowing its toxic effects on the nervous and hepatic systems, it has been combined with the psychoactive drug caffeine. However, PMCL's antipyretic action during fevers caused by various pathogens might be due to its antimicrobial power. Therefore, we have a question about whether PMCL can be used as an OTC medication or not. This review aimed to summarize the antimicrobial activity, facts behind it, possible action mechanisms, and causes of resistance growth, along with the antimicrobial and toxicological impacts of its metabolites, derived products, and combination products, on the basis of database reports. Numerous pieces of evidence suggest that both PMCL and caffeine have broad-spectrum antimicrobial effects. PMCL is evidently effective against gram-positive and gram-negative bacteria, fungi, viruses, and protozoa. Its major toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI), also has antimicrobial potential. Despite its antimicrobial effects, PMCL has contributed to antimicrobial resistance. In conclusion, according to the findings from database reports, PMCL is not only an analgesic-antipyretic drug, but it also has broad-spectrum antimicrobial potential against many pathogenic gram-positive and gram-negative bacteria and fungi as well as some viruses and protozoa. The use of PMCL as an OTC medication might bring a dangerous health issue in the future among the population, for example, growing microbial resistance and harmful toxicological impacts in different organs in humans.

Keywords

Paracetamol / Antimicrobial / Microbial resistance / Paracetamol derivatives / Toxicological profile

Cite this article

Download citation ▾
Muhammad Torequl Islam, Raihan Chowdhury, Md. Shimul Bhuia, Md. Sakib Al Hasan, Md. Showkot Akbor, Fardin Farhad, Carolina Bandeira Domiciano, Davi Antas e Silva, Henrique D.M. Coutinho. Antimicrobial potentials and challenges of paracetamol: A comprehensive reassessment based on database reports. Pharmaceutical Science Advances, 2025, 3(0): 100070 https://doi.org/10.1016/j.pscia.2025.100070

References

[1]
T.J. Meredith, R. Goulding, Paracetamol, Postgrad. Med. J. 56 (657) (1980) 459-473, https://doi.org/10.1136/pgmj.56.657.459.
[2]
N. Ohashi, T. Kohno, Analgesic effect of acetaminophen: a review of known and novel mechanisms of action, Front. Pharmacol. 11 (2020) 580289, https://doi.org/10.3389/fphar.2020.580289.
[3]
K. Suemaru, M. Yoshikawa, H. Aso, M. Watanabe, TRPV1 mediates the anticonvulsant effects of acetaminophen in mice, Epilepsy Res. 145 (2018) 153-159, https://doi.org/10.1016/j.eplepsyres.2018.06.016.
[4]
S.W. Saliba, A.R. Marcotegui, E. Fortwängler, J. Ditrich, J.C. Perazzo, E. Muñoz, A. C.P. de Oliveira, B.L. Fiebich, AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity, J. Neuroinflammation 14 (1) (2017) 246, https://doi.org/10.1186/s12974-017-1014-3.
[5]
J.A. Forrest, J.A. Clements, L.F. Prescott, Clinical pharmacokinetics of paracetamol, Clin. Pharmacokinet. 7 (2) (1982) 93-107, https://doi.org/10.2165/00003088-198207020-00001.
[6]
G.G. Graham, M.J. Davies, R.O. Day, A. Mohamudally, K.F. Scott, The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings, Inflammopharmacology 21 (3) (2013) 201-232, https://doi.org/10.1007/s10787-013-0172-x.
[7]
M.R. McGill, H. Jaeschke, Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis, Pharm. Res. 30 (9) (2013) 2174-2187, https://doi.org/10.1007/s11095-013-1007-6.
[8]
M. JóŹwiak-Bebenista, J.Z. Nowak, Paracetamol: mechanism of action, applications and safety concern, Acta Pol. Pharm. 71 (1) (2014) 11-23.
[9]
K. Brune, B. Renner, G. Tiegs, Acetaminophen/paracetamol: a history of errors, failures and false decisions, Eur. J. Pain 19 (7) (2015) 953-965, https://doi.org/10.1002/ejp.621.
[10]
A.S.J.C.m. o.f.i.c. El-Radhi, Pathogenesis of Fever, 2018, pp. 53-68.
[11]
S. Omoigui, The biochemical origin of pain: the origin of all pain is inflammation and the inflammatory response. Part 2 of 3 - inflammatory profile of pain syndromes, Med. Hypotheses 69 (6) (2007) 1169-1178, https://doi.org/10.1016/j.mehy.2007.06.033.
[12]
I.M. Chiu, F.A. Pinho-Ribeiro, C.J. Woolf, Pain and infection: pathogen detection by nociceptors, Pain 157 (6) (2016) 1192-1193, https://doi.org/10.1097/j.pain.0000000000000559.
[13]
D.F. Evans, G. Pye, R. Bramley, A.G. Clark, T.J. Dyson, J.D. Hardcastle, Measurement of gastrointestinal pH profiles in normal ambulant human subjects, Gut 29 (8) (1988) 1035-1041, https://doi.org/10.1136/gut.29.8.1035.
[14]
M. Koziolek, M. Grimm, D. Becker, V. Iordanov, H. Zou, J. Shimizu, C. Wanke, G. Garbacz, W. Weitschies, Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the Intellicap(®) system, J. Pharmaceut. Sci. 104 (9) (2015) 2855-2863, https://doi.org/10.1002/jps.24274.
[15]
Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome, Nature 486 (7402) (2012) 207-214, https://doi.org/10.1038/nature11234.
[16]
M. Zimmermann, M. Zimmermann-Kogadeeva, R. Wegmann, A.L. Goodman, Mapping human microbiome drug metabolism by gut bacteria and their genes, Nature 570 (7762) (2019) 462-467, https://doi.org/10.1038/s41586-019-1291-3.
[17]
J. Firrman, L. Liu, K. Mahalak, C. Tanes, K. Bittinger, V. Tu, J. Bobokalonov, L. Mattei, H. Zhang, P. Van den Abbeele, The impact of environmental pH on the gut microbiota community structure and short chain fatty acid production, FEMS Microbiol. Ecol. 98 (5) (2022) fiac038, https://doi.org/10.1093/femsec/fiac038.
[18]
M.A. Malfatti, E.A. Kuhn, D.K. Murugesh, M.E. Mendez, N. Hum, J.B. Thissen, C. J. Jaing, G.G. Loots, Manipulation of the gut microbiome alters acetaminophen biodisposition in mice, Sci. Rep. 10 (1) (2020) 4571, https://doi.org/10.1038/s41598-020-60982-8.
[19]
C. Llorente, B. Schnabl, The gut microbiota and liver disease, Cellular and molecular gastroenterology and hepatology 1 (3) (2015) 275-284, https://doi.org/10.1016/j.jcmgh.2015.04.003.
[20]
R. Wang, R. Tang, B. Li, X. Ma, B. Schnabl, H. Tilg, Gut microbiome, liver immunology, and liver diseases, Cell. Mol. Immunol. 18 (1) (2021) 4-17, https://doi.org/10.1038/s41423-020-00592-6.
[21]
L.F. Prescott, N. Wright, The effects of hepatic and renal damage on paracetamol metabolism and excretion following overdosage. A pharmacokinetic study, Br. J. Pharmacol. 49 (4) (1973) 602-613, https://doi.org/10.1111/j.1476-5381.1973.tb08536.x.
[22]
B.R. Singh, B.S. Pruthvishree, A. Yadav, R. Karthikeyan, O.R. Vinodhkumar, D. K. Sinha, Comparative antimicrobial activity of aspirin, paracetamol, flunixin meglumine, tolfenamic acid, diclofenac sodium and pheniramine maleate, Acta Scientific Veterinary Sciences 3 (9) (2021).
