Microdynamic flowability for early API characterisation: A case study on Palbociclib

David Blanco, Nicolas Pätzmann, Pablo García-Triñanes

Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100069.

PDF(942 KB)
PDF(942 KB)
Pharmaceutical Science Advances ›› 2025, Vol. 3 ›› Issue (0) : 100069. DOI: 10.1016/j.pscia.2025.100069
Short communication

Microdynamic flowability for early API characterisation: A case study on Palbociclib

Author information +
History +

Abstract

This study explores microdynamic flowability as an innovative approach for early active pharmaceutical ingredient (API) characterisation, when compounds are often scarce and/or expensive. By incorporating small-scale flow measurements during the pre-formulation stage, we aim to support strategic decision-making in formulation development and process design. Laboratory-scale micronisation of the poorly water-soluble drug Palbociclib, while enhancing dissolution, was found to adversely affect flowability. Agglomeration driven by cohesive forces was quantitatively described for the first time via image analysis using sample quantities of less than 200 mg. Our findings demonstrate that microdynamic flow studies provide critical insights into the processability of APIs under low-stress conditions, such as those relevant to research and development (R&D) tablet presses. These results highlight the value of advanced flowability analysis in early-stage development, enabling improved understanding and control of powder processing in pharmaceutical manufacturing and particle engineering.

Keywords

API characterization / Microdynamic powder flowability / Micronisation / Pre-formulation / Particle engineering

Cite this article

Download citation ▾
David Blanco, Nicolas Pätzmann, Pablo García-Triñanes. Microdynamic flowability for early API characterisation: A case study on Palbociclib. Pharmaceutical Science Advances, 2025, 3(0): 100069 https://doi.org/10.1016/j.pscia.2025.100069