[23]
Ö. Ertürk, A. Değirmenci, E. Yurdakul Ertürk, Z. Atlı ¸Sekeroğlu, M. Çol Ayvaz, S. Kontas¸ Yedier, Antimicrobial, antioxidant and cytotoxic activities of some analgesic or anti-inflammatory drugs, Biologia 76 (8) (2021) 2365-2379.
[24]
Y. Agarwal, K. Manna, H. Bhatt, P. Gogai, V. Babu, K.J.I. Srinivasan,Synthesis and biological evaluations of new benzofuran 1, 3, 5-trisubstituted pyrazoline derivatives of paracetamol as potential antitubercular, antimicrobial agents 16 (3)(2007) 263-266.
[25]
A.A. Osowole, O.B. Agbaje, S.S. Wakil,Synthesis, characterization and biological activity of some mixed metal (II) complexes of paracetamol and benzoic acid, Int. J. Appl. Med. Sci. 1 (2) (2015) 77-87.
[26]
O.M. Bamigboye, I.P. Ejidike, R.N. Ahmed, M. Lawal, G.G. Nnabuike, K. Medubi, Chelation, characterization, and antibacterial activities of some mixed isonicotinic acid hydrazide-Paracetamol metal drug complexes, Suranaree J. Sci. Technol 27 (3) (2020), 030026-030029.
[27]
S.A. Olagboye, D.K. Adekeye, O.A. Akinwunmi, Antimicrobial activities of novel synthesized Cu (II) and Co (II) mixed ligand complexes of prednisolone and paracetamol, Int. J. Sci. Eng. Res. 10 (2020) 651-662, https://doi.org/10.13140/RG.2.2.10396.72323.
[28]
M.R. Ahsan, M.Z. Sultan, M.A. Baki, M.A. Rahman, M.A. Hossain, M.A. Hossain, M. S. Amran, The study of in vitro and in vivo effects of concurrent administration of paracetamol and zinc on the antibacterial activity of ciprofloxacin, Dhaka Univ. J. Pharm. Sci. 10 (2) (2011) 137-142, https://doi.org/10.3329/dujps.v10i2.11795.
[29]
K.M. Rathod, Synthesis and antimicrobial activity of azo compounds containing paracetamol moiety, Orient. J. Chem. 26 (3) (2010) 1163.
[30]
V. Gupta, A. Pandurangan, Synthesis of some new paracetamol incorporated shiff bases and their antimicrobial activity, World J. Pharmaceut. Res. 10 (2014) 557.
[31]
S.K. Karumanchi, L.R. Atmakuri, Synthesis of paracetamol derivatives as mannich bases and their antibacterial activity, Journal of Pharmaceutical & Health Sciences 6 (2) (2018) 169-176.
[32]
A.S. Abd-El-Aziz, E.G. El-Ghezlani, A.A. Abdelghani, Design of organoiron dendrimers containing paracetamol for enhanced antibacterial efficacy, Molecules 25 (19) (2020) 4514, https://doi.org/10.3390/molecules25194514.
[33]
Islam N. Ul, E. Khan M. Naveed Umar, A. Shah M. Zahoor R. Ullah A. Bari, Enhancing dissolution rate and antibacterial efficiency of azithromycin through drug-drug cocrystals with paracetamol, Antibiotics 10 (8) (2021) 939, https://doi.org/10.3390/antibiotics10080939.
[34]
B.R. Singh, Mitigating antimicrobial resistance with aspirin (acetylsalicylic acid) and paracetamol (acetaminophen): conversion of doxycycline and minocycline resistant bacteria into sensitive in presence of aspirin and paracetamol, bioRxiv 2021-05 (2021), https://doi.org/10.1101/2021.05.21.445232.
[35]
U.M. Gayathri Acharya, P. Jain, Comparing Antimicrobial Action of Paracetamol to Different Potencies of Baptisia Tinctoria and Belladonna, 2022.
[36]
H.Y. Abdullah, F.H.O. Al-Khikani, H.M. Karkaz, H.A. Abdulhussein, The possible synergism effect of amoxyclav combined with gentamicin and paracetamol against blood stream Escherichia coli, Assam Journal of Internal Medicine 14 (1) (2024) 19-22, https://doi.org/10.4103/ajoim.ajoim_11_24.
[37]
K. Barasker, N. Jain, P. Jain, K. Gour, Analysis of biological activity like antioxidant, antimicrobial, and DNA damage of paracetamol, J. Biochem. Technol. 15 (1) (2024) 19-26, https://doi.org/10.51847/oJqFuut9r0.
[38]
S.M. Eltabey, A.H. Ibrahim, M.M. Zaky, A.E. Ibrahim, Y.B.A. Alrashdi, S. El Deeb, M. M. Saleh, The promising effect of ascorbic acid and paracetamol as anti-biofilm and anti-virulence agents against resistant Escherichia coli, Curr. Issues Mol. Biol. 46 (7) (2024) 6805-6819, https://doi.org/10.3390/cimb46070406.
[39]
S. Jibril, K.A. Baraya, S. Muhammad, I. Musa, A. Garba, S.B. Adamu, I. Bello, Solid-state synthesis, spectral and biological studies of fe (ii) complex derived from paracetamol, Journal of Chemical Society of Nigeria 46 (6) (2021), https://doi.org/10.46602/jcsn.v46i6.684.
[40]
M.D. Verma Ak, A. Goel, L. Shadija, N. Singh, To Assess the Antimicrobial Action of Paracetamol 3 (8) (2020) 65-70.
[41]
F.A.I. Al-Khodir, New chelation products of thorium (IV) and cerium (III) with diclofenac and paracetamol analgesic drugs: synthesis, spectroscopic, thermal stability, antimicrobial activities investigations, Bulg. Chem. Commun. 50 (2018) 208-217.
[42]
O.M. Ali, H.H. Amer, M. Nayel, A.A. Abdel-Rahman, Synthesis and antimicrobial activity of new synthesized paracetamol derivatives and their acyclic nucleoside analogues, Int J Sci Res Publ 4 (2016) 408-418.
[43]
H. Rawaa, T. Yaqoob, PREPARATION, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF NEW AZO COMPLEXES CONTAINING PARACETAMOL MOIETY, 2015.
[44]
S.M. Hussain, R. Kumar, T.L. Sree, P. Balu, V. Kannappan, Solubility enhancement of Cefpodoxime acid by aqueous solution of paracetamol through acoustical, polarizable continuum model and antimicrobial activity studies, J. Mol. Liq. 395 (2024) 123918, https://doi.org/10.1016/j.molliq.2023.123918.
[45]
B. Shah, P. Patil, H. Shah, Chemical modification of paracetamol and their antimicrobial and pharmacological evaluation, Int. J. Pharm. Res. Bio-Sci 3 (2)(2014) 12-31.
[46]
T. Sumana, I. Pushpa, C. Sanjeevarayappa, K. Manoj Kumar, K.J.J. Vijay, Synthesis, characterization and pharmacological study of metacetamol derivatives 3 (1) (2014) 47-55.
[47]
A.S. Rao, L. Simon, K. Srinivasan, S. Moorkoth, Z.A. Haleem, S.S. Jadon, R. M. Matsa, R.J.R. Sagiraju, Synthesis and in vitro antimicrobial evaluation of 5’-acetamido-2'-hydroxy chalcone derivatives 4 (2) (2014) 1-4.
[48]
V. Gupta, A. Pandurangan, Synthesis and antimicrobial activity of some new 5-oxo-imidazolidine derivatives, Am. J. Adv. Drug Deliv. 1 (4) (2013) 413-421.
[49]
V. Gupta, A. Pandurangan, Synthesis of some paracetamol CONTENING 2-OXO-AZETIDINE derivatives and their antimicrobial activity, WJ Pharm Sci 2 (4) (2013) 2156-2165.
[50]
A.K. Sahoo, M.P. Sk, S.S. Ghosh, A. Chattopadhyay, Plasmid DNA linearization in the antibacterial action of a new fluorescent Ag nanoparticle-paracetamol dimer composite, Nanoscale 3 (10) (2011) 4226-4233, https://doi.org/10.1039/c1nr10389j.
[51]
A.A. Al-Janabi, In vitro antibacterial activity of Ibuprofen and acetaminophen, J. Global Infect. Dis. 2 (2) (2010) 105-108, https://doi.org/10.4103/0974-777X.62880.
[52]
A. Lawal, J.A.J.B. Obaleye, Synthesis, characterization and antibacterial activity of aspirin and paracetamolmetal complexes 19 (1) (2007).
[53]
A.S. El-Tabl, M.M. Abdel-Wahed, R.A. SayedAhmed, K.S. Sarhan, Synthesis and structural characterization of new and exciting NP complexes-based paracetamol moiety with antimicrobial activity, J. Chem. Chem. Sci 10 (1) (2020) 32-64.
[54]
F.H. Shah, K.H. Lim, S.J. Kim, Do fever-relieving medicines have anti-COVID activity: an in silico insight, Future Virol. 16 (4) (2021) 293-300, https://doi.org/10.2217/fvl-2020-0398.
[55]
N. de Bruin, A.K. Schneider, P. Reus, S. Talmon, S. Ciesek, D. Bojkova, J. Cinatl, I. Lodhi, B. Charlesworth, S. Sinclair, G. Pennick, W.F. Laughey, P. Gribbon, A. Kannt, S. Schiffmann, Ibuprofen, flurbiprofen, etoricoxib or paracetamol do not influence ACE2 expression and activity in vitro or in mice and do not exacerbate in-vitro SARS-CoV-2 infection, Int. J. Mol. Sci. 23 (3) (2022) 1049, https://doi.org/10.3390/ijms23031049.
[56]
P. Sestili, C. Fimognari,Paracetamol Use in COVID-19: Friend or Enemy?, 2020.
[57]
A.J. Rodríguez-Morales, J.A. Cardona-Ospina, M.M. Murillo-Muñoz, Gastroenterologists, hepatologists, COVID-19 and the use of acetaminophen, Clin. Gastroenterol. Hepatol. 18 (9) (2020) 2142-2143, https://doi.org/10.1016/j.cgh.2020.04.025.
[58]
P. Sestili, C. Fimognari, Paracetamol-induced glutathione consumption: is there a link with severe COVID-19 illness? Front. Pharmacol. 11 (2020) 579944 https://doi.org/10.3389/fphar.2020.579944.
[59]
S. Pandolfi, V. Simonetti, G. Ricevuti, S. Chirumbolo, Paracetamol in the home treatment of early COVID-19 symptoms: a possible foe rather than a friend for elderly patients? J. Med. Virol. 93 (10) (2021) 5704-5706, https://doi.org/10.1002/jmv.27158.
[60]
R.I. Shader, Acetaminophen (paracetamol), COVID-19, and misleading conclusions: a commentary, J. Clin. Psychopharmacol. 41 (2) (2021) 98-99, https://doi.org/10.1097/JCP.0000000000001345.
[61]
A.J. Crighton, C.T. McCann, E.J. Todd, A.J. Brown, Safe use of paracetamol and high-dose NSAID analgesia in dentistry during the COVID-19 pandemic, Br. Dent. J. 229 (1) (2020) 15-18, https://doi.org/10.1038/s41415-020-1784-3.
[62]
A. Ramachandran, M. Lebofsky, H.M. Yan, S.A. Weinman, H. Jaeschke, Hepatitis C virus structural proteins can exacerbate or ameliorate acetaminophen-induced liver injury in mice, Arch. Toxicol. 89 (5) (2015) 773-783, https://doi.org/10.1007/s00204-015-1498-5.
[63]
N.M. El-Lakkany, A.S. Hendawy, S.H. Seif El-Din, A.A. Ashour, R. Atta, A.A. Abdel-Aziz, A.M. Mansour, S.S. Botros, Bioavailability of paracetamol with/without caffeine in Egyptian patients with hepatitis C virus, Eur. J. Clin. Pharmacol. 72 (5)(2016) 573-582, https://doi.org/10.1007/s00228-016-2025-1.
[64]
N.M. Graham, C.J. Burrell, R.M. Douglas, P. Debelle, L. Davies, Adverse effects of aspirin, acetaminophen, and ibuprofen on immune function, viral shedding, and clinical status in rhinovirus-infected volunteers, J. Infect. Dis. 162 (6) (1990) 1277-1282, https://doi.org/10.1093/infdis/162.6.1277.
[65]
J.W. Kim, S. Yoon, J. Lee, S. Lee, Serious clinical outcomes of COVID-19 related to acetaminophen or NSAIDs from a nationwide population-based cohort study, Int. J. Environ. Res. Publ. Health 20 (5) (2023) 3832, https://doi.org/10.3390/ijerph20053832.
[66]
K.W. van Cleef, G.J. Overheul, M.C. Thomassen, J.M. Marjakangas, R.P. van Rij, Escape mutations in NS4B render dengue virus insensitive to the antiviral activity of the paracetamol metabolite AM404, Antimicrob. Agents Chemother. 60 (4)(2016) 2554-2557, https://doi.org/10.1128/AAC.02462-15.
[67]
R. Niranjan, M.K. Sumitha, T. Sankari, S. Muthukumaravel, P. Jambulingam, Nonstructural protein-1 (NS1) of dengue virus type-2 differentially stimulate expressions of matrix metalloproteinases in monocytes: protective effect of paracetamol, Int. Immunopharmacol. 73 (2019) 270-279, https://doi.org/10.1016/j.intimp.2019.05.022.
[68]
J.G.G. Ferreira, S.G. Gava, E.S. Oliveira, I.C.A. Batista, G.D.R. Fernandes, M. M. Mourão, C.E. Calzavara-Silva, Gene expression signatures in AML-12 hepatocyte cells upon Dengue virus infection and acetaminophen treatment, Viruses 12 (11) (2020) 1284, https://doi.org/10.3390/v12111284.
[69]
T. Pan, Z. Peng, L. Tan, F. Zou, N. Zhou, B. Liu, L. Liang, C. Chen, J. Liu, L. Wu, G. Liu, Z. Peng, W. Liu, X. Ma, J. Zhang, X. Zhu, T. Liu, M. Li, X. Huang, L. Tao, Y. Zhang, H. Zhang, Nonsteroidal anti-inflammatory drugs potently inhibit the replication of Zika viruses by inducing the degradation of AXL, J. Virol. 92 (20)(2018) e01018, https://doi.org/10.1128/JVI.01018-18,18.
[70]
S.N. Lauder, P.R. Taylor, S.R. Clark, R.L. Evans, J.P. Hindley, K. Smart, H. Leach, E.J. Kidd, K.J. Broadley, S.A. Jones, M.P. Wise, A.J. Godkin, V. O’Donnell, A. M. Gallimore, Paracetamol reduces influenza-induced immunopathology in a mouse model of infection without compromising virus clearance or the generation of protective immunity, Thorax 66 (5) (2011) 368-374, https://doi.org/10.1136/thx.2010.150318.
[71]
P. Gianiorio, R. Zappa, O. Sacco, B. Fregonese, I. Scaricabarozzi, G.A. Rossi, Antipyretic and anti-inflammatory efficacy of nimesulide vs paracetamol in the symptomatic treatment of acute respiratory infections in children, Drugs 46 (Suppl 1) (1993) 204-207, https://doi.org/10.2165/00003495-199300461-00052.