References

[1]
K. Ahirwar, R. Shukla, Preformulation Studies: A Versatile Tool in Formulation Design, IntechOpen, 2023, https://doi.org/10.5772/intechopen.110346.
[2]
C. Chendo, J.F. Pinto, M.C. Paisana, Comprehensive powder flow characterization with reduced testing, Int. J. Pharm. 642 (2023) 123107, https://doi.org/10.1016/j.ijpharm.2023.123107.
[3]
S. Baghel, H. Cathcart, N.J. O'Reilly, N. J, Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterisation, and aqueous solubilization of biopharmaceutical classification system class II drugs, J. Pharm. Sci-US 105 (9) (2016) 2527-2544, https://doi.org/10.1016/j.xphs.2015.10.008.
[4]
D. Blanco, O. Antikainen, H. R€aikk€onen, P.T. Mah, A.M. Healy, A.M. Juppo, J. Yliruusi, Image-based characterization of powder flow to predict the success of pharmaceutical minitablet manufacturing, Int. J. Pharm. 581 (2020) 119280, https://doi.org/10.1016/j.ijpharm.2020.119280.
[5]
D. Blanco, O. Antikainen, H. R€aikk€onen, J. Yliruusi, A.M. Juppo, Effect of colloidal silicon dioxide and moisture on powder flow properties: predicting in-process performance using image-based analysis, Int. J. Pharm. 597 (2021) 120344, https://doi.org/10.1016/j.ijpharm.2021.120344.
[6]
D. Blanco, H. Pentik€ainen, O. Antikainen, A.M. Juppo, Behaviour of magnesium stearate at particle-particle interfaces: microdynamic flowability to monitor distribution in powders, Powder Technol. 419 (2023) 118337, https://doi.org/10.1016/j.powtec.2023.118337.
[7]
T. Deng, V. Garg, D.P. Diaz, D. Markl, C. Brown, A. Florence, M.S.A. Bradley, Comparative studies of powder flow predictions using milligrams of powder for identifying powder flow issues, Int. J. Pharm. 629 (2022) 122309, https://doi.org/10.1016/j.ijpharm.2022.122309.
[8]
European Pharmacopoeia Commission,2.9.36. Powder flow, in: European Pharmacopoeia, 11.5 ed., Council of Europe, Strasbourg, France, 2024.
[9]
P. García-Triñanes, S. Luding, H. Shi, Tensile strength of cohesive powders, Adv. Powder Technol. 30 (12) (2019) 2868-2880, https://doi.org/10.1016/j.apt.2019.08.017.
[10]
H.P. Goh, P.W.S. Heng, C.V. Liew, Understanding effects of process parameters and forced feeding on die filling, Eur. J. Pharmaceut. Sci. 122 (2018) 105-115, https://doi.org/10.1016/j.ejps.2018.06.026.
[11]
C. Hildebrandt, S.R. Gopireddy, A.K. Fritsch, T. Profitlich, R. Scherließ, N.A. Urbanetz, Evaluation and prediction of powder flowability in pharmaceutical tableting, Pharmaceut. Dev. Technol. 24 (1) (2019) 35-47, https://doi.org/10.1080/10837450.2017.1412462.
[12]
K. Johanson, SSSpinTester: a new technology for powder flow analysis at low stresses, Powder Bulk Eng. 33 (2) (2019) 31-35.
[13]
U. Zafar, C. Hare, A. Hassanpour, M. Ghadiri, Effect of strain rate on powder flow behaviour using ball indentation method, Powder Technol. 380 (2021) 567-573. https://doi.org/10.1016/j.powtec.2020.11.057.
[14]
D. Natoli, M. Levin, L. Tsygan, L. Liu Development, optimization, and scale-up of process parameters: tablet compression,in: In Developing Solid Oral Dosage Forms, Academic Press, 2017, pp. 917-951, https://doi.org/10.1016/B978-0-12-802447-8.00033-9.
[15]
N. P€atzmann, P.J. O'Dwyer, J. Beranek, M. Kuentz, B.T. Griffin, Predictive computational models for assessing the impact of co-milling on drug dissolution, Eur. J. Pharmaceut. Sci. 198 (2024) 106780, https://doi.org/10.1016/j.ejps.2024.106780.
[16]
J.K. Prescott, R.A. Barnum, R. A. On powder flowability, Pharmaceut. Technol. 24(10) (2000) 60-85.
[17]
H. Shi, G. Lumay, S. Luding, Stretching the limits of dynamic and quasi-static flow testing on cohesive limestone powders, Powder Technol. 367 (2020) 183-191, https://doi.org/10.1016/j.powtec.2020.03.036.
[18]
E. Szabo, B. Demuth, D.L. Galata, P. Vass, E. Hirsch, I. Csontos, G. Marosi, Z.K. Nagy, Continuous formulation approaches of amorphous solid dispersions: significance of powder flow properties and feeding performance, Pharmaceutics 11 (12) (2019)654, https://doi.org/10.3390/pharmaceutics11120654.
[19]
United States Pharmacopeial Convention USP, Chapter <1062>: tablet compression characterization, in: United States Pharmacopeia And National Formulary (USP 46-NF 41), United States Pharmacopeial Convention, Rockville, MD, 2023.
[20]
United States Pharmacopeial Convention (USP), Chapter <1174>: powder flow, in: United States Pharmacopeia And National Formulary (USP 46-NF 41), United States Pharmacopeial Convention, Rockville, MD, 2023.
[21]
B. Van Snick, W. Grymonpre, J. Dhondt, K. Pandelaere, G. Di Pretoro, J.P. Remon, T. De Beer, C. Vervaet, V. Vanhoorne, Impact of blend properties on die filling during tableting, Int. J. Pharm. 549 (1-2) (2018) 476-488, https://doi.org/10.1016/j.ijpharm.2018.08.015.
[22]
Z.A. Worku, D. Kumar, J.V. Gomes, Y. He, B. Glennon, K.A. Ramisetty, A.M. Healy, Modelling and understanding powder flow properties and compactability of selected active pharmaceutical ingredients, excipients and physical mixtures from critical material properties, Int. J. Pharm. 531 (1) (2017) 191-204, https://doi.org/10.1016/j.ijpharm.2017.08.063,2017.
[23]
A.G. Stavrou, C. Hare, A. Hassanpour, C.-Y. Wu, Investigation of powder flowability at low stresses: Influence of particle size and size distribution, Powder Technol. 364(2020) 98-114, https://doi.org/10.1016/j.powtec.2020.01.068.
[24]
S.V. Søgaard, T. Pedersen, M. Allesø, J. Garnaes, J. Rantanen, Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment, Int. J. Pharm. 475 (1-2) (2014) 315-323, https://doi.org/10.1016/j.ijpharm.2014.08.060.
PDF(942 KB)

Accesses

Citations

Detail

Sections
Recommended

/