[72]
A.B. Kalsoom, A. Saif, S.H. Raza, M.U.M. Rao Abubakar, A.A. Ishaqui, Evaluating the role of paracetamol in alleviating symptoms of upper respiratory infections, Pakistan Journal of Medical & Health Sciences 17 (2) (2023), https://doi.org/10.53350/pjmhs2023172340,340-340.
[73]
I.L.N. Cabbab, R.V.M. Manalo, Anti-inflammatory drugs and the renin-angiotensin-aldosterone system: current knowledge and potential effects on early SARS-CoV-2 infection, Virus Res. 291 (2021) 198190, https://doi.org/10.1016/j.virusres.2020.198190.
[74]
B. Doudier, H. Vencatassin, S. Aherfi, P. Colson, Fatal fulminant hepatitis E associated with autoimmune hepatitis and excessive paracetamol intake in Southeastern France, J. Clin. Microbiol. 52 (4) (2014) 1294-1297, https://doi.org/10.1128/JCM.03372-13.
[75]
S. Chirumbolo, The widest use of paracetamol in home therapy might have actually increased the occurrence of severe forms of COVID-19 in Italy, affecting hospitalization and death rates, J. Med. Virol. 95 (1) (2023) e28301, https://doi.org/10.1002/jmv.28301.
[76]
S. Jefferies, I. Braithwaite, S. Walker, M. Weatherall, L. Jennings, M. Luck, K. Barrett, R. Siebers, T. Blackmore, R. Beasley, K. Perrin, Pi Study Group, Randomized controlled trial of the effect of regular paracetamol on influenza infection, Respirology 21 (2) (2016) 370-377, https://doi.org/10.1111/resp.12685.
[77]
N.B. Voloshina, M.F. Osipenko, N.V. Litvinova, Fulminant paracetamol hepatitis, Eksp Klin Gastroenterol. (9) (2016) 103-106.
[78]
A.M. Doedée, G.J. Boland, J.L. Pennings, A. de Klerk, G.A. Berbers, F.R. van der Klis, H.E. de Melker, H. van Loveren, R. Janssen, Effects of prophylactic and therapeutic paracetamol treatment during vaccination on hepatitis B antibody levels in adults: two open-label, randomized controlled trials, PLoS One 9 (6)(2014) e98175, https://doi.org/10.1371/journal.pone.0098175.
[79]
M. Chernesky, D. O’Neill, L. Pickard, S. Castriciano, D. Kraftcheck, J. Sellors, D. McLean, N. Flett, J. Mahony, Immunogenicity and adverse reactions of influenza vaccination in elderly patients given acetaminophen or placebo, Clin. Diagn. Virol. 1 (2) (1993) 129-136, https://doi.org/10.1016/0928-0197(93)90021-v.
[80]
P.A. Gross, R.A. Levandowski, C. Russo, M. Weksler, J. Bonelli, S. Dran, G. Munk, S. Deichmiller, R. Hilsen, R.F. Panush, Vaccine immune response and side effects with the use of acetaminophen with influenza vaccine, Clin. Diagn. Lab. Immunol. 1 (2) (1994) 134-138, https://doi.org/10.1128/cdli.1.2.134-138.1994.
[81]
S.S. Ranganathan, M.G. Sathiadas, S. Sumanasena, M. Fernandopulle, S.P. Lamabadusuriya, B.M. Fernandopulle, Fulminant hepatic failure and paracetamol overuse with therapeutic intent in febrile children, Indian J. Pediatr. 73 (10) (2006) 871-875, https://doi.org/10.1007/BF02859276.
[82]
R. Munshi, M. Maurya, A case report of cefixime, paracetamol, and nimesulide induced toxic epidermal necrolysis in a woman with dengue infection without any other associated comorbidities, Curr. Drug Saf. 19 (2) (2024) 286-290, https://doi.org/10.2174/1574886318666230418104445.
[83]
M.G. MacDonald, P.P. McGrath, D.N. McMartin, G.C. Washington, G. Hudak, Potentiation of the toxic effects of acetaminophen in mice by concurrent infection with influenza B virus: a possible mechanism for human Reye’s syndrome? Pediatr. Res. 18 (2) (1984) 181-187, https://doi.org/10.1203/00006450-198402000-00014.
[84]
T. Uehara, O. Kosyk, E. Jeannot, B.U. Bradford, K. Tech, J.M. Macdonald, G.A. Boorman, S. Chatterjee, R.P. Mason, S.B. Melnyk, V.P. Tryndyak, I. P. Pogribny, I. Rusyn, Acetaminophen-induced acute liver injury in HCV transgenic mice, Toxicol. Appl. Pharmacol. 266 (2) (2013) 224-232, https://doi.org/10.1016/j.taap.2012.11.019.
[85]
M. Conti,Estudio clínico comparativo, aleatorizado y paralelo para valorar la eficacia y seguridad de aceclofenaco vs a paracetamol en el tratamiento de la faringoamigdalitis viral [Comparative, randomized, parallel clinical study of the effectiveness and safety of aceclofenac vs. paracetamol in the treatment of viral pharyngoamygdalitis], Acta Otorrinolaringol. Esp. 48 (2) (1997) 133-137.
[86]
F.Y. Aoki, A. Yassi, M. Cheang, C. Murdzak, G.W. Hammond, L.H. Seklà, B. Wright, Effects of acetaminophen on adverse effects of influenza vaccination in health care workers, CMAJ (Can. Med. Assoc. J.) 149 (10) (1993) 1425-1430.
[87]
J.F. Maddox, C.J. Amuzie, M. Li, S.W. Newport, E. Sparkenbaugh, C.F. Cuff, J.J. Pestka, G.H. Cantor, R.A. Roth, P.E. Ganey, Bacterial- and viral-induced inflammation increases sensitivity to acetaminophen hepatotoxicity, J. Toxicol. Environ. Health 73 (1) (2010) 58-73, https://doi.org/10.1080/15287390903249057.
[88]
Y. Getachew, L. James, W.M. Lee, D.L. Thiele, B.C. Miller, Susceptibility to acetaminophen (APAP) toxicity unexpectedly is decreased during acute viral hepatitis in mice, Biochem. Pharmacol. 79 (9) (2010) 1363-1371, https://doi.org/10.1016/j.bcp.2009.12.019.
[89]
H.H. Chow, Y. Tang, P. Li, G. Brookshier, B. Liang, R. Watson, The effect of chronic retrovirus infection and immune dysfunction on the P-450-mediated activation of acetaminophen in mouse liver microsomes, Biopharm Drug Dispos. 19 (1) (1998) 9-15, https://doi.org/10.1002/(sici)1099-081x(199801)19:1<9::aid-bdd70>3.0.co;2-f.
[90]
H.H. Chow, Y. Tang, P. Li, R.L. Fisher, K. Brendel, R.R. Watson, Increased resistance to acetaminophen-induced hepatotoxicity in retrovirus-infected mice, Biopharm Drug Dispos. 17 (8) (1996) 661-674, https://doi.org/10.1002/(SICI)1099-081X(199611)17:8<661::AID-BDD980>3.0.CO;2-C.
[91]
A. Esteban, M. Pérez-Mateo, V. Boix, M. González, J. Portilla, A. Mora, Abnormalities in the metabolism of acetaminophen in patients infected with the human immunodeficiency virus (HIV), Methods Find Exp. Clin. Pharmacol. 19 (2)(1997) 129-132.
[92]
C. Yaghi, K. Honein, J. Boujaoude, R. Slim, R. Moucari, R. Sayegh, Influence of acetaminophen at therapeutic doses on surrogate markers of severity of acute viral hepatitis, Gastroenterol. Clin. Biol. 30 (5) (2006) 763-768, https://doi.org/10.1016/s0399-8320(06)73311-5.
[93]
G.C. Nguyen, J. Sam, P.J. Thuluvath, Hepatitis C is a predictor of acute liver injury among hospitalizations for acetaminophen overdose in the United States: a nationwide analysis, Hepatology 48 (4) (2008) 1336-1341, https://doi.org/10.1002/hep.22536.
[94]
H. Shinzawa, H. Togashi, K. Sugahara, M. Ishibashi, Y. Terui, M. Aoki, H. Mitsuhashi, T. Matsuo, H. Watanabe, T. Abe, S. Ohno, K. Saito, T. Saito, N. Yamada, T. Takahashi, R. Horiuchi, Acute cholestatic hepatitis caused by a probable allergic reaction to paracetamol in an adolescent, Tohoku J. Exp. Med. 193 (3) (2001) 255-258, https://doi.org/10.1620/tjem.193.255.
[95]
C. Bachert, A.G. Chuchalin, R. Eisebitt, V.Z. Netayzhenko, M. Voelker, Aspirin compared with acetaminophen in the treatment of fever and other symptoms of upper respiratory tract infection in adults: a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel-group, single-dose, 6-hour dose-ranging study, Clin. Ther. 27 (7) (2005) 993-1003, https://doi.org/10.1016/j.clinthera.2005.06.002.
[96]
M.S. Sadati, I. Ahrari,Severe herpes zoster neuralgia in a pregnant woman treated with acetaminophen, Acta Med. Iran. 52 (3) (2014) 238-239.
[97]
M. Takaoki, Y. Yamashita, K. Koike, S. Matsuda, Effect of indomethacin, aspirin, and acetaminophen on in vitro antiviral and antiproliferative activities of recombinant human interferon-alpha 2a, J. Interferon Res. 8 (6) (1988) 727-733, https://doi.org/10.1089/jir.1988.8.727.
[98]
S.S. Sarma, B.K. González-Pérez, R.M. Moreno-Gutiérrez, S. Nandini, Effect of paracetamol and diclofenac on population growth of Plationus patulus and Moina macrocopa, J. Environ. Biol. 35 (1) (2014) 119-126.
[99]
P. Sriraj, T. Boonmars, R. Aukkanimart, A. Artchayasawat, G.N. Borlace, P. Ratanasuwan, B. Pumhirunroj,Acetaminophen overdose enhances early cholangiocarcinoma in opisthorchiasis hamsters, Asian Pac. J. Cancer Prev. APJCP 22 (12) (2021) 3903-3912, https://doi.org/10.31557/APJCP.2021.22.12.3903.
[100]
R. Mungmunpuntipantip, V. Wiwanitkit,Opisthorchiasis, acetaminophen overdose and cholangiocarcinoma : correspondence, Asian Pac. J. Cancer Prev. APJCP 23 (1) (2022) 1, https://doi.org/10.31557/APJCP.2022.23.1.1.
[101]
J.C. Park, D.S. Yoon, E. Byeon, J.S. Seo, U.K. Hwang, J. Han, J.S. Lee, Adverse effects of two pharmaceuticals acetaminophen and oxytetracycline on life cycle parameters, oxidative stress, and defensome system in the marine rotifer Brachionus rotundiformis, Aquat. Toxicol. 204 (2018) 70-79, https://doi.org/10.1016/j.aquatox.2018.08.018.
[102]
J. Li, X. Tang, X. Wen, X. Ren, H. Zhang, Y. Du, J. Lu, Mitochondrial Glrx2 knockout augments acetaminophen-induced hepatotoxicity in mice, Antioxidants 11 (9) (2022) 1643, https://doi.org/10.3390/antiox11091643.
[103]
J. Li, P. Cheng, S. Li, P. Zhao, B. Han, X. Ren, J.L. Zhong, M.D. Lloyd, C. Pourzand, A. Holmgren, J. Lu, Selenium status in diet affects acetaminophen-induced hepatotoxicity via interruption of redox environment, Antioxidants Redox Signal. 34 (17) (2021) 1355-1367, https://doi.org/10.1089/ars.2019.7909.
[104]
H. Jaeschke, F.J. Murray, A.D. Monnot, D. Jacobson-Kram, S.M. Cohen, J.F. Hardisty, E. Atillasoy, A. Hermanowski-Vosatka, E. Kuffner, D. Wikoff, G.A. Chappell, S.B. Bandara, M. Deore, S.K. Pitchaiyan, G. Eichenbaum, Assessment of the biochemical pathways for acetaminophen toxicity: implications for its carcinogenic hazard potential, Regul. Toxicol. Pharmacol. 120 (2021) 104859, https://doi.org/10.1016/j.yrtph.2020.104859.
[105]
M.J. Khodayar, H. Kalantari, L. Khorsandi, M. Rashno, L. Zeidooni, Upregulation of Nrf2-related cytoprotective genes expression by acetaminophen-induced acute hepatotoxicity in mice and the protective role of betaine, Hum. Exp. Toxicol. 39 (7) (2020) 948-959, https://doi.org/10.1177/0960327120905962.
[106]
J.C. Mossanen, F. Tacke, Acetaminophen-induced acute liver injury in mice, Lab. Anim 49 (1 Suppl) (2015) 30-36, https://doi.org/10.1177/0023677215570992.
[107]
S.U. Ruepp, R.P. Tonge, J. Shaw, N. Wallis, F. Pognan, Genomics and proteomics analysis of acetaminophen toxicity in mouse liver, Toxicol. Sci. 65 (1) (2002) 135-150, https://doi.org/10.1093/toxsci/65.1.135.
[108]
H.C. Peng, Y.H. Wang, C.C. Wen, W.H. Wang, C.C. Cheng, Y.H. Chen,Nephrotoxicity assessments of acetaminophen during zebrafish embryogenesis, Comp. Biochem. Physiol. C Toxicol. Pharmacol. 151 (4) (2010) 480-486, https://doi.org/10.1016/j.cbpc.2010.02.004.
[109]
B. Parameshappa, M.S. Ali Basha, S. Sen, R. Chakraborty, G.V. Kumar, G.V. Sagar, L. Sowmya, K.K. Raju, P.K. Sesh Kumar, A.V. Lakshmi, Acetaminophen-induced nephrotoxicity in rats: protective role of Cardiospermum halicacabum, Pharm. Biol. 50 (2) (2012) 247-253, https://doi.org/10.3109/13880209.2011.596843.
[110]
K. Boutis, M. Shannon, Nephrotoxicity after acute severe acetaminophen poisoning in adolescents, J. Toxicol. Clin. Toxicol. 39 (5) (2001) 441-445, https://doi.org/10.1081/clt-100105413.
[111]
Y.G. Chen, C.L. Lin, M.S. Dai, P.Y. Chang, J.H. Chen, T.C. Huang, Y.Y. Wu, C. H. Kao, Risk of acute kidney injury and long-term outcome in patients with acetaminophen intoxication: a nationwide population-based retrospective cohort study, Medicine (Baltim.) 94 (46) (2015) e2040, https://doi.org/10.1097/MD.0000000000002040.
[112]
J.F. Newton, M. Yoshimoto, J. Bernstein, G.F. Rush, J.B. Hook,Acetaminophen nephrotoxicity in the rat. I. Strain differences in nephrotoxicity and metabolism, Toxicol. Appl. Pharmacol. 69 (2) (1983) 291-306, https://doi.org/10.1016/0041-008x(83)90311-3.
[113]
O. Ozkaya, G. Genc, K. Bek, Y. Sullu, A case of acetaminophen (paracetamol) causing renal failure without liver damage in a child and review of literature, Ren. Fail. 32 (9) (2010) 1125-1127, https://doi.org/10.3109/0886022X.2010.509830.
[114]
M. Saleem, H. Iftikhar, A rare case of acetaminophen toxicity leading to severe kidney injury, Cureus 11 (6) (2019) e5003, https://doi.org/10.7759/cureus.5003.
[115]
J. Sandoval, D.J. Orlicky, A. Allawzi, B. Butler, C. Ju, C.T. Phan, R. Toston, R. De Dios, L. Nguyen, S. McKenna, E. Nozik-Grayck, C.J. Wright, Toxic acetaminophen exposure induces distal lung ER stress, proinflammatory signaling, and emphysematous changes in the adult murine lung, Oxid. Med. Cell. Longev. 2019 (2019) 7595126, https://doi.org/10.1155/2019/7595126.
[116]
S. Dimova, P.H. Hoet, B.J.B.p. Nemery, Paracetamol (acetaminophen) cytotoxicity in rat type II pneumocytes and alveolar macrophages in vitro 59 (11) (2000) 1467-1475.
[117]
M. Fujii, T.J.W. j.o.c.c. Kenzaka, Drug-induced lung injury caused by acetaminophen in a Japanese woman: a case report 10 (27) (2022) 9936.
[118]
R. Nakamura, F. Ochi, T. Chisaka, T. Jogamoto, M. Eguchi, Acetaminophen-induced Stevens-Johnson syndrome with lethal lung injury: a case report, Clin Case Rep 10 (9) (2022) e6294, https://doi.org/10.1002/ccr3.6294.
[119]
M.H. Al-Zubaidy, Acute neurotoxicity of acetaminophen in chicks, Vet. Arh. 91 (4)(2021) 379-387, https://doi.org/10.24099/vet.arhiv.0950.
[120]
M.B. Vigo, M.J. Pérez, F. De Fino, G. Gómez, S.A. Martínez, V. Bisagno, M.B. Di Carlo, A. Scazziota, J.E. Manautou, C.I. Ghanem, Acute acetaminophen intoxication induces direct neurotoxicity in rats manifested as astrogliosis and decreased dopaminergic markers in brain areas associated with locomotor regulation, Biochem. Pharmacol. 170 (2019) 113662, https://doi.org/10.1016/j.bcp.2019.113662.
[121]
A. Ghanizadeh,Acetaminophen may mediate oxidative stress and neurotoxicity in autism, Med. Hypotheses 78 (2) (2012) 351, https://doi.org/10.1016/j.mehy.2011.11.009.
[122]
I. Sudano, A.J. Flammer, D. Périat, F. Enseleit, M. Hermann, M. Wolfrum, A. Hirt, P. Kaiser, D. Hurlimann, M. Neidhart, S. Gay, J. Holzmeister, J. Nussberger, P. Mocharla, U. Landmesser, S.R. Haile, R. Corti, P.M. Vanhoutte, T.F. Lüscher, G. Noll, F. Ruschitzka, Acetaminophen increases blood pressure in patients with coronary artery disease, Circulation 122 (18) (2010) 1789-1796, https://doi.org/10.1161/CIRCULATIONAHA.110.956490.
[123]
N. Ohtani, M. Matsuzaki, Y. Anno, H. Ogawa, Y. Matsuda, R. Kusukawa, A case of myocardial damage following acute paracetamol poisoning, Jpn. Circ. J. 53 (3)(1989) 278-282, https://doi.org/10.1253/jcj.53.278.
[124]
S. Kennon-McGill, M.R. McGill, Extrahepatic toxicity of acetaminophen: critical evaluation of the evidence and proposed mechanisms, J Clin Transl Res 3 (3) (2017) 297-310, https://doi.org/10.18053/jctres.03.201703.005.
[125]
Y. Kim, K. Choi, J. Jung, S. Park, P.G. Kim, J. Park, Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea, Environ. Int. 33 (3)(2007) 370-375, https://doi.org/10.1016/j.envint.2006.11.017.
[126]
D. Bartlett, Acetaminophen toxicity, J. Emerg. Nurs. 30 (3) (2004) 281-283, https://doi.org/10.1016/j.jen.2004.01.023.
[127]
E.S. Fisher, S.C. Curry, Evaluation and treatment of acetaminophen toxicity, Adv. Pharmacol. 85 (2019) 263-272, https://doi.org/10.1016/bs.apha.2018.12.004.
[128]
F.V. Schiødt, F.A. Rochling, D.L. Casey, W.M. Lee, Acetaminophen toxicity in an urban county hospital, N. Engl. J. Med. 337 (16) (1997) 1112-1117, https://doi.org/10.1056/NEJM199710163371602.
[129]
S.J. Saccomano, Acute acetaminophen toxicity in adults, Nurs. Pract. 44 (11) (2019) 42-47, https://doi.org/10.1097/01.NPR.0000586020.15798.c6.
[130]
A. Louvet, L.C. Ntandja Wandji, E. Lemaître, M. Khaldi, C. Lafforgue, F. Artru, B. Quesnel, G. Lassailly, S. Dharancy, P. Mathurin, Acute liver injury with therapeutic doses of acetaminophen: a prospective study, Hepatology 73 (5) (2021) 1945-1955, https://doi.org/10.1002/hep.31678.
[131]
G.B. Corcoran, B.K. Wong, Obesity as a risk factor in drug-induced organ injury: increased liver and kidney damage by acetaminophen in the obese overfed rat, J. Pharmacol. Exp. Therapeut. 241 (3) (1987) 921-927.
[132]
K. Kon, K. Ikejima, K. Okumura, K. Arai, T. Aoyama, S. Watanabe, Diabetic KK-A(y) mice are highly susceptible to oxidative hepatocellular damage induced by acetaminophen, Am. J. Physiol. Gastrointest. Liver Physiol. 299 (2) (2010) G329-G337, https://doi.org/10.1152/ajpgi.00361.2009.
[133]
C. Fox, M.L. Ekaney, M. Runyon, H.M. Nguyen, P.J. Turk, I.H. McKillop, C. M. Murphy, Assessing platelet mitochondrial dysfunction in a murine model of acute acetaminophen toxicity, J. Med. Toxicol. 19 (4) (2023) 341-351, https://doi.org/10.1007/s13181-023-00964-0.
[134]
M. Coen, E.M. Lenz, J.K. Nicholson, I.D. Wilson, F. Pognan, J.C. Lindon, An integrated metabonomic investigation of acetaminophen toxicity in the mouse using NMR spectroscopy, Chem. Res. Toxicol. 16 (3) (2003) 295-303, https://doi.org/10.1021/tx0256127.
[135]
A.L. Chiew, G.K. Isbister, Advances in the understanding of acetaminophen toxicity mechanisms: a clinical toxicology perspective, Expet Opin. Drug Metabol. Toxicol. 19 (9) (2023) 601-616, https://doi.org/10.1080/17425255.2023.2259787.
[136]
A.L. Chiew, L.P. James, G.K. Isbister, J.W. Pickering, K. McArdle, B.S.H. Chan, N.A. Buckley, Early acetaminophen-protein adducts predict hepatotoxicity following overdose (ATOM-5), J. Hepatol. 72 (3) (2020) 450-462, https://doi.org/10.1016/j.jhep.2019.10.030.
[137]
G. Mour, D.A. Feinfeld, T. Caraccio, M. McGuigan, Acute renal dysfunction in acetaminophen poisoning, Ren. Fail. 27 (4) (2005) 381-383.
[138]
J.B. Michel, P.J. Yeh, R. Chait, R.C. Moellering Jr. R. Kishony,Drug interactions modulate the potential for evolution of resistance, Proc. Natl. Acad. Sci. U. S. A. 105 (39) (2008) 14918-14923, https://doi.org/10.1073/pnas.0800944105.
[139]
J.P. Torella, R. Chait, R. Kishony, Optimal drug synergy in antimicrobial treatments, PLoS Comput. Biol. 6 (6) (2010) e1000796, https://doi.org/10.1371/journal.pcbi.1000796.
[140]
M. Hegreness, N. Shoresh, D. Damian, D. Hartl, R. Kishony,Accelerated evolution of resistance in multidrug environments, Proc. Natl. Acad. Sci. U. S. A. 105 (37)(2008) 13977-13981, https://doi.org/10.1073/pnas.0805965105.
[141]
K.M. Pluchino, M.D. Hall, A.S. Goldsborough, R. Callaghan, M.M. Gottesman, Collateral sensitivity as a strategy against cancer multidrug resistance, Drug Resist. Updates 15 (1-2) (2012) 98-105, https://doi.org/10.1016/j.drup.2012.03.002.
[142]
P. Zimmermann, N. Curtis, Antimicrobial effects of antipyretics, Antimicrob. Agents Chemother. 61 (4) (2017) e02268, https://doi.org/10.1128/AAC.02268-16,16.
[143]
A.R. Sultan, K.R. Lattwein, N.A. Lemmens-den Toom, S.V. Snijders, K. Kooiman, A. Verbon, W.J.B. van Wamel, Paracetamol modulates biofilm formation in Staphylococcus aureus clonal complex 8 strains, Sci. Rep. 11 (1) (2021) 5114, https://doi.org/10.1038/s41598-021-84505-1.
[144]
F.J. Koly, S. Shahriar, S. Sayeed, A. Islam, M.S. Amran, A cross-sectional pilot study on paracetamol consumption patterns among the students residing in the urban areas of Bangladesh, International Journal of Pharmaceutical Research (09752366) 13 (3) (2021), https://doi.org/10.31838/ijpr/2021.13.03.002.
[145]
D.V. Patangia, C. Anthony Ryan, E. Dempsey, R. Paul Ross, C. Stanton, Impact of antibiotics on the human microbiome and consequences for host health, Microbiol. 11 (1) (2022) e1260, https://doi.org/10.1002/mbo3.1260.
[146]
J. Vijayashree Priyadharsini, In silico validation of the non-antibiotic drugs acetaminophen and ibuprofen as antibacterial agents against red complex pathogens, J. Periodontol. 90 (12) (2019) 1441-1448, https://doi.org/10.1002/JPER.18-0673.
[147]
N.M. Seleem, H. Atallah, H.K. Abd El Latif, M.A. Shaldam, A.M. El-Ganiny, Could the analgesic drugs, paracetamol and indomethacin, function as quorum sensing inhibitors? Microb. Pathog. 158 (2021) 105097 https://doi.org/10.1016/j.micpath.2021.105097.
[148]
C. Ponte, A. Parra, C. Cenjor, M. Garcia-Olmos, M.J. Gimenez, L. Aguilar, A. Carcas, F. Soriano, Does acetaminophen interfere in the antibiotic treatment of acute otitis media caused by a penicillin-resistant pneumococcus strain? A gerbil model, Pediatr. Res. 54 (6) (2003) 913-918, https://doi.org/10.1203/01.PDR.0000090931.94785.DA.
[149]
T. Verma, C. Bhaskarla, I. Sadhir, S. Sreedharan, D. Nandi, Non-steroidal anti-inflammatory drugs, acetaminophen and ibuprofen, induce phenotypic antibiotic resistance in Escherichia coli: roles of marA and acrB, FEMS Microbiol. Lett. 365(22) (2018), https://doi.org/10.1093/femsle/fny251.
[150]
Y. Jia, Z. Wang, D. Fang, B. Yang, R. Li, Y. Liu, Acetaminophen promotes horizontal transfer of plasmid-borne multiple antibiotic resistance genes, Sci. Total Environ. 782 (2021) 146916, https://doi.org/10.1016/j.scitotenv.2021.146916.
[151]
Y. Cui, J. Gao, Y. Guo, Z. Li, Z. Wang, Y. Zhao, Unraveling the impact and mechanism of antipyretic paracetamol on intergenera conjugative plasmid transfer, Environ. Res. 215 (Pt 1) (2022) 114263, https://doi.org/10.1016/j.envres.2022.114263.
[152]
M. Majeski, N. Erickson, R. Schmidt, NSAIDs and Their Interactions with Bacterial Growth, 2022.
[153]
T. Rainśka-Giezek, Wpłlw kofeiny na toksyczność i farmakokinetyke paracetamolu [Influence of caffeine on toxicity and pharmacokinetics of paracetamol], Ann. Acad. Med. Stetin 41 (1995) 69-85.
[154]
B. Renner, G. Clarke, T. Grattan, A. Beisel, C. Mueller, U. Werner, G. Kobal, K. Brune, Caffeine accelerates absorption and enhances the analgesic effect of acetaminophen, J. Clin. Pharmacol. 47 (6) (2007) 715-726, https://doi.org/10.1177/0091270007299762.
[155]
S. Latif, N. Abbas, A. Hussain, M.S. Arshad, N.I. Bukhari, H. Afzal, S. Riffat, Z. Ahmad, Development of paracetamol-caffeine co-crystals to improve compressional, formulation and in vivo performance, Drug Dev. Ind. Pharm. 44 (7)(2018) 1099-1108, https://doi.org/10.1080/03639045.2018.1435687.
[156]
E.M. Laska, A. Sunshine, I. Zighelboim, C. Roure, I. Marrero, J. Wanderling, N. Olson, Effect of caffeine on acetaminophen analgesia, Clin. Pharmacol. Ther. 33(4) (1983) 498-509, https://doi.org/10.1038/clpt.1983.68.
[157]
X. Liu, Z. Liew, J. Olsen, L.H. Pedersen, B.H. Bech, E. Agerbo, W. Yuan, J. Li, Association of prenatal exposure to acetaminophen and coffee with childhood asthma, Pharmacoepidemiol. Drug Saf. 25 (2) (2016) 188-195, https://doi.org/10.1002/pds.3940.
[158]
S. Rossi, Australian Medicines Handbook, Australian Medicines Handbook, Sydney, Australia, 2006.
[159]
T.G. Limited, J. Dowden, Therapeutic Guidelines: Psychotropic, Therapeutic Guidelines Limited, 2008.
[160]
S. González, N. Salazar, S. Ruiz-Saavedra, M. Gómez-Martín, C.G. de Los Reyes-Gavilán, M. Gueimonde, Long-term coffee consumption is associated with fecal microbial composition in humans, Nutrients 12 (5) (2020) 1287, https://doi.org/10.3390/nu12051287.
[161]
T. Nakayama, K. Oishi, Influence of coffee (Coffea arabica) and galacto-oligosaccharide consumption on intestinal microbiota and the host responses, FEMS Microbiol. Lett. 343 (2) (2013) 161-168, https://doi.org/10.1111/1574-6968.12142.
[162]
J.M. Hamilton-Miller, Antimicrobial properties of tea ( Camellia sinensis L.), Antimicrob. Agents Chemother. 39 (11) (1995) 2375-2377, https://doi.org/10.1128/AAC.39.11.2375.
[163]
P.S. Murthy, H. J.E.F.R. Manonmani, Technology, Physico-Chemical, Antioxidant and Antimicrobial Properties of Indian Monsooned Coffee, 229, 2009, pp. 645-650.
[164]
W. Sledz, E. Los, A. Paczek, J. Rischka, A. Motyka, S. Zoledowska, J. Piosik, E. Lojkowska, Antibacterial activity of caffeine against plant pathogenic bacteria, Acta Biochim. Pol. 62 (3) (2015) 605-612, https://doi.org/10.18388/abp.2015_1092.
[165]
P. Chaitanyashree, A.S. Girija, A. Paramasivam, J.V. Priyadharsini, Molecular mechanisms underlying antimicrobial effect of caffeine against red complex pathogens-An in silico approach, Drug Invent. Today 12 (2019).
[166]
M.J. Mohammed, F.A. Al-Bayati,Isolation, identification and purification of caffeine from Coffea arabica L. and Camellia sinensis L.: a combination antibacterial study, Int. J. Green Pharm. 3 (1) (2009), https://doi.org/10.22377/ijgp.v3i1.56.
[167]
N.S. Kumar, P. Hewavitharanage, N.K.B. Adikaram, Attack on tea by Xyleborus fornicatus: inhibition of the symbiote, Monacrosporium ambrosium, by caffeine, Phytochemistry 40 (4) (1995) 1113-1116, https://doi.org/10.1016/0031-9422(95)00396-O.
[168]
S. Fardiaz, Antimicrobial activity of coffee (Coffea robusta) extract, ASEAN Food J. 10 (1995) 103-106.
[169]
M. Wilmot, Inhibition of Phytopathogenic Fungi on Selected Vegetable Crops by Catechins, Caffeine, Theanine and Extracts of Camellia Sinensis ( L.) O. Kuntze, University of Pretoria, South Africa, 2006.
[170]
J. Chen, S. Zhang, X. Yang, Control of brown rot on nectarines by tea polyphenol combined with tea saponin, Crop Prot. 45 (2013) 29-35, https://doi.org/10.1016/j.cropro.2012.11.006.
[171]
C.V. Raj, S. Dhala, Effect of naturally occurring xanthines on bacteria. I. Antimicrobial action and potentiating effect on antibiotic spectra, Appl. Microbiol. 13 (3) (1965) 432-436, https://doi.org/10.1128/am.13.3.432-436.
[172]
R. Blecher, F. Lingens, The metabolism of caffeine by a Pseudomonas putida strain, Hoppe Seylers Z. Physiol. Chem. 358 (7) (1977) 807-817, https://doi.org/10.1515/bchm2.1977.358.2.807.
[173]
R.L. Buchanan, D.G. Hoover, S.B. Jones, Caffeine inhibition of aflatoxin production: mode of action, Appl. Environ. Microbiol. 46 (5) (1983) 1193-1200, https://doi.org/10.1128/aem.46.5.1193-1200.1983.
[174]
R.A. Holmes, R.S. Boston, G.A. Payne, Diverse inhibitors of aflatoxin biosynthesis, Appl. Microbiol. Biotechnol. 78 (4) (2008) 559-572, https://doi.org/10.1007/s00253-008-1362-0.
[175]
I),Co
(II) Mn II, Cd II, Zn II, Cu II, Ni (II), J. Mol. Struct. 1184 (2019) 262-270, https://doi.org/10.1016/j.molstruc.2019.02.049.
[176]
O.O. Abosede, A.T. Gordon, T.O. Dembaremba, C.M. Lorentino, H.F. Frota, A. L. Santos, A.S. Ogunlaja, Trimesic acid-theophylline and isopthalic acid-caffeine cocrystals: synthesis, characterization, solubility, molecular docking, and antimicrobial activity, Cryst. Growth Des. 20 (5) (2020) 3510-3522, https://doi.org/10.1021/acs.cgd.0c00301.
[177]
F.A. Al-Saif, J.Y. Al-Humaidi, D.N. Binjawhar, M.S. Refat, Six new palladium (II) mixed ligand complexes of 2-, 3-, 4-monosubstituted derivative of pyridine ring with caffeine moiety: synthesis, spectroscopic, morphological structures, thermal, antimicrobial and anticancer properties, J. Mol. Struct. 1218 (2020) 128547, https://doi.org/10.1016/j.molstruc.2020.128547.
[178]
J.S. Raut, N.M. Chauhan, R.B. Shinde, S.M. Karuppayil, Inhibition of planktonic and biofilm growth of Candida albicans reveals novel antifungal activity of caffeine, J. Med. Plants Res. 7 (13) (2013) 777-782, https://doi.org/10.5897/JMPR12.765.
[179]
P. Chakraborty, D.G. Dastidar, P. Paul, S. Dutta, D. Basu, S.R. Sharma, S. Basu, R.K. Sarker, A. Sen, A. Sarkar, P. Tribedi, Inhibition of biofilm formation of Pseudomonas aeruginosa by caffeine: a potential approach for sustainable management of biofilm, Arch. Microbiol. 202 (3) (2020) 623-635, https://doi.org/10.1007/s00203-019-01775-0.
[180]
A. Kascatan-Nebioglu, A. Melaiye, K. Hindi, S. Durmus, M.J. Panzner, L.A. Hogue, R.J. Mallett, C.E. Hovis, M. Coughenour, S.D. Crosby, A. Milsted, D.L. Ely, C. A. Tessier, C.L. Cannon, W.J. Youngs, Synthesis from caffeine of a mixed N-heterocyclic carbene-silver acetate complex active against resistant respiratory pathogens, J. Med. Chem. 49 (23) (2006) 6811-6818, https://doi.org/10.1021/jm060711t.
[181]
Bazzaz BS. Fazly, B. Khameneh M.R. Zahedian Ostad, H. Hosseinzadeh, In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates, Avicenna J Phytomed 8 (3) (2018) 246-253.
[182]
A. Rawangkan, A. Siriphap, A. Yosboonruang, A. Kiddee, G. Pook-In, S. Saokaew, O. Sutheinkul, A. Duangjai, Potential antimicrobial properties of coffee beans and coffee by-products against drug-resistant Vibrio cholerae, Front. Nutr. 9 (2022) 865684, https://doi.org/10.3389/fnut.2022.865684.
[183]
M.D. Baldissera, C.F. Souza, L.B. Abbad, C.M. Verdi, R.C. Santos, A.S. da Silva, B. Baldisserotto, Dietary supplementation with caffeine increases survival rate, reduces microbial load and protects the liver against Aeromonas hydrophila-induced hepatic damage in the grass carp Ctenopharyngodon idella, Microb. Pathog. 135 (2019) 103637, https://doi.org/10.1016/j.micpath.2019.103637.
[184]
S.K. Banerjee, S.N. Chatterjee, Radiomimetic property of furazolidone and the caffeine enhancement of its lethal action on the vibrios, Chem. Biol. Interact. 37(3) (1981) 321-335, https://doi.org/10.1016/0009-2797(81)90118-6.
[185]
Z. Nasrollahi, M. H.J.I.E. Yadegari, Microbiology, Antifungal activity of caffeine in combination with fluconazole against Candida albicans 2 (2) (2016) 18-21.
[186]
P. Muthusamy, S.A. Antony, G. Palani, D. Saravanan, V. Chithambaram, Synergistic in vitro antimicrobial activity of caffeine/AgNPs-triton X-100, Appl. Phys. A 129 (9) (2023) 611, https://doi.org/10.1007/s00339-023-06892-8.
[187]
A. Woziwodzka, M. Krychowiak-Maśnicka, G. Gołuński, A. Łosiewska, A. Borowik, D. Wyrzykowski, J. Piosik, New life of an old drug: caffeine as a modulator of antibacterial activity of commonly used antibiotics, Pharmaceuticals 15 (7) (2022) 872, https://doi.org/10.3390/ph15070872.
[188]
V.A. Voicu, C. Mircioiu, C. Plesa, M. Jinga, V. Balaban, R. Sandulovici, A. M. Costache, V. Anuta, I. Mircioiu, Effect of a new synergistic combination of low doses of acetylsalicylic acid, caffeine, acetaminophen, and chlorpheniramine in acute low back pain, Front. Pharmacol. 10 (2019 Jun 20) 607, https://doi.org/10.3389/fphar.2019.00607.
PDF(1439 KB)

Accesses

Citations

Detail

Sections
Recommended

/